
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 12 Searching I: Graph Search & Representations 6.006 Spring 2008

Lecture 12: Searching I: Graph Search and

Representations

Lecture Overview: Search 1 of 3

• Graph Search

• Applications

• Graph Representations

• Introduction to breadth-first and depth-first search

Readings

CLRS 22.1-22.3, B.4

Graph Search

Explore a graph e.g., find a path from start vertices to a desired vertex
Recall: graph G = (V, E)

• V	 = set of vertices (arbitrary labels)

•	 E = set of edges i.e. vertex pairs (v, w)

– ordered pair = directed edge of graph
⇒

– unordered pair = undirected ⇒

a b

c d

a

b c

UNDIRECTED DIRECTED

e.g. V = {a,b,c,d}
E = {{a,b},{a,c},
 {b,c},{b,d},
 {c,d}}

V = {a,b,c}
E = {(a,c),(b,c),
 (c,b),(b,a)}

Figure 1: Example to illustrate graph terminology

1

Lecture 12 Searching I: Graph Search & Representations 6.006 Spring 2008

Applications:

There are many.

•	 web crawling (How Google finds pages)

•	 social networking (Facebook friend finder)

•	 computer networks (Routing in the Internet)
shortest paths [next unit]

•	 solving puzzles and games

•	 checking mathematical conjectures

Pocket Cube:

Consider a 2 × 2 × 2 Rubik’s cube

Figure 2: Rubik’s Cube

•	 Configuration Graph:

–	 vertex for each possible state

–	 edge for each basic move (e.g., 90 degree turn) from one state to another

–	 undirected: moves are reversible

•	 Puzzle: Given initial state s, find a path to the solved state

•	 � vertices = 8!.38 = 264, 539, 520 (because there are 8 cubelets in arbitrary positions,
and each cubelet has 3 possible twists)

Figure 3: Illustration of Symmetry

2

Lecture 12 Searching I: Graph Search & Representations 6.006 Spring 2008

• can factor out 24-fold symmetry of cube: fix one cubelet

811 .3 = 7!.37 = 11, 022, 480
⇒

in fact, graph has 3 connected components of equal size = only need to search in • ⇒
one

= 7!.36 = 3, 674, 160
⇒

3

Lecture 12 Searching I: Graph Search & Representations 6.006 Spring 2008

“Geography” of configuration graph

. . . “breadth-
first
tree”

possible
first moves

reachable
in two steps
but not one

Figure 4: Breadth-First Tree

� reachable configurations

distance 90◦ turns 90◦ & 180◦ turns
0 1 1
1 6 9
2 27 54
3 120 321
4 534 1,847
5 2,256 9,992
6 8,969 50,136
7 33,058 227,536
8 114,149 870,072
9 360,508 1,887,748
10 930,588 623,800
11 1,350,852 2,644 diameter←
12 782,536
13 90,280
14 276 diameter←

3,674,160 3,674,160
Wikipedia Pocket Cube

Cf. 3 × 3 × 3 Rubik’s cube: ≈ 1.4 trillion states; diameter is unknown! ≤ 26

4

http://en.wikipedia.org/wiki/Pocket_Cube

Lecture 12 Searching I: Graph Search & Representations 6.006 Spring 2008

Representing Graphs: (data structures)

Adjacency lists:

Array Adj of | V | linked lists

•	 for each vertex u�V, Adj[u] stores u’s neighbors, i.e., {v�V | (u, v)�E}. colorBlue(u, v)
are just outgoing edges if directed. (See Fig. 5 for an example)

•	 in Python: Adj = dictionary of list/set values vertex = any hashable object (e.g., int,
tuple)

•	 advantage: multiple graphs on same vertices

a

b c

a

b

c

c

c

b

a

Adj

Figure 5: Adjacency List Representation

Object-oriented variations:

•	 object for each vertex u

•	 u.neighbors = list of neighbors i.e., Adj[u]

Incidence Lists:

•	 can also make edges objects (see Figure 6)

•	 u.edges = list of (outgoing) edges from u.

•	 advantage: storing data with vertices and edges without hashing

5

�

Lecture 12 Searching I: Graph Search & Representations 6.006 Spring 2008

e.a e.be

Figure 6: Edge Representation

Representing Graphs: contd.

The above representations are good for for sparse graphs where | E |� (| V |)2 . This
translates to a space requirement = Θ(V + E) (Don’t bother with | . | ’s inside O/Θ).

Adjacency Matrix:

•	 assume V = {1, 2, . . . , |v|} (number vertices)

•	 A = (aij) = |V | × |V | matrix where i = row and j = column, and

1	 if (i, j) � E
aij =

φ otherwise

See Figure 7.

•	 good for dense graphs where | E |≈ (| V |)2

•	 space requirement = Θ(V 2)

•	 cool properties like A2 gives length-2 paths and Google PageRank ≈ A∞

but we’ll rarely use it Google couldn’t; V |≈ 20 billion = (| V)2 ≈ 4.1020 •	
[50,000 petabytes]

| ⇒ |

a

b c

A = ((0 0 1
1 0 1
0 1 0

1 2 3
1

2

3

Figure 7: Matrix Representation

6

Lecture 12 Searching I: Graph Search & Representations 6.006 Spring 2008

Implicit Graphs:

Adj(u) is a function or u.neighbors/edges is a method = “no space” (just what you need ⇒
now)

High level overview of next two lectures:

Breadth-first search

Levels like “geography”

. . .

frontier

s

Figure 8: Illustrating Breadth-First Search

frontier = current level •

• initially {s}

• repeatedly advance frontier to next level, careful not to go backwards to previous level

• actually find shortest paths i.e. fewest possible edges

Depth-first search

This is like exploring a maze.

• e.g.: (left-hand rule) - See Figure 9

• follow path until you get stuck

• backtrack along breadcrumbs until you reach an unexplored edge

7

Lecture 12 Searching I: Graph Search & Representations 6.006 Spring 2008

• recursively explore it

• careful not to repeat a vertex

s

Figure 9: Illustrating Depth-First Search

8

