
MITOCW | Recitation 9b: DNA Sequence Matching

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation, or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: The things we can talk about today, we can talk about this code. We can talk a little

bit more about the hash functions. And we can talk a little bit more about

amortization. What to do guys want to hear?

AUDIENCE: Amoritizaiton.

PROFESSOR: OK, so one vote for amortization. So who wants to look at the PSET code? Who

wants to talk about hashes? Who wants to talk about amortization? Two, three, four,

five, OK. So then let's try this. Let's look at the PSET code then talk about

amortization a bit at the end.

I do have to talk a little bit about hashes though, because I owe someone a question

from last time. And the question was, we have rolling hashes, so the hashes look

like this. K where K is a big number, modulo p. And we argue that it's really nice if p

is a prime.

And then the question was, what if instead p is 2 to the w, and is not prime, as long

as the base that we're using is co-prime with p? Does this work? And the answer is-

- I didn't want to say yes without making sure that I don't say something stupid-- but

the answer is yes, this works just fine, because the way a compute multiplicative

inverse is is you use so something called the extended Euclid's method.

And if we have b and p, then if we compute their GCD, the that's the greatest

common divisor-- so GCD is greatest--

If you use extended Euclid you get something like xb plus yp equals GCD of b and

p. So if this is 1, then you have xb plus yp equals 1. And if you're working modulo p,

whatever that is, then you have that xb is 1 mod p.

1



So there's your multiplicative inverse. Well so now that's nice math, right? But that

doesn't tell me why are we not using this. So with the multiplicative inverse would

work, but there's something else that's wrong with using 2 to the w.

Will this give me a good hash function? OK, the fact that it's p might be confusing.

So let's say h equals K mod 2 to the w. And remember that the K is some digits in

base b, right? It's a big number made out of digits in base b. So K is d1, d2, d3, all

the way up until d length in base b.

And I'll make things easier and say that b is 2 to the 8, because we're working with

ASCII characters, or colors, or something that fits nicely in a bit.

So what could go wrong with using this?

AUDIENCE: Well if your series of-- if your K is bigger than 2-- if it's K is bigger than 2 to the w--

PROFESSOR: It will be, for sure.

AUDIENCE: Yes, that's the problem, because then you'll loop. You'll get the same hashes for--

PROFESSOR: Yeah, yeah. So you will get-- So hashing takes a lot of possible inputs and maps

them to a relatively small set of outputs. Inputs hash output. And we argued last

time that we're going to have collisions no matter what, because we have a ton of

inputs and not that many outputs.

For example, if we're hashing strings that are a million characters then this is going

to be 2 to the 8 to the 1 million possible strings. And then the number of possible

values is, if we're using the word size, 2 to the 32. There is no way we can design a

function that will take this many inputs, map them to this many outputs, and not do

collisions.

But instead, what do we want? What makes a good hash function? Say my hash

function is 0 for all the K's. Is that a good hash function?

AUDIENCE: It's an excellent hash function.

2



PROFESSOR: What's wrong with it?

AUDIENCE: You would put everything in one so that it's searching, or it would take a long time?

PROFESSOR: Yeah, searching takes a long time. And we've don't do sorting with this yet.

Searching takes a long time, string sub-matching will take a long time, it's horrible.

AUDIENCE: So what would that distribute-- like [INAUDIBLE] over all--

PROFESSOR: All right, so we want something that looks sort of random. The ideals hash function

takes an input then gives it a random output, and then stays consistent. So when it

sees an input, returns the same output.

So I think distribute is the keyword here. What's wrong with this hash function? If it

takes random data, it's going to distribute it randomly. That's true, so that's all good.

But what data that we might see in real life will make it behave badly?

AUDIENCE: The K is a series of characters, right?

PROFESSOR: Maybe.

AUDIENCE: It just could be anything. But we know for sure that L will be larger than w.

PROFESSOR: Say L is a million.

AUDIENCE: OK, well that sucks.

PROFESSOR: Oh, no. That in itself, that doesn't suck. That's what let's us do sub-string matching

really fast, even if we have large strings.

AUDIENCE: --say for 2 to the w, though, because then it will be much larger, like the number of--

PROFESSOR: Yeah, but that's OK. So I'm OK with doing this as long as all the values here are

distributed sort of uniformly here. So that's fine.

AUDIENCE: OK.

PROFESSOR: But there's-- I'm arguing that there are some values which will make this hash

3



function behave badly. And that those values are so simple that we might see them

in real life.

OK, what if all these numbers are-- what if all the digits are even? So d is 0 mod 2.

What happens to K?

AUDIENCE: Well, you're saying that instead of 2 to the w, we're just using 2.

PROFESSOR: So no, the modulo is 2 to the w. Say it's 2 to the 32. So d are the digits that make up

my K. So what if the base is 2 to the 8? So I have digits from 0 to 255, 256 of them.

And all the digits are 0 modulo 2.

