
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology April 2, 2008
Professors Srini Devadas and Erik Demaine Handout 9

Quiz 2 Practice Problems

1 True/False

Decide whether these statements are True or False. You must briefly justify all your answers to
receive full credit.

1. There exists a comparison sort of 5 numbers that uses at most 6 comparisons in the worst
case.
True False

Explain:

Solution: False. The number of leaves of a decision tree which sorts 5 numbers is 5! and
the height of the tree is at least lg(5!). Since 5! = 120, 26 = 64, and 27 = 128, we have
6 < lg(5!) < 7. Thus at least 7 comparisons are required.

2. Heapsort can be used as the auxiliary sorting routine in radix sort, because it operates in
place.
True False

Explain:

Solution: False. The auxiliary sorting routine in radix sort needs to be stable, meaning
that numbers with the same value appear in the output array in the same order as they do
appear in the input array. Heapsort is not stable. It does operate in place, meaning that only
a constant number of elements of the input array are ever stored outside the array.

2 Handout 9: Quiz 2 Practice Problems

3. If the DFS finishing time f [u] > f [v] for two vertices u and v in a directed graph G, and u
and v are in the same DFS tree in the DFS forest, then u is an ancestor of v in the depth first
tree.
True False

Explain:

Solution: False. In a graph with three nodes, r u and v, with edges (r, u) and (r, v), and r
is the starting point for the DFS, u and v are siblings in the DFS tree, neither as the ancestor
of the other.

4. Let P be a shortest path from some vertex s to some other vertex t in a graph. If the weight
of each edge in the graph is increased by one, P will still be a shortest path from s to t.
True False

Explain:

Solution: False. In a graph where w(s, v1) = 1, w(v1, v2) = 1, w(v2, t) = 1, and w(s, t) =
4, the shortest path would change if 1 was added to every edge weight.

5. If an in-place sorting algorithm is given a sorted array, it will always output an unchanged
array.
True False

Explain:

Solution: False. In-place just means that it only uses a constant amount of extra memory.
Stable would mean it would leave the array unchanged.

3 Handout 9: Quiz 2 Practice Problems

6. [5 points] Dijkstra’s algorithm works on any graph without negative weight cycles.

True False

Explain:

Solution: False. A single negative edge makes false the assumption that when you expand
a node, you have already found the shortest path to that node.

7. [5 points] The Relax function never increases any shortest path estimate d[v].

True False

Explain:

Solution: True. It only changes d[v] if it can decrease it.

4 Handout 9: Quiz 2 Practice Problems

2 Short Answer

1. What property of the Rubik’s cube graph made 2-way BFS more efficient than ordinary
BFS?

Solution: The number of nodes at most 7 away from any source was significantly less than
the number of nodes at most 14 away from that source.

2. What is the running time of the most efficient deterministic algorithm you know for finding
the shortest path between two vertices in a directed graph, where the weights of all edges are
equal? (Include the name of the algorithm.)

Solution: Run BFS, treating it as an unweighted graph. This takes O(V + E) time.

3 Topological Sort
Another way of performing topological sorting on a directed acyclic graph G = (V, E) is to

repeatedly find a vertex of in-degree 0 (no incoming edges), output it, and remove it and all of

its outgoing edges from the graph. Explain how to implement this idea so that it runs in time

O(V + E). What happens to this algorithm if G has cycles?

Solution: First, for each vertex, we need to count how many incoming edges it has. We store

these counts in a dictionary keyed by the vertices. This takes Θ(V + E) time.

For each vertex with 0 incoming edges, store it in a special dictionary. Call that dictionary zero.

We repeatedly do the following: Take a vertex out of zero. For every edge coming out of that

vertex, decrement the count of that edge’s target vertex. If you happen to decrement a count to 0,

add that vertex to zero.

This touches every vertex once and every edge once, so it also takes Θ(V + E) time.

If there is a cycle, at some time when we try to take a vertex out of zero, we won’t find any.

