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Massachusetts Institute of Technology November 22, 2011
Professors Erik Demaine and Srini Devadas Problem Set 7

Problem Set 7
Both theory and programming questions are due on Tuesday, December 6 at 11:59PM.

Please download the .zip archive for this problem set. Instructions for submitting your answers
will be posted to the course website by Tuesday, November 29.

We will provide the solutions to the problem set 10 hours after the problem set is due. You will
have to read the solutions, and write a brief grading explanation to help your grader understand
your write-up. You will need to submit the grading guide by Thursday, December 8, 11:59PM.
Your grade will be based on both your solutions and the grading explanation.

Problem 7-1. [30 points] Seam Carving

In a recent paper, “Seam Carving for Content-Aware Image Resizing”, Shai Avidan and Ariel
Shamir describe a novel method of resizing images. You are welcome to read the paper, but we
recommend starting with the YouTube video:

http://www.youtube.com/watch?v=vIFCV2spKtg

Both are linked from the Problem Sets page on the class website. After you’ve watched the video,
the terminology in the rest of this problem will make sense.

If you were paying attention around time 1:50 of the video, then you can probably guess what
you’re going to have to do. You are given an image, and your task is to calculate the best vertical
seam to remove. A vertical seam is a connected path of pixels, one pixel in each row. We call two
pixels connected if they are vertically or diagonally adjacent. The best vertical seam is the one that
minimizes the total “energy” of pixels in the seam.

The video didn’t spend much time on dynamic programming, so here’s the algorithm:

Subproblems: For each pixel (i, j), what is the lower-energy seam that starts at the top row of the
image, but ends at (i, j)?

Relation: Let dp[i,j] be the solution to subproblem (i, j). Then
dp[i,j] = min(dp[i,j-1],dp[i-1,j-1],dp[i+1,j-1]) + energy(i,j)

Analysis: Solving each subproblem takes O(1) time: there are three smaller subproblems to look
up, and one call to energy(), which all take O(1) time. There is one subproblem for each
pixel, so the running time is Θ(A), where A is the number of pixels, i.e., the area of the
image.

Download ps7_code.zip and unpack it. To solve this problem set, you will need the Python
Imaging Library (PIL), which you should have installed for Problem Set 4. If you wish to view
your results, you will additionally need the Tkinter library.
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In resizeable_image.py, write a function best_seam(self) that returns a list of coordi-
nates corresponding to the cheapest vertical seam to remove, e.g., [(5, 0), (5, 1), (4, 2), (5, 3), (6, 4)].
You should implement the dynamic program described above in a bottom-up manner.

The class ResizeableImage inherits from ImageMatrix. You should use the following
components of ImageMatrix in your dynamic program:

• self.energy(i,j) returns the energy of a pixel. This takes O(1) time, but the constant
factor is sizeable. If you call it more than once, you might want to cache the results.

• self.width and self.height are the width and height of the image, respectively.

Test your code using test_resizable_image.py, and submit ResizeableImage.py to
the class website. You can also view your code in action by running gui.py. Included with the
problem set are two differently sized versions of the same sunset image. If you remove enough
seams from the sunset image, it should center the sun.

Also, please try out your own pictures (most file formats should work), and send us any interesting
before/after shots.

Solution: Code is available on the course website.
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Problem 7-2. [70 points] HG Fargo

You have been given an internship at the extremely profitable and secretive bank HG Fargo. Your
immediate supervisor tells you that higher-ups in the bank are very interested in learning from the
past. In particular, they want to know how much money they could have made if they had invested
optimally.

Your supervisor gives you the following data on the prices1 of select stocks in 1991 and in 2011:

Company Price in 1991 Price in 2011
Dale, Inc. $12 $39
JCN Corp. $10 $13
Macroware, Inc. $18 $47
Pear, Inc. $15 $45

As a first step, you decide to examine what the optimal decision is for a couple of small examples:

(a) [5 points] If you had $20 available to purchase stocks in 1991, how much of each
stock should you have bought to maximize profits when you sell everything in 2011?
Note that you do not need to invest all of your money — if it is more profitable to keep
some as cash, you do not need to invest it.