For my sub-string matching example, what if all the characters in the sub-string are

even?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Not the same thing. But there's a problem. They will hash to-- so if all the digits are

0 modulo 2 then what about the K?

AUDIENCE: [INAUDIBLE] 0 modulo 2--

PROFESSOR: Yep. So it's just like when you have numbers in base 10. 10 happens to be divisible

by 2. So if your last digit is even, then the entire number is even. That makes sense,

right? That's math. Please nod, tell me that I'm making sense.

OK, so here, the base is 256. And it's also divisible by 2. So if your last digit is

divisible by 2, then the whole number is divisible by 2. So then if I take this K modulo

2 to the 32 then the hash is also going to be divisible by 2.

AUDIENCE: Why does it matter if the hash is divisible by 2?

PROFESSOR: So it matters because this is supposed to be my universe, right? These are

supposed to be all the outputs. And I'm saying that if my inputs look like this, then

the hash function will not distribute them uniformly.

Instead, if this is my possible set of outputs, the hash function will always put

4



outputs in this half. So the outputs will always be here. And these are the numbers

that are divisible by 2. So these are even, and these are odd.

And this area gets no love. Absolutely no number will hash here. So--

AUDIENCE: Wait, what about something with all odds?

AUDIENCE: Something with all odd digits?

AUDIENCE: Because you're asking--

AUDIENCE: You have all A's rather than all B's in your sub-string or in your string.

AUDIENCE: Or because your last digit was odd.

PROFESSOR: If all of our digits are odd then the last digit is odd. And then you'd also get

something odd, right?

AUDIENCE: Yeah.

AUDIENCE: So there's a pattern. But there's an even distribution.

PROFESSOR: Well if your hash function is always odd, then it's not an even distribution. It's--

AUDIENCE: Wait, our hash function? I thought we were talking about--

AUDIENCE: Isn't it even if your K is even? And if it's odd [INAUDIBLE]?

PROFESSOR: Yeah, so that's bad. Because if all your K's happens to be even-- say if you're doing

the nucleotides, and the nucleotides are A, C, G, T. If they happen to be encoded

as, say, 0, 2, 4, 6, then these are all even. So the hash function will always be even

and I'm wasting the last bit.

So if I'm building a hash table, half the entries will be wasted. They'll never get

anything in there. I'm just wasting memory.

AUDIENCE: So if you could guarantee that your inputs would be evenly distributed--

PROFESSOR: So if our inputs are random then the hash function-- most hash functions will do a
5



good job of producing a random output. The problem is real life inputs are not

random. For example, if you get-- asides from this-- if you get data from a camera,

so if you get your color pixels from a camera, then because of noise those might

have the last few bits, always be the same thing.

Also it seems like in real life-- [INAUDIBLE], in his book, argues about this. It seems

like in real life there are a lot of sequences that look like that, that would make your

hash function behave poorly.

So again, the keyword is distribute. If some non-random property in the input is

reflected in the output, then that's a bad hash function.

AUDIENCE: Would you gain a lot of time from your mod operation? Because in mod 2 to the n

you just truncate any bits to the left of the n.

PROFESSOR: Yeah, so that's why we would do this, right? That's why we're even considering this

case.

AUDIENCE: Because that'd be really nice to be able to not--

PROFESSOR: So modulo is faster, but in return my hash function is crap here. So usually we

prefer-- it turns out that in practice nicer hash functions give better speed

improvements overall. So if you think of how a hash is laid out in memory, you'll see

that because of caching. And everything gets better to take more time on the mod

function and use up all your memory for the hash table.

So this is why we don't use the and we use this. Not because of this argument. So a

good question required a lot of talking and remembering what's a good hash

function, what's a bad hash function. Thank you.

OK, let's look at the code a little bit. Everyone looked at it, right? So this time we

have modules. We don't have everything in one big file. Can someone tell me what

are the modules we care about, and why?

AUDIENCE: The problem with the one's we have to code ourselves.

6



PROFESSOR: OK, let's start with that.

AUDIENCE: Sub-sequence hashes-- interval sub-sequence hashes.

PROFESSOR: OK, so these are all in DNA seq, right? So the module is-- so yeah, the PSET

hopefully says that you need to upload this file because it's the only file you'll need

to modify. So everything that we need to write is here.

Now pretty much everything that's in that file needs to be modified. So I'm not going

to list them out. What else do we want to read in that PSET?

AUDIENCE: Rolling [INAUDIBLE]

PROFESSOR: OK, where is rolling hash?

AUDIENCE: In the [INAUDIBLE]

PROFESSOR: So what's different between the API in rolling hash and the API that we talked about

last time? Yes?

AUDIENCE: Them having the [INAUDIBLE] pop, or it would skip. And that's something else

[INAUDIBLE] just has a slide, it puts everything in one operation.

PROFESSOR: All right, so we have append and skip. And we built some beautiful code with that.

And we looked at some fancy math because of it. But it turns out that for this PSET

we can get away with slide.

And we started from slide and built these two methods last time. So I'm not going to

explain slide again. It's exactly what we had in the code before we started breaking

them up.

