
MIT OpenCourseWare 
http://ocw.mit.edu 

6.006 Introduction to Algorithms 
Spring 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm


Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology April 24, 2008 
Professors Srini Devadas and Erik Demaine Handout 12 

Problem Set 6 

This problem set is due Thursday May 8 at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or scanned

handwritten solutions.

A template for writing up solutions in LATEX is available on the course website.

Remember, your goal is to communicate. Full credit will be given only to the correct solution

which is described clearly. Convoluted and obtuse descriptions might receive low marks, even

when they are correct. Also, aim for concise solutions, as it will save you time spent on write-

ups, and also help you conceptualize the key idea of the problem.


1.	 (10 points) Fibonacci 

We define the Fibonacci numbers as follows: 

F0 = 0 

F1 = 1 

∀n > 1, Fn = Fn−1 + Fn−2 

For this problem, you will code four versions of fib(n), all of which should return the 
same answers. 

Download ps6_fib.zip. 

(a) Write	fib_recursive(n). It should implement the recursion directly and take 
time exponential in n. 

(b) Write	 fib_memoize(n). It should be recursive like fib_recursive(n), but it 
should memoize its answers, so that it runs in time O(n). 

(c) Write fib_bottom_up(n). Instead of working top-down like in the previous two 
examples, start from the bottom, recording your results in a list. This code should 
also take O(n) time. 

(d) Write	fib_in_place(n). It should work bottom-up like the previous example, 
but use only O(1) space instead of accumulating answers into a list. 

Submit fib.py to the class website. 



2 Handout 12: Problem Set 6 

2. (15 points) Making Change 

You’ve just signed up as a software engineer for a new intergalactic trading post in 
Deep Space 6. For each transaction, you are given a list of coin denomination values, 
e.g., denomination = [1, 5, 10, 17], and an amount of change, C. You have an unlimited 
number of each type of coin. Your goal is to find the shortest possible list of coins that 
adds up to C. For simplicity, assume that there is always a penny 1 ∈ denomination 
and that the desired change C is an integer, so the problem always has a solution. 

(a) Clearly state the set of subproblems that you will use to solve this problem. 

(b) Write a recurrence relating the solution of a general subproblem to solutions of 
smaller subproblems. 

(c) Analyze the running time of your algorithm, including the number of subproblems 
and the time spent per subproblem. 

You should end up with a pseudopolynomial running time, meaning that the 
polynomial includes some power of C. This is not exactly the same as being 
polynomial with respect to the size of the input, because it only takes lg C bits 
of input to represent the number C. 

(d) Download ps6_change.zip. 

Write a function make_change(denomination, C) which returns a list of coins 
that add up to C, where the size of the list is as small as possible. Write it in a 
bottom-up manner (because the Python recursion stack is limited). 

Note that, assuming your subproblems from part (a) only find the size of the best 
result, you should also keep parent pointers so that you can reconstruct the actual

subsequence.


Submit change.py to the class website.




3 Handout 12: Problem Set 6 

3. (15 points) Making Progress 

You work on your thesis over the weekend, and every time you make a change to your 
code, you run your test_awesomeness.py script, which spits out a score telling you 
how awesome your code is. During two hard days of work, you accumulate a large, time-
ordered list of these awesomeness scores, e.g., [32, 31, 46, 36, 32, 36, 30, 33, 22, 38, 2, 13]. 

You have a weekly meeting with your advisor, and each week you have to show that 
you made progress, so that he’ll leave you alone for another week. You devise a plan 
in which every week you will show your advisor a newer version of your code, along 
with an awesomeness score that is better than the previous week’s. To maximize 
the number of weeks of slacking you get out of your two days of work, you need to 
calculate a longest increasing subsequence of your awesomeness scores. In the example, 
one such subsequence would be [31, 32, 36, 38]. The subsequence should be strictly 
increasing, because you need to show improvement each time. Thinking back to your 
6.006 days, you have a vague recollection that longest increasing subsequence is one of 
those problems that can be solved by Dynamic Programming. 

(a) Clearly state the set of subproblems that you will use to solve this problem. 

(b) Write a recurrence relating the solution of a general subproblem to solutions of 
smaller subproblems. 

(c) Analyze the running time of your algorithm, including the number of subproblems 
and the time spent per subproblem. 

(d) Download ps6_progress.zip. 

Write a function longest_increasing_subsequence(scores) which takes a list 
of scores, and returns the longest (strictly) increasing subsequence of those scores. 
Write it in a bottom-up manner (because the Python recursion stack is limited). 

Note that, assuming your subproblems from part (a) only find the size of the best 
result, you should also keep parent pointers so that you can reconstruct the actual

subsequence.


Submit progress.py to the class website.


4. (20 points) Image Resizing 

In a recent paper, “Seam Carving for Content-Aware Image Resizing”, Shai Avidan 
and Ariel Shamir describe a novel method of resizing images. You are welcome to read 
the paper, but we recommend starting with the YouTube video: 

http://www.youtube.com/watch?v=vIFCV2spKtg 

Both are linked to from the Problem Sets page on the class website. After you’ve 
watched the video, the terminology in the rest of this problem will make sense. 

If you were paying attention around time 1:50 of the video, then you can probably guess 
what you’re going to have to do. You are given an image, and your task is to calculate 



4 Handout 12: Problem Set 6 

the best vertical seam to remove. A vertical seam is a connected path of pixels, one 
pixel in each row. We call two pixels connected if they are vertically or diagonally 
adjacent. The best vertical seam is the one that minimizes the total “energy” of pixels 
in the seam. 

For some reason, the video didn’t spend much time on the most interesting part— 
dynamic programming—so here’s the algorithm: 

Subproblems: For each pixel (i, j), what is the lower-energy seam that starts at the 
top row of the image, but ends at (i, j)? 

Relation: Let dp[i,j] be the solution to subproblem (i, j). Then 
dp[i,j] = min(dp[i,j-1],dp[i-1,j-1],dp[i+1,j-1]) + energy(i,j) 

Analysis: Solving each subproblem takes O(1) time: there are three smaller subprob­
lems to look up, and one call to energy(), which all take O(1) time. There is one 
subproblem for each pixel, so the running time is Θ(A), where A is the number 
of pixels, i.e., the area of the image. 

Download ps6_image.py. You will also need installed PIL (Python Imaging Library, 
freely available from http://www.pythonware.com/products/pil/), and Tkinter if 
you want to view images. If you are using Athena (Linux), add -f 6.006 and run 
python2.5. 

In ResizeableImage.py, write a function best_seam(self) that returns a list of

coordinates corresponding to the cheapest vertical seam to remove, e.g.,

[(5, 0), (5, 1), (4, 2), (5, 3), (6, 4)]. You should implement the dynamic program described

above in a bottom-up manner.


ResizeableImage inherits from ImageMatrix. You should use the following compo­
nents of ImageMatrix in your dynamic program: 

•	 self.energy(i,j) returns the energy of a pixel. This takes O(1) time, but the 
constant factor is sizeable. 

•	 self.width and self.height are the width and height of the image, respectively. 

Test your code using test_image.py, and submit ResizeableImage.py to the class 
website. You can also view your code in action by running gui.py. Included with the 
problem set are two differently sized versions of the same sunset image. If you remove 
enough seams from the sunset image, it should center the sun. 

Also, please try out your own pictures (most file formats should work), and send us 
any interesting before/after shots. 

http://www.pythonware.com/products/pil/
http:ps6_image.py
http:ResizeableImage.py
http:test_image.py



