
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology Feb 21, 2007
Professors Srini Devadas and Erik Demaine Handout 4

Problem Set 2
This problem set is due Thursday March 6 at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or scanned

handwritten solutions.

A template for writing up solutions in LATEX is available on the course website.

Remember, your goal is to communicate. Full credit will be given only to the correct solution

which is described clearly. Convoluted and obtuse descriptions might receive low marks, even

when they are correct. Also, aim for concise solutions, as it will save you time spent on write-

ups, and also help you conceptualize the key idea of the problem.

Exercises are for extra practice and should not be turned in.
Exercises:

•	 CLRS 11.2-1 (page 228)

•	 CLRS 11.2-2 (page 229)

•	 CLRS 11.3-1 (page 236)

•	 CLRS 11.3-3 (page 236)

•	 Prove that red-black trees are balanced, i.e., if a red-black tree contains n nodes, then
its height is O(log n). Red-black trees are binary search trees satisfying the following
properties:

1. Each node is augmented with a bit signifying whether the node is red or black.

2. If a node is red, then both of its children are black.

3. The paths from the root to any leaf contain the same number of black nodes.

1.	 (12 points) select in Binary Search Trees

Implement select in bstselect.py. select takes an index, and returns the element
at that index, as if the BST were an array. select is essentially the inverse of rank,
which took a key and returned the number of elements smaller than or equal to that
key. The index for select should be 1-based (not 0-based like Python often uses).

Download ps2-bst.zip. Read test-bst.py to clarify how select should work. Put
your code in bstselect.py until test-bst.py works. Be sure to comment your code,

explaining your algorithm.

Submit bstselect.py to the class website.

http:bstselect.py

2 Handout 4: Problem Set 2

2.	 (10 points) Amortization

You are given an m-bit binary counter, where the rightmost bit is the “1’s” digit, the
next bit is the “2’s” digit, the next bit is the “4’s” digit, and so on, up to the “2m−1’s”
digit. The function increment adds 1 to the counter, carrying when appropriate.

Assuming that the counter starts at 0, prove that increment takes O(1) amortized
time. In other words, show that after n operations, the total amount of time spent is
O(n). For simplicity, assume that the only operation that takes any time is flipping a
bit in the counter.

3.	 (12 points) Collision resolution

For parts (a) through (c), assume simple uniform hashing.

(a)	 (3 points) Consider a hash table with m slots that uses chaining for collision
resolution. The table is initially empty. What is the probability that, after three
keys are inserted, there is a chain of size 3?

(b)	 (3 points) Consider a hash table with m slots that uses open addressing with
linear probing. The table is initially empty. A key k1 is inserted into the table,
followed by key k2. What is the probability that inserting key k3 requires three
probes?

(c)	 (3 points) Suppose you have a hash table where the load-factor α is related to
the number n of elements in the table by the following formula:

1
α = 1 −

log n
.

If you resolve collisions by chaining, what is the expected time for an unsuccessful
search in terms of n?

(d)	 (3 points) Using the same formula relating α and n from part (c), if you resolve
collisions by open-addressing, give a good upper bound on the expected time for
an unsuccessful search in terms of n. For this part, assume Uniform Hashing.

4.	 (26 points) Longest Common Substring

Humans have 23 pairs of chromosomes, while other primates like chimpanzees have
24 pairs. Biologists claim that human chromosome #2 is a fusion of two primate
chromosomes that they call 2a and 2b. We wish to verify this claim by locating long
nucleotide chains shared between the human and primate chromosomes.

We define the longest common substring of two strings to be the longest contiguous
string that is a substring of both strings e.g. the longest common substring of DEAD­
BEEF and EA7BEEF is BEEF.1 If there is a tie for longest common substring, we just
want to find one of them.

1Do not confuse this with the longest common subsequence, in which the characters do not need to be
contiguous. The longest common subsequence of DEADBEEF and EA7BEEF is EABEEF.

3 Handout 4: Problem Set 2

Download ps2-dna.zip from the class website.

(a)	 (1 point)
Ben Bitdiddle wrote substring1.py. What is the asymptotic running time of his
code? Assume |s| = |t| = n.

(b)	 (1 point)
Alyssa P Hacker realized that by only comparing substrings of the same length,
and by saving substrings in a hash table (in this case, a Python set), she could

vastly speed up Ben’s code.

Alyssa wrote substring2.py. What is the asymptotic running time of her code?

(c)	 (6 points) Recall binary search from Problem Set 1. Using binary search on the
length of the string, implement an O(n2 log n) solution. You should be able to
copy Alyssa’s k substring code without changing it, and just rewrite the outer
loop longest substring.
Check that your code is faster than substring2.py for chr2 first 10000 and

chr2a first 10000.

Put your solution in substring3.py, and submit it to the class website.

(d)	 (16 points)
Rabin-Karp string searching is traditionally used to search for a particular sub­
string in a large string. This is done by first hashing the substring, and then
using a rolling hash to quickly compute the hashes of all the substrings of the
same length in the large string.
For this problem, we have two large strings, so we can use a rolling hash on both of
them. Using this method, implement an O(n log n) solution for longest substring.
You should be able to copy over your outer loop longest substring from part
(c) without changing it, and just rewrite k substring.

Your code should work given any two Python strings (see test-substring.py

for examples). We recommend using the ord function to convert a character to

its ascii value.

Check that your code is faster than substring3.py for chr2 first 100000 and

chr2a first 100000.

Put your solution in substring4.py, and submit it to the class website.

Remember to thoroughly comment your code, including an explanation of any

parameters chosen for the hash function, and what you do about collisions.

(e)	 (2 points)
The human chromosome 2 and the chimp chromosomes 2a and 2b are quite large
(over 100,000,000 nucleotides each) so we took the first and last million nucleotides
of each chromosome and put them in separate files.
chr2 first 1000000 contains the first million nucleotides of human chromosome
2, and chr2a first 1000000 contains the first million nucleotides of chimpanzee

http:substring1.py
http:substring2.py
http:substring3.py
http:substring4.py

4 Handout 4: Problem Set 2

chromosome 2a. Note: these files contain both uppercase and lowercase letters
that are used by biologists to distinguish between parts of the chromosomes called
introns and extrons.

Run substring4.py on the following DNA pairs, and submit the lengths of the
substrings (leave more than an hour for this part):

chr2 first 1000000 and chr2a first 1000000
chr2 first 1000000 and chr2b first 1000000
chr2 last 1000000 and chr2a last 1000000
chr2 last 1000000 and chr2b last 1000000

If your code works, and biologists are correct, then the first million codons of chr2
and chr2a should have much longer substrings in common than the first million
codons of chr2 and chr2b. The opposite should be true for the last million codons.

(f)	 Optional: Make your code run in O(n log k) time, where k is the length of the
longest common substring.