Solution: There are six distinct possible purchasing plans. We can buy no stocks at
all, ending with $20 in 2011. There are four different ways we can buy one share: one
for each company. For Dale, the money we would end up with is $39 + $20− $12 =
$47. For JCN, the money we would end up with is $13 + $20 − $10 = $23. For
Macroware, the money we would end up with is $47+$20−$18 = $49. For Pear, the
money we would end up with is $45 + $20− $15 = $50. The best of these is clearly
Pear. The only other option would be to buy two shares in JCN, leaving us with a total
of 2 · $13 = $26. Hence, the best option is to buy a single share in Pear.

(b) [5 points] If you had $30 available to purchase stocks in 1991, how much of each
stock should you have bought?

Solution: To make this simpler, note that it is never cost-effective to purchase
Macroware. Suppose that we choose to purchase k shares in Macroware. Now con-
sider how our money would be affected if instead we choose to purchase k shares in
Pear with the same amount of money. The amount of money that we make by selling
those shares is k · $45, as opposed to k · $47, but when purchasing Pear instead of
Macroware, we save k · $3 on the initial purchases. That money can be kept as cash,
so that we end up with k · ($45 + $3) = k · $48 > k · $47 in 2011. Hence, it’s never
cost-effective to purchase Macroware.

1Note that for the purposes of this problem, you should ignore some of the intricacies of the real stock market. The
only income you can make is from purchasing stocks in 1991, then selling those same stocks at market value in 2011.
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A similar argument can be made about JCN. Because JCN is cheaper than all of the
other stocks, we cannot always replace it with a cheaper stock. But purchasing two
shares in JCN is less cost-effective than purchasing a share in Pear, so we will never
want to purchase more than one share in JCN. Furthermore, if we purchase one share
in JCN and leave ≥ $2 as cash, we could have made more money by instead purchas-
ing a share in Dale.
This limits the set of possibilities. If we purchase one share, the best option is still Pear.
Consider the possible ways to purchase two shares. We need not consider any com-
binations involving Macroware. Furthermore, because of our initial prices, pairing a
single share in JCN with a single share in any other company will always leave us with
≥ $2 in cash, so it’s not a good idea to purchase JCN. As a result, we need only con-
sider three combinations: two shares in Dale (yielding $39+$39+$30−$12−$12 =
$84); one share in Dale and one in Pear (yielding $39+$45+$30−$12−$15 = $87);
or two shares in Pear (yielding $45+$45+$30−$15−$15 = $90). So the best thing
to do is to buy two shares in Pear.

(c) [5 points] If you had $120 available to purchase stocks in 1991, how much of each
stock should you have bought?

Solution: Dale is the single most profitable company of the four, with an increase
of 225% on the initial investment. So in cases where the amount of money is evenly
divisible by 12, the best plan is to buy as many shares in Dale as possible. Hence, the
best thing to do is to buy 10 shares in Dale.

Your supervisor asks you to write an algorithm for computing the best way to purchase stocks,
given the initial money total , the number count of companies with stock available, an array start
containing the prices of each stock in 1991, and an array end containing the prices of each stock
in 2011. All prices are assumed to be positive integers.

There is a strong relationship between this problem and the knapsack problem. The knapsack
problem takes four inputs: the number of different items items , the item sizes size (all of which
are integers), the item values value (which may not be integers), and the size capacity of the
knapsack. The goal is to pick a subset of the items that fits inside the knapsack and maximizes the
total value.

(d) [1 point] Which input to the knapsack problem corresponds to the input total in the
stock purchasing problem?

1. items 2. size 3. value 4. capacity

Solution: 4: capacity . We can think of the stock purchasing problem as stuffing as
many shares into a “bag” with capacity equal to our initial money supply.

(e) [1 point] Which input to the knapsack problem corresponds to the input count in the
stock purchasing problem?

1. items 2. size 3. value 4. capacity
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Solution: 1: items . The variable count gives the number of companies available to
purchase shares of. The variable items tells us how many items are available to stuff
in our bag. These items are roughly equivalent.

(f) [1 point] Which input to the knapsack problem corresponds to the input start in the
stock purchasing problem?