OK so this is the rolling hash. It is good. Do we care about anything else?

AUDIENCE: I guess you can look at the rest of the code, if you feel like it.

PROFESSOR: You can look at the rest of the code if you feel like it, yep. So I highlighted one file

that might be useful, and that's Kfasta.py. That file has a FASTA sequence class,

7



and that's reads from a file and returns something. And the important thing is it

doesn't return a list.

If you remember the doc dists, doc dist 1 thorugh doc dist 8 dot PI, fun times. What

we had there was we took the input file, and we read it all a list.

This time we're not doing that. We're writing, what, 20 lines of code instead of what

could be five lines of code to read the input. Why is that?

AUDIENCE: Less memory?

PROFESSOR: Less memory, OK. So if we're doing it this way, chances are that if we tried to shove

the whole input into memory, it wouldn't fit. And it would crash and you would get 0

on the test because of that. So that's not good.

So what do we use instead? Does anyone know what this thing is called? What this

class is called?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Iterator, very good.

AUDIENCE: Why do they call it FASTA? Because it goes faster?

PROFESSOR: I think the letters are a bio acronym.

AUDIENCE: Oh, OK.

PROFESSOR: Does anyone, does anyone do bio here? I've seen that before. So it's a bio thing.

Let's not worry about it.

AUDIENCE: OK. Or, your can use that for any type of file. Like, you don't have to use it just for

bio files.

PROFESSOR: Well, presumably it's reads, it takes advantage of the format that they're stored in,

and gives you a list instead of something else.

So how does an iterator work? Suppose you're building your own iterator. What do

8



you have to implement?

AUDIENCE: Iterator [INAUDIBLE]

PROFESSOR: OK, let's start with next, that's the fun one. What does next do?

AUDIENCE: It's like pop.

PROFESSOR: OK, so it's like pop in what way?

AUDIENCE: It gives you the next character.

PROFESSOR: OK. And what happens when you're at the end of the list?

AUDIENCE: It stops.

PROFESSOR: How do you stop?

AUDIENCE: It raises an exception?

PROFESSOR: So next will either return an element, that's the next element in the sequence that

you're iterating over. Or it will raise a stop iteration exception error to stop iteration,

cool. So what's the other method? Someone said it before, say it again.

AUDIENCE: Iter.

PROFESSOR: Iter. What does this do in an iterator?

AUDIENCE: It returns itself.

PROFESSOR: All right, very good. In an iterator this is how you will implement it all the time. Does

anyone know what's the point of iter?

AUDIENCE: So you can return an iterator? Because that's what it told us to do in the PSET.

PROFESSOR: OK, so iter returns and iterator. But it doesn't-- you don't have to start from an

iterator. You can start from any object. And if it has a method iter, then it should give

you an iterator that iterates over that object.

9



So if you have something like a list-- 1, 2, 3, 4-- then if you call iter on this, you'll get

an iterator for it, hopefully, right? And this is what Python uses when you say for i in.

So behind the scenes, whatever object you give it here, gets an iter call. And then

that produces an iterator. And then Python calls next until stop iteration happens.

So you can write an iterator that almost behaves like a list. You can use it in these

[INAUDIBLE] instructions, and it works as if it was a list, except it uses a lot less

memory, because it computes the elements. Hopefully every time next is called,

you're computing the next element that you're returning. If you're storing everything

in a list then returning the elements that way, that's not the very smart iterator.

OK let's look at the last page. So the last page has an iterator on top. And the

iterator computes-- given a list, it computes the reverse of that list. And you can see

that it doesn't reverse the list and then keep the reversed list in memory. Instead,

every time you call next, it does some magic with the indexes-- I think the magic is

called math-- and then it return something for as long as it can.

So this is how you implement reverse without producing a new list. If the original list

was order, say had n elements, then if you'd produce a new list, you'd consume

order and memory. This think consumes order 1 memory, and the running time is

the same, asymptotically.

OK, any question on iterators?

AUDIENCE: So it's going from the very end, oh, to the very beginning, and then it's stepping

back.

PROFESSOR: So reverse, if I give it the list 1, 2, 3, 4, I want reverse to give it back 4, 3, 2, 1.

Except it's not going to return a list, it's going to return something that I can use

here.

AUDIENCE: Mm hm, ah, OK.

PROFESSOR: OK, yes.

10



AUDIENCE: Is it ever possible to, sort of, rewind the iterator to like, sort of, reset it?

PROFESSOR: OK, is it?

AUDIENCE: No.

PROFESSOR: Nope. So Python iterators are simple. All you can do is go forward.

AUDIENCE: OK.

PROFESSOR: The reason that is good is because you can use them for streams. So if you get

data from a file, or if you can get data from the network, you can wrap it in an

iterator. If you wanted to support resume on data that you get from the network,

you'd have to buffer all the data.

AUDIENCE: So you would have to call the iter about that again and--

PROFESSOR: Yeah. Yeah, if you want to rewind, get another iterator. OK, that's a good question,

thank you.