Handout 9: Quiz 2 Practice Problems 5

4 Shortest Paths

Carrie Careful has hired Lazy Lazarus to help her compute single-source shortest paths on a large
graph. Lazy writes a subroutine that, given G = (V, E), a source vertex s, and a non-negative
edge-weight function w : E R, outputs a mapping d : V R such that d[v] is supposed to → →
be the weight δ(s, v) of the shortest-weight path from s to v (or ∞ if no such s → v path exists)

and also a function π : V (V ∪ {NIL}) such that π[v] is the penultimate vertex on one such

shortest path (or NIL if v =

→
s or v is unreachable from s).

Carrie doesn’t trust Lazarus very much, and wants to write a “checker” routine that checks the

output of Lazarus’s code (in some way that is more efficient than just recomputing the answer

herself).

Carrie writes a “checker” routine that checks the following conditions. (No need for her to check

that w(u, v) is always non-negative, since she creates this herself to pass to Lazarus.)

(i) d[s] = 0

(ii) π[s] = NIL

(iii) for all edges (u, v) : d[v] ≤ d[u] + w(u, v)

(iv) for all vertices v : if π[v] =� NIL, then d[v] = d[π[v]] + w(π[v], v)

(v) for all vertices v =� s : if d[v] < ∞, then π[v] =� NIL (equivalently: π[v] = NIL = ⇒ d[v] = ∞)

1. Show, by means of an example, that Carrie’s conditions are not sufficient. That is, Lazarus’s
code could output some d, π values that satisfy Carrie’s checker but for which d[v] =� δ(s, v)
for some v. (Hint: cyclic π values; unreachable vertices.)

Solution: The following graph is a counterexample to Carrie’s checker:

s has no edges, π[s] = NIL, and d[s] = 0

u and v have edges of weight 0 to each other, π[u] = v, π[v] = u, d[u] = 0, and d[v] = 0.

Instead, it should be the case that d[u] = d[v] = ∞, and π[u] = π[v] = NIL.

2. How would you augment Carrie’s checker to fix the problem you identified in (a)?

Solution: In addition to the given checks, Carrie should also do the following:

(a) Check that π[v] =� NIL = ⇒ (π[v], v) ∈ E.
(b) Run DFS on G from source S. For each unreachable vertex v, check that d[v] = ∞

and π[v] = NIL.
(c) Run DFS on G� = (V, E �), where E � = {(v, π[v]) : π[v] =� NIL} to check that G� is

acyclic.

These checks take time Θ(V + E).

6 Handout 9: Quiz 2 Practice Problems

3. You are given a connected weighted undirected graph G = (V, E, w) with no negative weight
cycles. The diameter of the graph is defined to be the maximum-weight shortest path in the
graph, i.e. for every pair of nodes (u, v) there is some shortest path weight δ(u, v), and the
diameter is defined to be max

(u,v)
{δ(u, v)}.

Give a polynomial-time algorithm to find the diameter of G. What is its running time? (Your
algorithm only needs to have a running time polynomial in |E| and |V | to receive full credit;
don’t worry about optimizing your algorithm.)

Solution: Run Bellman-Ford |V | times, once from each node. This will find all |V | 2 short­
est paths. Then just take the maximum length shortest path.

Running Bellman-Ford |V | times takes time O(V 2E).

4. You are given a weighted directed graph G = (V, E, w) and the shortest path distances
δ(s, u) from a source vertex s to every other vertex in G. However, you are not given π(u)
(the predecessor pointers). With this information, give an algorithm to find a shortest path
from s to a given vertex t in O(V + E) time.

Solution: Start at u. Of the edges that point to u, at least one of them will come from a
vertex v that satisfis δ(s, v)+w(v, u) = δ(s, u). Such a v is on the shortest path. Recursively
find the shortest path from s to v.

This algorithm hits every vertex and edge at most once, for a running time of O(V + E).