1. items 2. size 3. value 4. capacity

Solution: 2: size. The size of an item in the knapsack problem affects how many
can be placed in the knapsack. The same is true of the initial price, which affects the
prices we can afford in 1991.

(g) [1 point] Which input to the knapsack problem corresponds to the input end in the
stock purchasing problem?

1. items 2. size 3. value 4. capacity

Solution: 3: value. The sum of these values is what we try to optimize for both
problems.

(h) [6 points] Unfortunately, the algorithm for the knapsack problem cannot be directly
applied to the stock purchasing problem. For each of the following potential reasons,
state whether it’s a valid reason not to use the knapsack algorithm. (In other words, if
the difference mentioned were the only difference between the problems, would you
still be able to use the knapsack algorithm to solve the stock purchasing problem?)

1. In the stock purchasing problem, there is a time delay between the selection and
the reward.

2. All of the numbers in the stock purchasing problem are integers. The value array
in the knapsack problem is not.

3. In the stock purchasing problem, the money left over from your purchases is kept
as cash, which contributes to your ultimate profit. The knapsack problem has no
equivalent concept.

4. In the knapsack problem, there are some variables representing sizes of objects.
There are no such variables in the stock purchasing problem.

5. In the stock purchasing problem, you can buy more than one share in each stock.
6. In the stock purchasing problem, you sell all the items at the end. In the knapsack

problem, you don’t do anything with the items.

Solution: The only valid reasons are 3 and 5. Reason 2 is a difference, but if the only
difference is integer vs. real, then the knapsack algorithm (which handles reals) will
also be able to take integers.

Despite these differences, you decide that the knapsack algorithm is a good starting point for the
problem you are trying to solve. So you dig up some pseudocode for the knapsack problem, relabel
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the variables to suit the stock purchasing problem, and then start modifying things. After a long
night of work, you end up with a couple of feasible solutions. Unfortunately, there is a bit of a
hard-drive error the next morning, and the files are all mixed up. You have recovered six different
functions, from various states in your development process. The first function is the following:

STOCK(total , count , start , end)

1 purchase = STOCK-TABLE(total , count , start , end)
2 return STOCK-RESULT(total , count , start , end , purchase)

This is the function that you ran to get your results. The STOCK-TABLE function generates the
table of subproblem solutions. The STOCK-RESULT function uses that to figure out which stocks
to purchase, and in what quantities. Unfortunately, you have two copies of the STOCK-TABLE

function and three copies of the STOCK-RESULT function. You know that there’s a way to take
one of each function to get the pseudocode for the original knapsack problem (with the names
changed). You also know that there’s a way to take one of each function to get the pseudocode for
the stock purchases problem. You just don’t know which functions do what.

Analyze each of the other five procedures, and select the correct running time. Recall that total
and count are positive integers, as are each of the values start [stock ] and end [stock ]. To make
the code simpler, the arrays start , end , and result are assumed to be indexed starting at 1, while
the tables profit and purchase are assumed to be indexed starting at (0, 0). You may assume that
entries in a table can be accessed and modified in Θ(1) time.

(i) [1 point] What is the worst-case asymptotic running time of STOCK-TABLE-A (from
Figure 1) in terms of count and total?

1. Θ(count) 7. Θ(count + total)

2. Θ(count2) 8. Θ(count2 + total)

3. Θ(count3) 9. Θ(count + total2)

4. Θ(total) 10. Θ(count

5. Θ(total2
· total)

) 11. Θ(count2

6. Θ(total3
· total)

) 12. Θ(count · total2)

Solution: 10: Θ(count ·total). The outer for-loop runs total times; the inner for-loop
runs count times. All operations in the inner for-loop are Θ(1) in runtime, so the total
time is proportional to the number of iterations.

(j) [1 point] What is the worst-case asymptotic running time of STOCK-TABLE-B (from
Figure 2) in terms of count and total?
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STOCK-TABLE-A(total , count , start , end)

1 create a table profit
2 create a table purchase
3 for cash = 0 to total
4 profit [cash, 0] = cash
5 purchase[cash, 0] = FALSE

6 for stock = 1 to count
7 profit [cash, stock ] = profit [cash, stock − 1]
8 purchase[cash, stock ] = FALSE

9 if start [stock ] ≤ cash
10 leftover = cash − start [stock ]
11 current = end [stock ] + profit [leftover , stock ]
12 if profit [cash, stock ] < current
13 profit [cash, stock ] = current
14 purchase[cash, stock ] = TRUE

15 return purchase

Figure 1: The pseudocode for STOCK-TABLE-A.

