
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 10 Sorting III: Linear Bounds Linear-Time Sorting 6.006 Spring 2008

Lecture 10: Sorting III: Linear Bounds

Linear-Time Sorting

Lecture Overview

• Sorting lower bounds

– Decision Trees

• Linear-Time Sorting

– Counting Sort

Readings

CLRS 8.1-8.4

Comparison Sorting

Insertion sort, merge sort and heap sort are all comparison sorts.

The best worst case running time we know is O(n lg n). Can we do better?

Decision-Tree Example

Sort < a1, a2, an >.· · ·

1:2

2:3 1:3

1:3
2:3

231 321
312132

123 213

Figure 1: Decision Tree

Each internal node labeled i : j, compare ai and aj , go left if ai ≤ aj , go right otherwise.

1

Lecture 10 Sorting III: Linear Bounds Linear-Time Sorting 6.006 Spring 2008

Example

Sort < a1, a2, a3 >=< 9, 4, 6 > Each leaf contains a permutation, i.e., a total ordering.

1:3
2:3

2:3

231

1:2 9 > 4 (a1 > a2)

(a2 ≤ a3) 4 ≤ 6

9 > 6 (a1 > a3)

4 ≤ 6 ≤ 9

Figure 2: Decision Tree Execution

Decision Tree Model

Can model execution of any comparison sort. In order to sort, we need to generate a total
ordering of elements.

• One tree size for each input size n

• Running time of algo: length of path taken

• Worst-case running time: height of the tree

Theorem

Any decision tree that can sort n elements must have height Ω(n lg n).

Proof: Tree must contain ≥ n! leaves since there are n! possible permutations. A height-h
binary tree has ≤ 2h leaves. Thus,

n! ≤ 2h

n
= ⇒ h ≥ lg(n!) (≥ lg((

e
)n) Stirling)

≥ n lg n − n lg e

= Ω(n lg n)

2

Lecture 10 Sorting III: Linear Bounds Linear-Time Sorting 6.006 Spring 2008

Sorting in Linear Time

Counting Sort: no comparisons between elements

Input: A[1 . . . n] where A[j] � {1, 2, , k}
· · ·

Output: B[1 . . . n] sorted

Auxiliary Storage: C[1 . . . k]

Intuition

Since elements are in the range {1, 2, , k}, imagine collecting all the j’s such that A[j] = 1, · · ·
then the j’s such that A[j] = 2, etc.

Don’t compare elements, so it is not a comparison sort!

A[j]’s index into appropriate positions.

Pseudo Code and Analysis

θ(k)

θ(n)

θ(k)

θ(n)

{ for i ← 1 to k
do C [i] = 0

{ for j ← 1 to n
do C [A[j]] = C [A[j]] + 1

{ for i ← 2 to k
do C [i] = C [i] + C [i-1]

{ for j ← n downto 1
do B[C [A[j]]] = A[j]
 C [A[j]] = C [A[j]] - 1

θ(n+k)

Figure 3: Counting Sort

3

Lecture 10 Sorting III: Linear Bounds Linear-Time Sorting 6.006 Spring 2008

Example

Note: Records may be associated with the A[i]’s.

14 3 4 3

1 2 3 4 5

31 3 4 4

1 2 3 4 5

A:

B:

00 0 0

1 2 3 4
C:

01 2 2C:

11 3 5

1 2 3 4
C:

2 4

Figure 4: Counting Sort Execution

A[n] = A[5] = 3

C[3] = 3

B[3] = A[5] = 3, C[3] decr.

A[4] = 4

C[4] = 5

B[5] = A[4] = 4, C[4] decr. and so on . . .

4