So these are iterators. Now we're going to go over some Python magic, which is

called generators. So look at the iterator code, and then look at the equivalent code

right below it.

So 12 lines of Python turned into three lines of Python that do exactly the same

thing. So the reverse method will return an object that is an iterator, and that you

can use just like the iterator in the reverse class.

Do people understand what that code does? If you do I'm so out of here, we're

done.

AUDIENCE: What does yield do?

PROFESSOR: What does yield do? All right, that's the hard question, what does yield do? I will

probably spend the rest of the session on the answer to that question. You're asking

all the had questions today, man.

11



So yield, does anyone know conceptually what yield does? Not in detail, just what's

it supposed to do so that the rest of the code works? Yes.

AUDIENCE: If you're driving someplace and there's a yield sign, you pause.

PROFESSOR: OK, Python yield. So I like the word pause in there. The word pause is useful. So

say, instead of implementing this, say we're implementing sub-sequence hashes.

AUDIENCE: It kind of spit something out, but keeps going.

PROFESSOR: Yep.

AUDIENCE: Returns [INAUDIBLE]

PROFESSOR: OK, so suppose you're implementing sub-sequence hashes. What's the worst, worst

possible way you could implement this?

AUDIENCE: Return a list.

PROFESSOR: OK, so the worst, worst way is to go all the way, brute force, don't use the rolling

hashes, don't use anything. The next best way is to make a list, right? So you're

going to start with an empty list. Then you're going to use the rolling hash in some

way. And in some loop you're going to say list.append e. And then you're going to

return the list.

Does this makes sense? OK, what's the problem with this code?

AUDIENCE: You're going to have a huge list.

PROFESSOR: Going to have a huge list. So the way we fix it with iterators is we remove this, we

replace this with yield e, and we remove this. And now it's a generator. And now this

consumes a constant amount of memory, instead of building a list.

And as long as you only want an iterator out of this method, you'll get the right thing.

Your code will still work in exactly the same way.

OK, so the big question is what does this guy do, right? This is where the magic is.

12



So I already said, as a first hint, that this guy will return an iterator. So can someone

try to imagine their Python, and see this? So suppose it's your Python, you see this.

What do you do?

AUDIENCE: You wait for some sort of command of some sort, right?

PROFESSOR: No, let's try something else.

AUDIENCE: OK.

PROFESSOR: So the execution of this pauses. What happens? So we're looping somewhere, we

got a yield. We stop, what's the first thing we do?

AUDIENCE: Spit out e.

PROFESSOR: So you're saying you return e from this guy?

AUDIENCE: [INAUDIBLE] out e [INAUDIBLE]

PROFESSOR: So I want to return something-- I want to return something else from this. So I want

to use this as if it was a list, yes?

AUDIENCE: We store e somewhere.

PROFESSOR: OK, store e somewhere.

AUDIENCE: Do you return the pointer of e?

PROFESSOR: Almost, so there's a word for the object that I'm returning. So I want to use it as if it

was a list. So I want to pretend that I had returned list in this method, right? So

what's the closest thing to a list that I can return.

AUDIENCE: An iterator.

PROFESSOR: An iterator, thank you, all right. So we will grab some information from here. We'll

put it in a nice box. And that box will behave like an iterator.

OK, so the first thing, someone said put e away, so that's when we call next we're

13



going to spit that out. What else do I need to put away?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Yep, so this is a lot of magic. This tiny box actually has a lot of magic in it. Because

when I call next, I want to get e. But I want to come back here and keep going,

right?

So I have my code that's using the iterator. And there's this code here, that's sort of

in a frozen state. Did you guys see any movies where people are frozen up and

then, in the future, they're unfrozen and they start moving again?

AUDIENCE: [INAUDIBLE] movies.

PROFESSOR: All right, cool. So this is like that, this takes up the whole function, freezes it up and

puts it in a box here. And it returns an iterator that can use the box in the future.

So when you call next, it gives e, which is the guy that you put in here. And then it

take the function out of the box, unfreezes it, and lets it run again until it hits yield

again. Then what happens the next time it hits yield?

So, you're looping, and you're yielding again. And say this time you're yielding.

AUDIENCE: Just do the same thing?

AUDIENCE: Do you put it in that iterator? Or do you make another iterator?

PROFESSOR: Same iterator. So while this is looping, the code outside should get the values that

it's yielding. So this has to behave as one iterator. So the code is unfrozen, it's

allowed to execute until it says yield again. And then it says yield with a new

element.

I put this guy in the box. Then I return the old guy as the return value for next.

AUDIENCE: Oh.

PROFESSOR: And then it's frozen again. So this guy's still in a frozen state. In the movies, I think

14



you're only unfrozen once. And then you keep going, right? And there's a happy

ending. Where here, every time you call yield you're frozen again, until someone

calls next.

Does this make sense?

AUDIENCE: It's kind of like Groundhog Day.

