MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology March 7, 2008
Professors Srini Devadas and Erik Demaine Handout 6

Quiz 1 Practice Problems

1 Asymptotic Notation

Decide whether these statements are True or False. You must briefly justify all your answers to
receive full credit.

L I f(n) = ©(g(n)) and g(n) = O(h(n)), then h(n) = O(f(n))

Solution: True. © is transitive.

2.1 f(n) = O(g(n)) and g(n) = O(h(n)), then h(n) = Q(f(n))

Solution: True. O is transitive, and h(n) = Q(f(n)) is the same as f(n) = O(h(n))

3. 1f f(n) = O(g(n)) and g(n) = O(f(n)) then f(n) = g(n)

Solution: False: f(n) =nand g(n) =n+ 1.

ion: n_ — L
Solution: True. g < C*Mn forc = 500 -

2 Handout 6: Quiz 1 Practice Problems

5. f(n) = ©(n?), where f(n) is defined to be the running time of the program A (n) :

def A(n):
atuple = tuple(range (0, n)) # a tuple is an immutable version of a
list, so we can hash it
S = set ()

for i in range (0, n):
for j in range(i+l, n):
S.add (atuple[i:J]) # add tuple (i,...,3J-1) to set S

Solution: False: Inside the two for loops, both slicing and hashing take linear time.

2 Linked List Equivalence

Let S and T be two sets of numbers, represented as unordered linked lists of distinct numbers. All
you have are pointers to the heads of the lists, but you do not know the list lengths. Describe an
O(min {|S|, |T|})-expected-time algorithm to determine whether S = 7. You may assume that
any operation on one or two numbers can be performed in constant time.

Solution: First, check that both sets are the same size. If they are not, then they cannot be equal.
To do this check in O(min {|S],|T|}) time, just iterate over both lists in parallel. That is, advance
one step in S and one step in 7. If both lists end, the lengths are the same. If one list ends before
the other, they have different lengths.

If both lists are the same size, then we want to check whether the elements are the same. We create
a hash table of size ©(|S|) using universal hashing with chaining. We iterate over S, adding each
element from S to the hash table. Then we iterate over 1. For each element x € T, we check
whether = belongs to the hash table (that is, whether it is also in S). If not, then we return that the
sets are not identical. If so, then continue iterating over 7.

Any sequence of |S| = |T| Insert and Search operations in the table take O(|S]|) time in
expectation (see CLRS p.234), so the total runtime is O(min {|S|,|7’|}) in expectation.

Handout 6: Quiz 1 Practice Problems 3

3 Hash Table Analysis

You are given a hash table with n keys and m slots, with the simple uniform hashing assumption
(each key is equally likely to be hashed into each slot). Collisions are resolved by chaining.
What is the probability that the first slot ends up empty?

Solution: Independently, each key has a 1/m probability of hashing into the first slot, or (m —
1)/m probability of not hashing into the first slot. Thus, the probability that no key hashes into the

first slot is
m—1\"
- .

4 Heaps
1. The sequence (20, 15,18,7,9,5,12,3,6,2) is a max-heap.
True False

Explain:

Solution: True. For every node with 1-based index ¢ > 1, the node with index L%j is
larger.

2. Where in a max-heap can the smallest element reside, assuming all elements are distinct?
Include both the location in the array and the location in the implicit tree structure.

Solution: The smallest element will be a leaf (because if it had a child, that child would
have to be smaller). As seen in the quiz review, the leaves are the nodes indexed by 7 | +
1,...,n.

3. Suppose that instead of using Build-Heap to build a max-heap in place, the Insert
operation is used n times. Starting with an empty heap, for each element, use Insert to
insert it into the heap. After each insertion, the heap still has the max-heap property, so after
n Insert operations, it is a max-heap on the n elements.

(i) Argue that this heap construction runs in O(nlogn) time.

Solution: Insert takes O(logn) time per operation, and gets called O(n) times.

(ii) Argue that in the worst case, this heap construction runs in 2(n log n) time.

4 Handout 6: Quiz 1 Practice Problems

Solution: If you insert the elements in sorted order (starting with 1), then each insert
puts the element at a leaf of the heap, before bubbling it up all the way to the root. This
takes O(log k) swaps, where £ is the number of elements already in the heap.

Z logk = ©(nlogn)

k=1

5 Python and Asymptotics

1. Give an example of a built-in Python operation that does not take constant time in the size
of its input(s). What time does it take?

Solution: There are plenty of examples. One is the slice operator s [i: j] to take a sub-
string of string s. This takes time ©(j — 7)

2. Since dictionary lookup takes constant expected time, one can output all n keys in a dictio-
nary in sorted order in expected time O(n).
True False

Explain:

Solution: False. Dictionaries do not store elements in sorted order. They can be oupput
only in some random order.

3. Write a recurrence for the running time 7'(n) of f(n), and solve that recurrence. Assume
that addition can be done in constant time.

def f(n):
if n == 1:
return 1
else:
return f£f(n-1)+£f(n-1)

Handout 6: Quiz 1 Practice Problems 5

Solution: 7'(n) =T(n—1)+T(n— 1)+ ©(1). If you draw the recurrence tree, in has n
levels, where the amount of work done at each of the levels is 14+2+22+- - -+2"~1 = ©(2")

4. Write a recurrence for the running time of ¢g(n), and solve that recurrence. Assume that
addition can be done in constant time.

def g(n):
if n == 1:
return 1
else:
x = g(n-—-1)
return x+x

Solution: 7'(n) = T'(n — 1) + ©(1). The recurrence tree is just a linked list, were the
amount of work done at each level is ©(1) for a total of O(n) work.

5. Now assume addition takes time ©(b) where b is the number of bits in the larger number.
Write a new recurrence for the running time of g(n), and solve that recurrence. Express your
final answer in ©-notation.

Solution: The work done at each level is now O(n) because we have to add to numbers of
©(n) bits.
T(n) = T(n — 1) + ©(n). The recurrence tree looks similar to the one in the previous

part, but now at each step we have to do work proportional to the size of the problem:
n+(n—1)+---+1=0(n?

6 Handout 6: Quiz 1 Practice Problems

6 Hashing

1. Given a hash table with more slots than keys, and collision resolution by chaining, the worst
case running time of a lookup is constant time.
True False

Explain:

Solution: False. In the worst case we get unlucky and all the keys hash to the same slot,
for ©(n) time.

2. Linear probing satisfies the assumption of uniform hashing.
True False

Explain:

Solution: False. The second probe can be determined exactly from the first probe, while
uniform hashing says that the entire permutation of probes is random.

3. Assume that m = 2" for some integer 7 > 1. We map a key £ into one of the m slots using
the hash function h(k) = k mod m. Give one reason why this might be a poorly chosen
hash function.

Solution: If our keys are all even, then we won’t be using any of the odd slots.

