
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 14	 Searching III 6.006 Spring 2008

Lecture 14: Searching III: Toplogical Sort and

NP-completeness

Lecture Overview: Search 3 of 3 & NP-completeness

BFS vs. DFS •

•	 job scheduling

•	 topological sort

•	 intractable problems

•	 P, NP, NP-completeness

Readings

CLRS, Sections 22.4 and 34.1-34.3 (at a high level)

Recall:

•	 Breadth-First Search (BFS): level by level

•	 Depth-First Search (DFS): backtrack as necc.

both O(V + E) worst-case time = optimal
•	 ⇒

•	 BFS computes shortest paths (min. � edges)

•	 DFS is a bit simpler & has useful properties

1

Lecture 14 Searching III 6.006 Spring 2008

Job Scheduling:

Given Directed Acylic Graph (DAG), where vertices represent tasks & edges represent
dependencies, order tasks without violating dependencies

G

A

H

B C F

D E

 I

1234

78 9

56

Figure 1: Dependence Graph

Source

Source = vertex with no incoming edges
= schedulable at beginning (A,G,I)

Attempt

BFS from each source:

- from A �nds H,B,C,F

- from D �nds C, E, F

- from G �nds H
} need to merge

 - costly

Figure 2: BFS-based Scheduling

2

Lecture 14	 Searching III 6.006 Spring 2008

Topological Sort

Reverse of DFS finishing times (time at which node’s outgoing edges finished)
Exercise: prove that no constraints are violated

Intractability

•	 DFS & BFS are worst-case optimal if problem is really graph search (to look at graph)

•	 what if graph . . .

–	 is implicit?

–	 has special structure?

–	 is infinite?

The first 2 characteristics (implicitness and special structure) apply to the Rubik’s Cube

problem.

The third characteristic (infiniteness) applies to the Halting Problem.

Halting Problem:

Given a computer program, does it ever halt (stop)?

decision problem: answer is YES or NO

UNDECIDABLE: no algorithm solves this problem (correctly in finite time on all inputs)

Most decision problems are undecidable:

•	 program ≈ binary string ≈ nonneg. integer � ℵ

•	 decision problem = a function from binary strings to {YES,NO}. Binary strings refer
to ≈ nonneg. integers while {YES,NO} ≈ {0,1}

•	 ≈ infinite sequence of bits ≈ real number � �

•	 ℵ � �: non assignment of unique nonneg. integers to real numbers (� uncountable)

= not nearly enough programs for all problems & each program solves only one • ⇒
problem

= almost all problems cannot be solved •	 ⇒

3

Lecture 14	 Searching III 6.006 Spring 2008

n × n × n Rubik’s cube:

•	 n = 2 or 3 is easy algorithmically: O(1) time
in practice, n = 3 still unsolved

•	 graph size grows exponentially with n

•	 solvability decision question is easy (parity check)

•	 finding shortest solution: UNSOLVED

n × n Chess:

Given n × n board & some configuration of pieces, can WHITE force a win?

•	 can be formulated as (αβ) graph search

•	 every algorithm needs time exponential in n:

“EXPTIME-complete” [Fraenkel & Lichtenstein 1981]

n2 − 1 Puzzle:

Given n × n grid with n2 − 1 pieces, sort pieces by sliding (see Figure 3).

similar to Rubik’s cube: •

•	 solvability decision question is easy (parity check)

•	 finding shortest solution: NP-COMPLETE [Ratner & Warmuth 1990]

1 2 3 4

5

9

6

10

7

11

8

12

151413

Figure 3: Puzzle

4

Lecture 14 Searching III 6.006 Spring 2008

Tetris:

Given current board configuration & list of pieces to come, stay alive

• NP-COMPLETE [Demaine, Hohenberger, Liben-Nowell 2003]

P, NP, NP-completeness

P = all (decision) problems solvable by a polynomial (O(nc)) time algorithm (efficient)

NP = all decision problems whose YES answers have short (polynomial-length) “proofs”
checkable by a polynomial-time algorithm
e.g., Rubik’s cube and n2 − 1 puzzle:
is there a solution of length ≤ k?
YES = easy-to-check short proof(moves) ⇒
Tetris � NP
but we conjecture Chess not NP (winning strategy is big- exponential in n)

P =� NP: Big conjecture (worth $1,000,000) ≈ generating proofs/solutions is harder than
checking them

NP-complete = in NP & NP-hard

NP-hard = as hard as every problem in NP

= every problem in NP can be efficiently converted into this problem

= if this problem � P then P = NP (so probably this problem not in P)
⇒

5

