
6.006 Introduction to Algorithms Recitation 14 November 2, 2011

DFS Edge Classification
The edges we traverse as we execute a depth-first search can be classified into four edge types.
During a DFS execution, the classification of edge (u, v), the edge from vertex u to vertex v,
depends on whether we have visited v before in the DFS and if so, the relationship between u and
v.

1. If v is visited for the first time as we traverse the edge (u, v), then the edge is a tree edge.

2. Else, v has already been visited:

(a) If v is an ancestor of u, then edge (u, v) is a back edge.

(b) Else, if v is a descendant of u, then edge (u, v) is a forward edge.

(c) Else, if v is neither an ancestor or descendant of u, then edge (u, v) is a cross edge.

After executing DFS on graph G, every edge in G can be classified as one of these four edge
types. To to this, we need to keep track of when a vertex is first being disocvered (visited) in the
search (recorded in start time[v]), and when it is finished (recorded in finish time[v]),
that is, when its adjacency list has been examined completely. These timestamps are integers be-
tween 1 and 2|V |, since there is one discovery event and one finishing event for each of the |V |
vertices.

Tree edges are immediate from the specification of the algorithm. For back edges, observe
that vertices that are currently being visited but is not finished form a linear chain of descenedants
corresponding to the stack of active DFS-VISIT invocations. Exploration always proceeds from
the deepest vertex currently being visited, so an edge that reaches another vertex being visited has
reached an ancester. An edge (u, v) is a forward edge, if v is finished and start time[u] <
start time[v]. An edge (u, v) is a cross edge, if v is finished and start time[u] >
start time[v]. The following is the Python code for classifying edges in a directed graph.

1 class DFSResult:
2 def __init__(self):
3 self.parent = {}
4 self.start_time = {}
5 self.finish_time = {}
6 self.edges = {} # Edge classification for directed graph.
7 self.order = []

1

6.006 Introduction to Algorithms Recitation 14 November 2, 2011

8 self.t = 0
9

10 def dfs(g):
11 results = DFSResult()
12 for vertex in g.itervertices():
13 if vertex not in results.parent:
14 dfs_visit(g, vertex, results)
15 return results
16
17 def dfs_visit(g, v, results, parent = None):
18 results.parent[v] = parent
19 results.t += 1
20 results.start_time[v] = results.t
21 if parent:
22 results.edges[(parent, v)] = ’tree’
23
24 for n in g.neighbors(v):
25 if n not in results.parent: # n is not visited.
26 dfs_visit(g, n, results, v)
27 elif n not in results.finish_time:
28 results.edges[(v, n)] = ’back’
29 elif results.start_time[v] < results.start_time[n]:
30 results.edges[(v, n)] = ’forward’
31 else:
32 results.edges[(v, n)] = ’cross’
33
34 results.t += 1
35 results.finish_time[v] = results.t
36 results.order.append(v)

We can use edge type information to learn some things about G. For example, tree edges form
trees containing each vertex DFS visited in G. Also, G has a cycle if and only if DFS finds at least
one back edge.

An undirected graph may entail some ambiguity, since (u, v) and (v, u) are really the same
edge. In such a case, we classify the edge as the first type in the classification list that applies, i.e.,
we classify the edge according to whichever of (u, v) or (v, u) the search encounters first. Note
that undirected graphs cannot contain forward edges and cross edges, since in those cases, the
edge (v, u) would have already been traversed (classified) during DFS before we reach u and try
to visit v.

Topological Sort
Many applications use directed acyclic graphs to indicate precedences among events. Topologi-
cally sorted vertices should appear in reverse order of their finishing time.

1 def topological_sort(g):
2 dfs_result = dfs(g)
3 dfs_result.order.reverse()
4 return dfs_result.order

2

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