PROFESSOR: Yes, except you're allowed to go forward. So this keeps going forward.

AUDIENCE: --up, thought. So it's looping. It's the same day, really. It's doing different things,

though.

PROFESSOR: Yeah. But all your state is saved. So there, some of the state is rolled back. Here all

the state is saved.

AUDIENCE: OK.

PROFESSOR: OK, but if that analogy helps, keep it.

AUDIENCE: When you call next, are you computing e or e prime to be returned?

PROFESSOR: So when you're calling next, you're computing e prime and returning e.

AUDIENCE: So the value you get from next is pre-computed?

PROFESSOR: So the value you get form next is what you yielded before.

AUDIENCE: Wait, so you would just take some sequence hashes instance of that, and then just

by putting in yield, now it's magically become an iterator and you can call that next

on it?

PROFESSOR: Yep. And inside, you don't have to know that it's an iterator. So you don't have a

method next here, right? I don't implement next or iter here. I write this as if it's

printing stuff to the output.

You can think of yield is a print. If you wanted an iterator, then pretend you're

printing what you want to iterate over. And instead of saying print you say yield. And

15



then you use that.

OK, now what happens when we're done? What happens when this loop is done

and you return from this method? We said there's no return value.

AUDIENCE: It raises a stop?

PROFESSOR: So when we return, it's going to keep in-- have to remember that it's done, right?

And the first time, it has some element here that it has to return. So every time you

call yield we put a new element in the box, and return the old one.

So now we would return the old one. We've returned e prime, take it out, and put

done in the box. So in the future, if next is called again, raise stop iteration. No more

freezing, unfreezing, because we're done. We're returned.

AUDIENCE: So if you called next it would just give you nothing?

PROFESSOR: It has to raise this exception.

AUDIENCE: So you mean, like-- oh, so it-- oh, I see. It would give you red text then?

PROFESSOR: If you called it directly, yes, it would give you red text. Yes?

AUDIENCE: So this takes a sequence or a list, not another iterator, ever?

PROFESSOR: This? What's this? This other code here?

AUDIENCE: Yeah.

PROFESSOR: Not necessarily.

AUDIENCE: Or you could give it a procedure.

PROFESSOR: I can give it an iterator if I'm iterating over it using for-in.

AUDIENCE: Like, for something in one iterator, yield that something, and then [INAUDIBLE]

AUDIENCE: Oh, OK.

16



PROFESSOR: Yeah, that's a good point. I'll get to that later, when we talk about how we're going to

solve the PSET. No, we're not solving the PSET for you. But we'll talk about it a little

bit.

But yeah, that's a good point. So there's no reason why you can't have an argument

here that, either a list or an iterator, and then you're iterating over it. And then you

have nested generators. So you have generators returned in other generators, and

you have a whole chain of things happening when you say next.

AUDIENCE: Wait, so this is a generator then, because it produces-- well it is an iterator though?

PROFESSOR: So a generator returns an iterator from this method. So a generator acts like an

iterator, except when you call next, it unfreezes this code here, and it let's it run.

AUDIENCE: But I mean, it's basically an iterator then?

PROFESSOR: Yeah.

AUDIENCE: But we're just calling it a generator because--

PROFESSOR: Because there's a lot more magic.

AUDIENCE: OK.

PROFESSOR: So an iterator just says next and iter. This is all that an iterator is, nothing more. Any

object that has these two methods is an iterator.

AUDIENCE: Oh, OK.

PROFESSOR: Now a generator is a piece of Python magic that let's you write shorter iterators. So

three lines, as opposed to 13 lines. And we came up with a way to turn in a code

that would build a list, and easily turn it into a code that uses a generator, and that

uses constant memory instead of building that list.

AUDIENCE: OK, now I know how an iterator functions.

PROFESSOR: Exactly. OK, do generators make sense now? Yes.

17



AUDIENCE: If you wanted to loop through all of the values in a generator, do you just wait until

the exception's raised? Or should you, like, keep track of how many things are

going to be in that generator?

PROFESSOR: So, when you have a generator, you'd have no idea how many things there are.

That's a good point. So you're wondering if I have an iterator, say any iterator, not

necessarily a generator, how do I know how many things it's going to return, right?

Do I have ln? I do not have ln.

So an iterator does not have ln. So you have to iterate through it. And most

importantly, some iterators can never return.

So you can have an iterator that streams data for you across the network. Or you

can have an iterator that iterates over the Fibonacci numbers. That's an infinite

sequence, right? It's never going to end. So ln would not even be defined then.

Good question, I like it.

AUDIENCE: Is there an is-next method for either iterators or generators?

PROFESSOR: Nope. This is what you get, if there is no in.

AUDIENCE: If that is mature then--

PROFESSOR: Yeah. So in Java you have this belief that you shouldn't get exceptions. You should

be able to check for them, right? So maybe that's why you're asking.

So if people coming from Java know that any time a method raises an exception,

there should be another method that tells you whether this first method is going to

raise an exception or not. In Python the exception is just raised.

