MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 21 Dynamic Programming III of TV 6.006 Spring 2008

Lecture 21: Dynamic Programming III: Text
Justification, Parenthesization, Knapsack,
Pseudopolynomial Time, Tetris Training
Lecture Overview
o Text Justification

Parenthesization

Knapsack

Pseudopolynomial Time

Tetris Training

Readings
CLRS 15

Review:

* DP is all about subproblems & guessing
* 5 easy steps:

a

b

(a) define subproblems: count # subprobs.

(b) guess (part of solution): count # choices

(c) relate subprob. solutions: compute time/subprob.
)

(d) recurse + memoize OR build DP table bottom up:
time = time/subprob. xf subprobs
(check subproblems related acyclically)

(e) check original problem = a subproblem or solvable from DP table (= extra time)

* for sequences, good subproblems are often prefixes OR suffixes OR, substrings

Lecture 21 Dynamic Programming 11T of TV 6.006 Spring 2008

Text Justification:
Split text into “good lines”

blah blah blah blah blah
b | a h vs blah blah
reallylongword reallylongword

Figure 1: Good vs. Bad Justification

e define badness(i, j) for line of words [i : j] e.g.,

if total length > page width
(page width - total length)? else

e goal: split words into lines to min » | badness

1. subproblem = min badness for suffix words][i]
= f subproblems = ©(n) where n = § words

2. guessing = where to end first line, say i : j
= f choices =n —i = 0(n)

3. relation:

e DP[i] = min(badness(i, j) + DP[j] for j in range(i + 1,n + 1))

e DP[n] = ¢
= time per subproblem = O(n)

4. total time = O(n?)

5. solution = DP|¢]

Lecture 21 Dynamic Programming 11T of TV 6.006 Spring 2008

Parenthesization:

Optimal evaluation of associative expression - e.g., multiplying rectangular matrices
A g C
(AB)C costs 6(n?)
L1 A(BC) costs 8(n)
Figure 2: Evaluation of an Expression

)

2. guessing — outermost multiplication (v)(

Toe—1 Tk
= f choices = O(n)

1. subproblems = prefixes-&—suffixzes? NO
= cost of substring A[i : j]
= f subproblems = O(n?)

3. Relation:

e DP[i,j] = min(DP [i, k] + DP[k, j]+ cost of multiplying (A[é]--- A[k — 1]) by
(A[k]--- A[j — 1]) for k in range(i + 1,7))

e DP[i,i+1]=¢
= cost per subproblem = O(n)

4. total time = O(n?)

5. solution = DP[0, n]

Knapsack:

Knapsack of size S you want to pack
e item 7 has integer size s; & real value v;

e goal: choose subset of items of maximum total value subject to total size < S

1. subproblem—wvalueforsuffixi: WRONG
2. guessing = whether to include item ¢ = { choices = 2

3. relation:

Lecture 21 Dynamic Programming III of TV 6.006 Spring 2008

e DPli] = max(DP[i+ 1],v; + DP[i + 1] if 5,<57!)
e not enough information to know whether item i fits - how much space is left?

GUESS!

1. subproblem = value for suffix i:
given knapsack of size X
= { subproblems = O(nS) !

3. relation:

e DP[i,X]| =max(DP[i+ 1, X],v; + DP[i+ 1, X — s;]ifs; < X)

e DP[n,X] = ¢
= time per subproblem = O(1)

4. total time = O(n.S)

5. solution = DP[¢, S|

AMAZING: effectively trying all possible subsets!

Knapsack is in fact NP-complete! = suspect no polynomial-time algorithm (polynomial

in length of input).

here input =< 5,89, -, Sp—1,00," "+ ,Un—1 >

length in binary: O(lg S +1gso+---) = O(nlg...)

so O(nS) is not “polynomial-time”

O(nS) still pretty good if S is small

“pseudopolynomial time”: polynomial in length of input & integers in the input

Lecture 21 Dynamic Programming 11T of TV 6.006 Spring 2008

7 &h P B e

Figure 3: Tetris

Tetris Training:
e given sequence of n Tetris pieces & a board of small width w
e must choose orientation & x coordinate for each
e then must drop piece till it hits something

e full rows do not clear
without these artificialities WE DON'T KNOW! (but: if w large then NP-complete)

e goal: survive i.e., stay within height h

[material below covered in recitation]

1. subpreblem=-surviveinsuffix?2 WRONG
2. guessing = how to drop piece i = # choices = O(w)

3. relation—DPl}=DPl+1H 7! not enough information!

What do we need to know about prefix : i?

1. subproblem = survive? in suffix i:

given initial column occupancies hqg, b1, -+ , hy—1

= f subproblems = O(n - h")

3. relation: DP[i, h] = max(DP[i, m]for valid moves m of pieceiin h)
= time per subproblem = O(w)

4. total time = O(nwh")

5. solution = DP[¢, ¢]