STOCK-TABLE-B(total , count , start , end)

1 create a table profit
2 create a table purchase
3 for cash = 0 to total
4 profit [cash, 0] = 0
5 purchase[cash, 0] = FALSE

6 for stock = 1 to count
7 profit [cash, stock ] = profit [cash, stock − 1]
8 purchase[cash, stock ] = FALSE

9 if start [stock ] ≤ cash
10 leftover = cash − start [stock ]
11 current = end [stock ] + profit [leftover , stock − 1]
12 if profit [cash, stock ] < current
13 profit [cash, stock ] = current
14 purchase[cash, stock ] = TRUE

15 return purchase

Figure 2: The pseudocode for STOCK-TABLE-B.
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1. Θ(count) 7. Θ(count + total)

2. Θ(count2) 8. Θ(count2 + total)

3. Θ(count3) 9. Θ(count + total2)

4. Θ(total) 10. Θ(count total)

5. Θ(total2
·

) 11. Θ(count2 · total)

6. Θ(total3) 12. Θ(count · total2)

Solution: 10: Θ(count · total). Again, the outer for-loop runs total times, and
the inner for-loop runs count times. One iteration of the inner for-loop is Θ(1) in
runtime.

(k) [1 point] What is the worst-case asymptotic running time of STOCK-RESULT-A (from
Figure 3) in terms of count and total?

1. Θ(count) 7. Θ(count + total)

2. Θ(count2) 8. Θ(count2 + total)

3. Θ(count3) 9. Θ(count + total2)

4. Θ(total) 10. Θ(count total)

5. Θ(total2
·

) 11. Θ(count2

6. Θ(total3
· total)

) 12. Θ(count · total2)

Solution: 1: Θ(count). We perform two loops. The first is a for-loop with count
iterations, and each iteration is a Θ(1) assignment. The second is a while loop. It stops
when the variable stock becomes zero. The variable stock starts out equal to count ,
and decreases by 1 at each iteration, so the total number of iterations is Θ(count).

(l) [1 point] What is the worst-case asymptotic running time of STOCK-RESULT-B (from
Figure 4) in terms of count and total?

1. Θ(count) 7. Θ(count + total)

2. Θ(count2) 8. Θ(count2 + total)

3. Θ(count3) 9. Θ(count + total2)

4. Θ(total) 10. Θ(count
2 2

· total)

5. Θ(total ) 11. Θ(count

6. Θ(total3
· total)

) 12. Θ(count · total2)

Solution: 1: Θ(count). Again, the first loop has count iterations, and the decreasing
variable stock in the second loop ensures that it runs Θ(count) times.

(m) [1 point] What is the worst-case asymptotic running time of STOCK-RESULT-C (from
Figure 5) in terms of count and total?
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STOCK-RESULT-A(total , count , start , end , purchase)

1 create a table result
2 for stock = 1 to count
3 result [stock ] = 0
4
5 cash = total
6 stock = count
7 while stock > 0
8 quantity = purchase[cash, stock ]
9 result [stock ] = quantity

10 cash = cash − quantity · start [stock ]
11 stock = stock − 1
12
13 return result

Figure 3: The pseudocode for STOCK-RESULT-A.

STOCK-RESULT-B(total , count , start , end , purchase)

1 create a table result
2 for stock = 1 to count
3 result [stock ] = FALSE

4
5 cash = total
6 stock = count
7 while stock > 0
8 if purchase[cash, stock ]
9 result [stock ] = TRUE

10 cash = cash − start [stock ]
11 stock = stock − 1
12
13 return result

Figure 4: The pseudocode for STOCK-RESULT-B.
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STOCK-RESULT-C(total , count , start , end , purchase)

1 create a table result
2 for stock = 1 to count
3 result [stock ] = 0
4
5 cash = total
6 stock = count
7 while stock > 0
8 if purchase[cash, stock ]
9 result [stock ] = result [stock ] + 1

10 cash = cash − start [stock ]
11 else
12 stock = stock − 1
13
14 return result

Figure 5: The pseudocode for STOCK-RESULT-C.

