
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

�

Lecture 16	 Shortest Paths II: Bellman-Ford 6.006 Spring 2008

Lecture 16: Shortest Paths II: Bellman-Ford

Lecture Overview

Review: Notation •

• Generic S.P. Algorithm

• Bellman Ford Algorithm

– Analysis

– Correctness

Recall:

path p =	 < v0, v1, . . . , vk >

(v1, vi+1) �E 0 ≤ i < k
k−1

w(p) = w(vi, vi+1)
i−0

Shortest path weight from u to v is δ(u, v). δ(u, v) is ∞ if v is unreachable from u, undefined
if there is a negative cycle on some path from u to v.

u v

-ve

Figure 1: Negative Cycle

Generic S.P. Algorithm

Initialize:	 for v � V :
d [v] ← ∞
Π [v]	 NIL←

d[S] 0←
Main:	 repeat

select edge (u, v) [somehow] ⎡
if d[v] > d[u] + w(u, v) :

“Relax” edge (u, v) ⎢⎣ d[v] ← d[u] + w(u, v)
π[v] u←

until you can’t relax any more edges or you’re tired or . . .

1

Lecture 16 Shortest Paths II: Bellman-Ford 6.006 Spring 2008

Complexity:

Termination: Algorithm will continually relax edges when there are negative cycles present.

0
v

1 3 4

-1

u

d[u]

1 2 1

1 -4

0
-1
-2

2
1
0

etc

Figure 2: Algorithm may not terminate due to negative Cycles

Complexity could be exponential time with poor choice of edges.

v0 v1 v2 v3 v4 v5 v6

4 8 10 12 13 14
13

10 11 12

4 6 8 9 10
11

 (v0, v1)

 (v1, v2)
all of v2, vn

 (v0, v2)

 all of v2, vn

T(n) = θ(2n/2)

T(n) = 3 + 2T(n-2)

ORDER

Figure 3: Algorithm could take exponential time

2

Lecture 16 Shortest Paths II: Bellman-Ford 6.006 Spring 2008

5-Minute 6.006

Here’s what I want you to remember from 6.006 five years after you graduate

T(n) = C1 + C2T(n - C3) T(n) = C1 + C2T(n / C3)

Exponential Bad Polynomial Good

if C2 > 1, trouble!
Divide & Explode

 C2 > 1 okay provided C3 > 1
 if C3 > 1
Divide & Conquer

Figure 4: Exponential vs. Polynomial

Bellman-Ford(G,W,S)

Initialize ()
for i = 1 to | v | −1

for each edge (u, v)�E:
Relax(u, v)

for each edge (u, v)�E
do if d[v] > d[u] + w(u, v)

then report a negative-weight cycle exists

At the end, d[v] = δ(s, v), if no negative-weight cycles

B

5

A E

C D

4 -3

-1 2

2
13

∞ -1

∞

∞∞

0

1

1

3

8
2

6

5

4 7

4 2
2 3

End of pass 1

B

5

A E

C D

4 -3

-1 2

2
13

-1

1∞

∞2

0
1

1

3

8
2

6

5

4 7

1 -2
2 3

End of pass 2 (and 3 and 4)

Figure 5: The numbers in circles indicate the order in which the δ values are computed

3

Lecture 16 Shortest Paths II: Bellman-Ford 6.006 Spring 2008

Theorem:
If G = (V, E) contains no negative weight cycles, then after Bellman-Ford executes d[v] =
δ(u, v) for all v�V .
Proof:
v�V be any vertex. Consider path p from s to v that is a shortest path with minimum
number of edges.

p:
S

v0

v1

v2

vk

v

δ (s, vi) =
δ (s, vi-1) + w (vi-1,vi)

Figure 6: Illustration for proof

Initially d[v0] = 0 = δ(S, V0) and is unchanged since no negative cycles.

After 1 pass through E, we have d[v1] = δ(s, v1)

After 2 passes through E, we have d[v2] = δ(s, v2)

After k passes through E, we have d[vk] = δ(s, vk)

No negative weight cycles = ⇒ p is simple = ⇒ p has ≤| V | −1 edges

Corollary

If a value d[v] fails to converge after | V | −1 passes, there exists a negative-weight cycle
reachable from s.

4