So exceptions are not a lot more expensive than regular instructions, because we're

using an interpreted language, and it's already reasonably slow. So it can do

exceptions for free, yay.

So this is how it works. This is how for-in works. Every time you do a for-in, an

18



exception is raised.

AUDIENCE: We don't have to catch that, then?

PROFESSOR: Nope, the for-in catches it for you.

AUDIENCE: That's tricky stuff.

PROFESSOR: But it's nice because then you can build any iterator that acts like a list. And then

you can do even more fancy stuff, and build a generator. And you're using constant

memory instead of order and memory for producing an order and size list. Yes?

AUDIENCE: So if we get passed in an iterator and then just yielded what we passed in, yielded

the iterator, would that just, essentially, delay everything by one?

PROFESSOR: So you're yielding the iterator as next, right?

AUDIENCE: What? Yeah.

PROFESSOR: You want to yield the iterator as next. Because if you yield the iterator object, you're

going to return that object every time. So you're thinking of something that--

AUDIENCE: So you need to increase--

PROFESSOR: You'll yield up next, right?

AUDIENCE: Right.

PROFESSOR: You can have a method that says this is the method. And then you take in an

iterator. And then you yield it up next. But then you'll, basically, get the same thing.

AUDIENCE: The same thing. But is it delayed by one or no?

PROFESSOR: Nope. No, so you have to work through this to convince yourself that it's not

delayed. So if it would be delayed by one, what's the first thing that you're yielding.

AUDIENCE: I don't know.

PROFESSOR: Yeah, so no delay.
19



AUDIENCE: OK.

PROFESSOR: OK, cool. So let's see, what do we have to implement in DNA seq, sub-sequence

hashes. Do people have an idea of how to implement that now? Yes? Does it make

sense for everyone?

So you build it as if you were building a list, and then you use yield to make it fast.

And by fast I mean less memory.

OK, how about interval sub-sequence hashes? The one below.

AUDIENCE: Is that just like rolling hash, except you, like, have a step in your range?

PROFESSOR: OK, so it's like having a step in your range. So how can you do that? What's one

way of doing it?

AUDIENCE: [INAUDIBLE] hashes?

PROFESSOR: Did anyone solve the PSET yet? Yes, OK how did you guys do it? Wait, no. That's a

bad question because you guys can answer too much.

So interval sub-sequence hashes versus sub-sequence hashes. Did you copy paste

the code?

AUDIENCE: Absolutely.

PROFESSOR: OK, so one way of doing it is copy and pasting the code. The problem if you copy

paste the code is then you're not DRY. There's this engineering thing-- DRY means

do not repeat yourself. So if you're not DRY, if you copy paste, then suppose you

find the bug later. Suppose you run the big test and it crashes somewhere. And you

fix a bug in sub-sequence hashes.

AUDIENCE: Oh, we're supposed to, like, call sub-sequence hashes from interval sub-sequence

hashes, right?

PROFESSOR: That's another way of doing it that is DRY. So this way you're not copy pasting the

20



code.

AUDIENCE: We're inlining the code.

PROFESSOR: You're inlining it manually, right? All right. So the problem, if you do this on a large

scale, like when you go work somewhere, is that you end up with 20 copies of the

same code. And then five of them have bug fixes and the other 15 don't, because

people forgot where they are. So ideally, try to keep your code DRY.

AUDIENCE: So, basically, a list of tuples, right?

PROFESSOR: OK, so a list of tuples. What does a tuple have?

AUDIENCE: The index at which the sub-sequence operates?

PROFESSOR: So two indexes, right? The index in the first sub-sequence, say--

AUDIENCE: [INAUDIBLE]

PROFESSOR: OK, say i1 and then the index in a second sequence, for the same sub-sequence, r

right? And then i1, i2 prime, i1, i2 second, so on and so forth. So you have the same

sub-sequence in the first sequence matches more things in the second one. This is

how you're supposed to return them.

AUDIENCE: Does the order matter?

PROFESSOR: I hope not. OK, any questions on this? We went through generators fast. You guys

are smart. Yes?

AUDIENCE: Can you explain how the imaging works? Like, how they create the [INAUDIBLE] on

tuples.

PROFESSOR: No.

[LAUGHTER]

PROFESSOR: Sorry, I do not know.

21



AUDIENCE: Wait, which part?

AUDIENCE: So we yield the tuples. But I don't really get how they come up with the image from

it.

AUDIENCE: From the tuples? Oh, I mean, I guess they're probably values.

AUDIENCE: Yeah, because I thought if you compared two strings of DNA that had the exact

same, I thought it would be like a diagonal line down, not just a small black box.

PROFESSOR: OK.

AUDIENCE: So I don't think I'm understanding how they, like, image it.

PROFESSOR: So you're supposed to get-- your image has some things here, and a match is going

to give you a big diagonal line that's stronger than everything else, right?

AUDIENCE: It's really fanned out.

PROFESSOR: Well I don't have thin chalk.