1. Θ(count) 7. Θ(count + total)

2. Θ(count2) 8. Θ(count2 + total)

3. Θ(count3) 9. Θ(count + total2)

4. Θ(total) 10. Θ(count

5. Θ(total2
· total)

) 11. Θ(count2

6. Θ(total3
· total)

) 12. Θ(count · total2)

Solution: 7: Θ(count + total). Again, the first loop takes time Θ(count). The
second loop, however, is more complicated. With every iteration, either cash or stock
decreases by at least 1. When stock reaches 0, the loop will stop. When cash goes
below 0, purchase[cash, stock ] can no longer be true (because it won’t exist), and
so stock will start decreasing instead. As a result, the total number of iterations is
bounded by count + total . Each iteration takes Θ(1) time, for a total of Θ(count +
total) time.

(n) [2 points] The recurrence relation computed by the STOCK-TABLE-A function is:

1. profit [c, s ] = max{profit [c, s − 1], profit [c − start [s ], s − 1]}
2. profit [c, s ] = max{profit [c, s − 1], profit [c − start [s ], s − 1] + end [s ]}
3. profit [c, s ] = max

q
{profit [c − q · start [s ], s − 1] + q · end [s ]}

4. profit [c, s ] = max{profit [c, s − 1], profit [c − start [s ], s ]}

10



Problem Set 7

5. profit [c, s ] = max{profit [c, s − 1], profit [c − start [s ], s ] + end [s ]}
6. profit [c, s ] = max

q
{profit [c − q · start [s ], s ] + q · end [s ]}

Solution: 5. The algorithm computes the maximum of two values:

profit [cash, stock − 1] and end [stock ] + profit [cash − start [stock ], stock ]

This is exactly what the fifth recurrence relation above computes.

(o) [2 points] The recurrence relation computed by the STOCK-TABLE-B function is:

1. profit [c, s ] = max{profit [c, s − 1], profit [c − start [s ], s − 1]}
2. profit [c, s ] = max{profit [c, s − 1], profit [c − start [s ], s − 1] + end [s ]}
3. profit [c, s ] = max{profit [c − q · start [s ], s [

q
− 1] + q · end s ]}

4. profit [c, s ] = max{profit [c, s − 1], profit [c − start [s ], s ]}
5. profit [c, s ] = max{profit [c, s − 1], profit [c − start [s ], s ] + end [s ]}
6. profit [c, s ] = max{profit [c − q · start [s ], s ] + q · end [s ]

q
}

Solution: 2. The algorithm computes the maximum of two values:

profit [cash, stock − 1] and end [stock ] + profit [cash − start [stock ], stock − 1]

This is exactly what the second recurrence relation above computes.

With this information, you should be able to figure out whether STOCK-TABLE-A or STOCK-TABLE-B
is useful for the knapsack problem, and similarly for the stock purchasing problem. From there,
you can figure out which of STOCK-RESULT-A, STOCK-RESULT-B, and STOCK-RESULT-C is
best for piecing together the optimal distribution of stocks and/or items.

(p) [3 points] Which two methods, when combined, let you compute the answer to the
knapsack problem?

1. STOCK-TABLE-A and STOCK-RESULT-A
2. STOCK-TABLE-A and STOCK-RESULT-B
3. STOCK-TABLE-A and STOCK-RESULT-C
4. STOCK-TABLE-B and STOCK-RESULT-A
5. STOCK-TABLE-B and STOCK-RESULT-B
6. STOCK-TABLE-B and STOCK-RESULT-C

Solution: 5. From above, we know that the the recurrence relation for STOCK-TABLE-B
is the same as the one we use for the knapsack problem, decreasing the number of
items by 1 after we choose to use a single item (thereby not letting us use an item
twice, as we would need to do in the stock purchasing problem). The table produced
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by STOCK-TABLE-B contains booleans, so it is not suitable for being paired with
STOCK-RESULT-A (which treats the table as containing integers). Furthermore, the
knapsack problem should produce booleans indicating whether each item is included,
so the boolean result values in STOCK-RESULT-B are just what we want.

