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Lecture 14	 Searching III 6.006 Spring 2008


Lecture 14: Searching III: Toplogical Sort and 

NP-completeness 

Lecture Overview: Search 3 of 3 & NP-completeness 

BFS vs. DFS • 

•	 job scheduling 

•	 topological sort 

•	 intractable problems 

•	 P, NP, NP-completeness 

Readings 

CLRS, Sections 22.4 and 34.1-34.3 (at a high level) 

Recall: 

•	 Breadth-First Search (BFS): level by level 

•	 Depth-First Search (DFS): backtrack as necc.


both O(V + E) worst-case time = optimal
•	 ⇒ 

•	 BFS computes shortest paths (min. � edges) 

•	 DFS is a bit simpler & has useful properties 
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Job Scheduling: 

Given Directed Acylic Graph (DAG), where vertices represent tasks & edges represent 
dependencies, order tasks without violating dependencies 
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Figure 1: Dependence Graph 

Source 

Source = vertex with no incoming edges 
= schedulable at beginning (A,G,I) 

Attempt 

BFS from each source: 

- from A �nds  H,B,C,F

- from D �nds  C, E, F

- from G �nds  H
} need to merge

     - costly

Figure 2: BFS-based Scheduling 
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Topological Sort 

Reverse of DFS finishing times (time at which node’s outgoing edges finished) 
Exercise: prove that no constraints are violated 

Intractability 

•	 DFS & BFS are worst-case optimal if problem is really graph search (to look at graph) 

•	 what if graph . . . 

–	 is implicit? 

–	 has special structure? 

–	 is infinite? 

The first 2 characteristics (implicitness and special structure) apply to the Rubik’s Cube

problem.

The third characteristic (infiniteness) applies to the Halting Problem.


Halting Problem: 

Given a computer program, does it ever halt (stop)? 

decision problem: answer is YES or NO 

UNDECIDABLE: no algorithm solves this problem (correctly in finite time on all inputs) 

Most decision problems are undecidable: 

•	 program ≈ binary string ≈ nonneg. integer � ℵ 

•	 decision problem = a function from binary strings to {YES,NO}. Binary strings refer 
to ≈ nonneg. integers while {YES,NO} ≈ {0,1} 

•	 ≈ infinite sequence of bits ≈ real number � � 

•	 ℵ � �: non assignment of unique nonneg. integers to real numbers (� uncountable) 

= not nearly enough programs for all problems & each program solves only one • ⇒
problem 

= almost all problems cannot be solved •	 ⇒ 
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n × n × n Rubik’s cube: 

•	 n = 2 or 3 is easy algorithmically: O(1) time 
in practice, n = 3 still unsolved 

•	 graph size grows exponentially with n 

•	 solvability decision question is easy (parity check) 

•	 finding shortest solution: UNSOLVED 

n × n Chess:


Given n × n board & some configuration of pieces, can WHITE force a win?


•	 can be formulated as (αβ) graph search 

•	 every algorithm needs time exponential in n:

“EXPTIME-complete” [Fraenkel & Lichtenstein 1981]


n2 − 1 Puzzle: 

Given n × n grid with n2 − 1 pieces, sort pieces by sliding (see Figure 3). 

similar to Rubik’s cube: • 

•	 solvability decision question is easy (parity check) 

•	 finding shortest solution: NP-COMPLETE [Ratner & Warmuth 1990] 
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Figure 3: Puzzle 
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Tetris: 

Given current board configuration & list of pieces to come, stay alive 

• NP-COMPLETE [Demaine, Hohenberger, Liben-Nowell 2003] 

P, NP, NP-completeness 

P = all (decision) problems solvable by a polynomial (O(nc)) time algorithm (efficient) 

NP = all decision problems whose YES answers have short (polynomial-length) “proofs” 
checkable by a polynomial-time algorithm 
e.g., Rubik’s cube and n2 − 1 puzzle: 
is there a solution of length ≤ k? 
YES = easy-to-check short proof(moves) ⇒
Tetris � NP 
but we conjecture Chess not NP (winning strategy is big- exponential in n) 

P =� NP: Big conjecture (worth $1,000,000) ≈ generating proofs/solutions is harder than 
checking them 

NP-complete = in NP & NP-hard 

NP-hard = as hard as every problem in NP

= every problem in NP can be efficiently converted into this problem

= if this problem � P then P = NP (so probably this problem not in P)
⇒ 
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