AUDIENCE: No, no, there's like one really dark black box, that's like really black. So I thought

that meant that all the tuples are there, and everything else is just kind of gray.

PROFESSOR: Good question. I will have to think about that--

AUDIENCE: --supposed to be there. Is it like a notation thing, or--

PROFESSOR: I think that black box is supposed to be there. Did anyone try comparing two things

that shouldn't match, like the dog and the monkey?

AUDIENCE: Yeah. And the entire thing was like dark.

PROFESSOR: Yeah.

AUDIENCE: --against, like, two same DNAs everything was very light. And there was like a very,

very light gray line. But I thought that would be like black.

PROFESSOR: So I think how black it is means relative to all the sub-sequences, how long it is--
22



how long the sub-sequence you're recording is. Either that or how many. There is a

function somewhere in there that computes the intensity of a pixel, that's square

root of order 4 of something.

OK, and I can look at that now and tell you.

AUDIENCE: It's OK. It's not super important.

PROFESSOR: Or we can talk about amortized analysis for a bit. Yay! Let's talk about amortized

analysis.

So this is what you're supposed to get, that's what matters.

AUDIENCE: [INAUDIBLE]

PROFESSOR: OK, so amortized analysis, what's the example that we talked about in class?

AUDIENCE: It's like list expansion?

PROFESSOR: OK, so you have-- you have a list. And we know that the list is stored as an array,

right? So this means that you can do indexing in constant time. So if you want to get

the first element, order 1. If you want to get the millionth element, order 1.

This is not true if you had a link list instead. The millionth element would be order a

million.

So this is an array. What do we implement? What's the operation that we implement

on this list?

AUDIENCE: Insert--

PROFESSOR: Insert, append, push. Let's go for append, because that's what Python calls it. OK,

so append puts an element at the end of the list, right? So how does append work?

AUDIENCE: The array is not full.

PROFESSOR: OK. So say I have some count variable here. So if the length of the array is bigger

23



than count then what do I do?

AUDIENCE: Then we can directly insert. And because we're looking up in an array and we're

doing constant time.

PROFESSOR: OK.

AUDIENCE: And so an order amount of information in x [INAUDIBLE]?

PROFESSOR: Sorry?

AUDIENCE: Order amount of information of x [INAUDIBLE]? Or do we just--

PROFESSOR: Let's say this is our reference, so it's constant time.

AUDIENCE: Otherwise we don't have enough room in our array. So we need to make it bigger.

PROFESSOR: OK. So we have array 2 becomes new array of size 2 times count, right? Copy

everything from--

AUDIENCE: --length of the array. I guess they're the same.

PROFESSOR: I hope they're the same.

AUDIENCE: It is.

PROFESSOR: Yeah, I'd say that. So copy from array to-- let's do this-- to array 2. And then array 2

becomes array. And then this code here goes here, right? So there's a better way to

write this if statement so the code isn't duplicated.

OK, so if the length is bigger than how many elements I have, if I still have room in

the array, what's the cost? What's the running time? Constant. Oh, let's put it on the

left.

OK, if I have to resize the array, what's the cost?

AUDIENCE: [INAUDIBLE]

PROFESSOR: So, if I did an operations, what then, right? N is the size of the array. If the only
24



operation I have is append, then I can say n operations will cause the array of grow

to size n. So n where n is the number of operations.

AUDIENCE: You mean, like, re-adding to the--

PROFESSOR: So an operation is a data structure operation, like a query or an update. This is my

update and this is my query.

AUDIENCE: Wait, but like, it's order n though, because--

PROFESSOR: Yeah.

AUDIENCE: I know, it's order n. But because we have like an array, and then you have to make

a new one, and you have to move all those old items over, right?

PROFESSOR: Yep.

AUDIENCE: OK. But, I mean, sometimes like, if your actual array, if you expand it before-- like,

let's say you notice you're getting full and you decide to like make it bigger at that

point, is it still order n, as in the number of elements that are--

PROFESSOR: It depends on how you decide. There's a problem on the PSET that asks you about

that. So, depends on when you make the decision and how you make the decision,

the answer is either yes, you're still constant time, or no.

So if you understand the amortized analysis then you can argue of whether it still

holds or not. If this breaks down at any point, not going to be constant time. Yes?

AUDIENCE: So the only cost is really copying everything from the old array to the new array?

PROFESSOR: Yes.

AUDIENCE: Actually allocating that space is--

PROFESSOR: We assume that allocating the space is constant time. Good question, because you

can't take that for granted, right? So we assume that this is order 1, copying is order

n. And then the insertion is order 1, just like before.

25



So allocating may not be constant. In real life, allocating is actually logarithmic either

of the size that you're asking for or logarithmic of how many buffers you've

allocated. And you can make a constant time allocator. But that's lower than a

logarithmic allocator, because the constant factor behind it is so big.

But even if this allocation would be order n, which would be terrible, it would still get

absorbed here. So the overall model works no matter what the allocation is. It's

reasonable, from a theoretical standpoint, to say that allocation is order 1, from a

theoretical standpoint.