(q) [3 points] Which two methods, when combined, let you compute the answer to the
stock purchases problem?

1. STOCK-TABLE-A and STOCK-RESULT-A
2. STOCK-TABLE-A and STOCK-RESULT-B
3. STOCK-TABLE-A and STOCK-RESULT-C
4. STOCK-TABLE-B and STOCK-RESULT-A
5. STOCK-TABLE-B and STOCK-RESULT-B
6. STOCK-TABLE-B and STOCK-RESULT-C

Solution: 3. From above, we know that the the recurrence relation for STOCK-TABLE-A
is the same as the one we use for the stock purchasing problem, allowing us to pur-
chase more than one share in a company. The table produced by STOCK-TABLE-A
contains booleans, so it is not suitable for being paired with STOCK-RESULT-A. How-
ever, we do want the values in the table result to be integers rather than booleans, so
we don’t want STOCK-RESULT-B. That leaves us with STOCK-RESULT-C.

With all that sorted out, you submit the code to your supervisor and pat yourself on the back for
a job well done. Unfortunately, your supervisor comes back a few days later with a complaint
from the higher-ups. They’ve been playing with your program, and were very upset to discover
that when they ask what to do with $1,000,000,000 in the year 1991, it tells them to buy tens
of millions of shares in Dale, Inc. According to them, there weren’t that many shares of Dale
available to purchase. They want a new feature: the ability to pass in limits on the number of
stocks purchaseable.

You choose to begin, as always, with a small example:

Company Price in 1991 Price in 2011 Limit
Dale, Inc. $12 $39 3
JCN Corp. $10 $13 ∞
Macroware, Inc. $18 $47 2
Pear, Inc. $15 $45 1

(r) [5 points] If you had $30 available to purchase stocks in 1991, how much of each
stock should you have bought, given the limits imposed above?

Solution: Unfortunately, we can no longer purchase the two shares in Pear that we
did for the unlimited version of this problem. In fact, some of the conclusions we
drew about the cost-effectiveness of JCN and Macroware are no longer valid, due to
the limits. Note, however, that if we purchase any shares in Macroware and no shares
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in Pear, then we are not getting the most out of our money — once again, we can
replace a single share in Macroware with a single share in Pear. So we still don’t need
to consider any combinations involving Macroware.
What about combinations involving JCN? Well, if we purchase one share in JCN, then
the rest of the money available is $20. We know that even without limits, the most we
can make with $20 is $50, so we have an upper bound on the profitability of this
venture: if we purchase a share in JCN, the most we can make is $63. This is easily
surpassed by the $87 we make by purchasing one share in Pear and one share in Dale,
which turns out to be the maximum.

(s) [5 points] If you had $120 available to purchase stocks in 1991, how much of each
stock should you have bought, given the limits imposed above?

Solution: JCN doesn’t get us very much profit, so in this case, we want to buy as
much of Dale, Macroware, and Pear as we can. That brings us to $87. With the
remaining $33, we purchase 3 shares of JCN.

(t) [20 points] Give pseudocode for an algorithm STOCKLIMITED that computes the
maximum profit achievable given a starting amount total , a number count of compa-
nies with stock available, an array of initial prices start , an array of final prices end ,
and an array of quantities limit . The value stored at limit [stock ] will be equal to∞
in cases where there is no known limit on the number of stocks. The algorithm need
only output the resulting quantity of money, not the purchases necessary to get that
quantity.
Remember to analyze the runtime of your pseudocode, and provide a brief justification
for its correctness. It is sufficient to give the recurrence relation that your algorithm
implements, and talk about why the recurrence relation solves the problem at hand.

