MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology April 2, 2008
Professors Srini Devadas and Erik Demaine Handout 9

Quiz 2 Practice Problems

1 True/False

Decide whether these statements are True or False. You must briefly justify all your answers to
receive full credit.

1. There exists a comparison sort of 5 numbers that uses at most 6 comparisons in the worst
case.
True False

Explain:

2. Heapsort can be used as the auxiliary sorting routine in radix sort, because it operates in
place.
True False

Explain:

Handout 9: Quiz 2 Practice Problems

3. If the DFS finishing time f[u] > f[v] for two vertices v and v in a directed graph G, and u
and v are in the same DFS tree in the DFS forest, then « is an ancestor of v in the depth first
tree.

True False

Explain:

4. Let P be a shortest path from some vertex s to some other vertex ¢ in a graph. If the weight
of each edge in the graph is increased by one, P will still be a shortest path from s to ¢.
True False

Explain:

5. If an in-place sorting algorithm is given a sorted array, it will always output an unchanged
array.
True False

Explain:

Handout 9: Quiz 2 Practice Problems

6. [S points] Dijkstra’s algorithm works on any graph without negative weight cycles.
True False

Explain:

7. [5 points] The Relax function never increases any shortest path estimate d[v].
True False

Explain:

4 Handout 9: Quiz 2 Practice Problems

2 Short Answer

1. What property of the Rubik’s cube graph made 2-way BFS more efficient than ordinary
BFS?

2. What is the running time of the most efficient deterministic algorithm you know for finding
the shortest path between two vertices in a directed graph, where the weights of all edges are
equal? (Include the name of the algorithm.)

3 Topological Sort

Another way of performing topological sorting on a directed acyclic graph G = (V, E) is to
repeatedly find a vertex of in-degree O (no incoming edges), output it, and remove it and all of
its outgoing edges from the graph. Explain how to implement this idea so that it runs in time
O(V + E). What happens to this algorithm if G has cycles?

Handout 9: Quiz 2 Practice Problems 5

4 Shortest Paths

Carrie Careful has hired Lazy Lazarus to help her compute single-source shortest paths on a large
graph. Lazy writes a subroutine that, given G = (V, E), a source vertex s, and a non-negative
edge-weight function w : £ — R, outputs a mapping d : V' — R such that d[v] is supposed to
be the weight §(s, v) of the shortest-weight path from s to v (or oo if no such s — v path exists)
and also a function 7 : V' — (V U {NIL}) such that 7[v] is the penultimate vertex on one such
shortest path (or NIL if v = s or v is unreachable from s).

Carrie doesn’t trust Lazarus very much, and wants to write a “checker” routine that checks the
output of Lazarus’s code (in some way that is more efficient than just recomputing the answer
herself).

Carrie writes a “checker” routine that checks the following conditions. (No need for her to check
that w(u, v) is always non-negative, since she creates this herself to pass to Lazarus.)

(i) d[s]=0
(i) 7[s] = NIL
(iii) for all edges (u,v) : d[v] < d[u] + w(u, v)
(iv) for all vertices v : if [v] % NIL, then d[v] = d[x[v]] + w(x[v],v)
(v) forall vertices v # s :if d[v] < oo, then [v] # NIL (equivalently: 7[v] = NIL = d[v] = o)

1. Show, by means of an example, that Carrie’s conditions are not sufficient. That is, Lazarus’s
code could output some d, 7 values that satisfy Carrie’s checker but for which d[v] # (s, v)
for some v. (Hint: cyclic 7 values; unreachable vertices.)

2. How would you augment Carrie’s checker to fix the problem you identified in (a)?

Handout 9: Quiz 2 Practice Problems

3. You are given a connected weighted undirected graph G = (V, E, w) with no negative weight
cycles. The diameter of the graph is defined to be the maximum-weight shortest path in the
graph, i.e. for every pair of nodes (u, v) there is some shortest path weight d(u, v), and the
diameter is defined to be I(na>)<{5 (u,v)}.

Give a polynomial-time algorithm to find the diameter of G. What is its running time? (Your
algorithm only needs to have a running time polynomial in | E| and |V| to receive full credit;
don’t worry about optimizing your algorithm.)

4. You are given a weighted directed graph G = (V, F,w) and the shortest path distances
d(s,u) from a source vertex s to every other vertex in G. However, you are not given m(u)
(the predecessor pointers). With this information, give an algorithm to find a shortest path
from s to a given vertex ¢ in O(V + F) time.