So this is the real cost copying the elements. And this makes an append order n

worst case. So if you look at this data structure then suppose we want to compute

the cost of an append. So say we have code like this, 4, 1, 2, n. First we have L be

an empty list. Then we want to compute the cost of this.

So if we do it without amortized analysis, line by line analysis, just like we learned in

the first lecture, what's the cost of this, making a new list constant? What's the cost

of one append?

AUDIENCE: Constant.

PROFESSOR: One append. So an append can either branch here or branch here. So what's the

cost of one append?

AUDIENCE: It would be showing with an empty list?

AUDIENCE: Depends.

PROFESSOR: It depends. So worst case. We have to look at a worst case. So this is line by line

analysis. We're going to get one number for this.

AUDIENCE: N.

AUDIENCE: An n.

PROFESSOR: Yep. So in the worst case, the list will be full. And you'll have to make a new one.

26



And then you're going on this branch of the if, so the cost is order n.

So order n, worst case. So the cost of one call is order n, worst case. How many

calls do we make?

So what is the total cost of this thing?

AUDIENCE: It's not actually n squared.

PROFESSOR: Yes, it's not actually n squared. But if we do line by line analysis, before we learn

amortized analysis, all we can say it's order of n squared. And this is correct, it's not

bigger than n squared, right?

So O is correct. But it's not the tight bound. So if we had a multiple choice, and you

selected this, you wouldn't get the score because we usually ask you what the

tightest bound that you can get.

OK, so line by line analysis. We worked through that a lot in doc dist. Doesn't work

all the time. When it doesn't work, we tell you to use amortized analysis instead.

So what's the goal of amortized analysis? What do we want? You guys are yelling at

me that this is not n squared, why? I mean not why, what? What is it instead? What

do we want from amortized analysis?

AUDIENCE: [INAUDIBLE]

AUDIENCE: It's a [INAUDIBLE] that's an n.

PROFESSOR: So we want amortized analysis to say that this is order 1 amortized, and this is--

[ALARM SOUNDING]

PROFESSOR: Am I out of time? Yeah. OK, so there's a difference between the worst case and

amortized, right? We can argue that this is order 1 amortized. And if this is order 1

amortized, then this is order n amortized.

So does the difference between worst case and amortized make sense now? So

27



this is what I want, the rest is fancy math. If you forget the fancy math after you're

done with this class, that's OK. If you remember that this is order 1 amortized, and

that's order n amortized, that's good. That's all you need to know to write code if

you don't design algorithms.

So this is an important piece of knowledge on its own. OK, so questions about the

difference between worst case and amortized? OK, what does amortized mean?

AUDIENCE: Average.

PROFESSOR: Yep, averaged out over multiple operations. So instead of doing line by line

analysis, we have to look at what happens over multiple operations, right? So there

are two methods that I think are useful in CLRS. There are three in total, but the last

one is horribly complicated.

So there's something called aggregate analysis. And there's something called the

cost based accounting. So last time when we looked at the costs for append, we

argued that, hey, it's order 1 for a lot of times. And then it's only order n for an

operation that's a power of 2.

So if we're looking at the K-ith append, then this is order K for K equals 2 to the i.

And it's order 1 otherwise. Right?

So if we sum up all these costs, we get-- plus sum over log n of O of 2 to the i. And

this is clearly order n. And if you do the math here, this is also order n.

So this is aggregate analysis. This is what we taught you in lecture. Does this make

sense?

So the key here is that whenever we are increasing the array, we're increasing it to

2 times. And we start with a size of 1, count is 1. We start with an array with 1

element. So the size of the array will first be 1, then 2, then 4, then 8, then 16, 32,

64, 128, so on so forth. It increases exponentially.

So on the first append I'll have to do a resize. On the second one, resize. Fourth

one, resize. Eighth, resize, so on and so forth.
28



So if I'm adding up the cost for n operations, each operation is order 1 because I'm

inserting everywhere. And then all these operations are all order n. But there's few

of them. They're few and far out.

So if you write the sum this way, and you do the math, you get that it's order n. So

aggregate analysis says, look at n operations and add the costs up together. And

last time we had that good example of walking over a tree, and in order traversal

where we drew arrows across edges. So that's aggregate analysis.

And then you should look at the cost method in CLRS because that's also useful

sometimes. Does this help? Any questions? No, everyone wants to go home.

AUDIENCE: Wait--

PROFESSOR: Almost.

AUDIENCE: For log n, so you're starting from log n going to--

PROFESSOR: So I'm starting from 1 going to log n.

AUDIENCE: Oh, oh, so [INAUDIBLE] after you're buffering.

PROFESSOR: So this is fancy math for saying only add up powers of two. So that's what I'm trying

to say, add these guys up.

AUDIENCE: Well that's your step [INAUDIBLE].

PROFESSOR: Yeah.

AUDIENCE: Oh, OK. Oh, I like that. OK.

PROFESSOR: OK.

29