Solution: There are a couple of possible answers here. The first solution involves
changing the set of choices that we make, but not changing the subproblems at all.
We based our choices in the stock-purchasing problems around our choices in the
knapsack problem: either purchase a share in this stock, or don’t purchase a share in
this stock. But when we’re allowed to purchase more than one share in a company, we
could consider this to be an expansion of the set of choices. In the knapsack problem,
we had the choice between a quantity of 0 and a quantity of 1. In the stock purchasing
problem, the set of values that our quantity can range over is much larger. So we can
rewrite our recurrence relation (with full detail of the base cases) as follows:

p[c, s] =

{
c if s = 0

max p[c q start [s], s 1] + q end [s] otherwise
0≤q≤min{limit [s],c/start [s]}

− · − ·

The valid choices for our quantity q are only those choices that lie within the limits
set by the problem, and those values that don’t cost more money than we have. This
yields the bounds 0 ≤ q ≤ min{limit [s], c/start [s]}. The rest of the equation is
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straightforward: if we choose to purchase q of the stock s, then we must pay q·start [s],
thereby reducing the amount of cash that we have. As a reward, we get q ·end [s] added
to our profit. When we use the correct order to evaluate this in a bottom-up fashion,
we get the following pseudocode:

STOCKLIMITED(total , count , start , end , limit)

1 create a table profit
2 for cash = 0 to total
3 profit [cash, 0] = cash
4 for stock = 1 to count
5 profit [cash, stock ] = profit [cash, stock − 1]

6 maximum = min limit [stock ], cash
start [stock ]

7 for quantity = 1 to

{
maximum

}
8 leftover = cash − start [stock ] · quantity
9 current = end [stock ] · quantity + profit [leftover , stock − 1]

10 if profit [cash, stock ] < current
11 profit [cash, stock ] = current
12
13 return profit [total , count ]

This is probably the simplest solution, but there are several others. One option is to
add more subproblems: add a third argument to the subproblem indicating the new
lowered limit for the current stock. When we choose to purchase a share in the stock,
the recursive subproblem we examine has a limit that is smaller by 1. Let maximum[s]
be defined as follows:

maximum[s] =

{
0 if s = 0

min
{

limit [s], total
start [s]

}
otherwise

Then the recurrence relation will be:

c if s = 0
p[c, s− 1, maximum[s− 1] if ` = 0

p[c, s, `] =


 p[c, s{− 1, maximum[s− 1] } if start [s] > c p[c

max
− start [s], s, `− 1] + end [s],

otherwise
p[c, s− 1, maximum[s− 1]]

When evaluated in the appropriate order, this should give us something like the fol-
lowing pseudocode:
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Problem Set 7

STOCKLIMITED(total , count , start , end , limit)

1 create a table maximum
2 maximum[0] = 0
3 for stock = 1 to count

4 maximum[stock ] = min
{

limit [stock ], total
start [stock ]

5

}
6 create a table profit
7 for cash = 0 to total
8 profit [cash, 0, 0] = cash
9 for stock = 1 to count

10 for ` = 0 to maximum[stock ]
11 profit [cash, stock , `] = profit [cash, stock − 1, maximum[stock − 1]]
12
13 if ` > 0 and start [stock ] ≤ cash
14 current = end [stock ] + profit [cash − start [stock ], stock , `− 1]
15 profit [cash, stock , `] = max{profit [cash, stock , `], current}
16
17 return profit [total , count , maximum[count ]]

There is also yet another way to do this, which is similar to the above. With limits,
the problem becomes even closer to the knapsack problem. We just need to create
limit [stock ] different items associated with the stock stock . To avoid problems with
infinity, we do the same trick as above. Then we need only use a modified version of
the knapsack algorithm to compute the desired result:

STOCKLIMITED(total , count , start , end , limit)

1 create a list all -stocks
2 for stock = 1 to count

3 for quantity = 1 to min
{

limit [stock ], total
start [stock ]

4 append stock to all -stocks

}
5
6 create a table profit
7 for cash = 0 to total
8 profit [cash, 0] = cash
9 for share = 1 to length of all -stocks

10 stock = all -stocks [share]
11 profit [cash, share] = profit [cash, share − 1]
12 if start [stock ] ≤ cash
13 current = end [stock ] + profit [cash − start [stock ], share − 1]
14 profit [cash, share] = max{profit [cash, share], current}
15
16 return profit [total , length of all -stocks ]

15



Problem Set 7

All of these solutions are Θ(count · total2) in the worst case. There are ways to
speed this up, but the details can get quite complicated, and have little to do with the
properties of dynamic programming. As a result, we will not give the algorithm here.

16
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