
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology November 1, 2011
Professors Erik Demaine and Srini Devadas Problem Set 6

Problem Set 6
Both theory and programming questions are due on Tuesday, November 15 at 11:59PM.

Please download the .zip archive for this problem set, and refer to the README.txt file for
instructions on preparing your solutions.

We will provide the solutions to the problem set 10 hours after the problem set is due. You will
have to read the solutions, and write a brief grading explanation to help your grader understand
your write-up. You will need to submit the grading guide by Tuesday, November 22, 11:59PM.
Your grade will be based on both your solutions and the grading explanation.

Problem 6-1. [30 points] I Can Haz Moar Frendz?
Alyssa P. Hacker is interning at RenBook (人书 /人書 in Chinese), a burgeoning social network
website. She needs to implement a new friend suggestion feature. For two friends u and v (friend-
ship is undirected), the EdgeRank ER(u, v) can be computed in constant time based on the interest
u shows in v (for example, how frequently u views v’s profile or comments on v’s wall). Assume
that EdgeRank is directional and asymmetric, and that its value falls in the range (0, 1). A user
u is connected to a user v if they are connected through some mutual friends, i.e., u = u0 has a
friend u1, who has a friend u2, . . . , who has a friend uk = v. The integer k is the vagueness of the
connection. Define the strength of such a connection to be

k

S(p) =
∏

ER(ui−1, ui).
i=1

For a given user s, Alyssa wants to have a way to rank potential friend suggestions according to
the strength of the connections s has with them. In addition, the vagueness of those connections
should not be more than k, a value Alyssa will decide later.

Help Alyssa by designing an algorithm that computes the strength of the strongest connection
between a given user s and every other user v to whom s is connected with vagueness at most
k, in O(kE + V) time (i.e., for every pair of s and v for v ∈ V \{s}, compute the strength of the
strongest connection between them with vagueness at most k). Assume that the network has |V |
users and |E| friend pairs. Analyze the running time of your algorithm. For partial credit, give a
slower but correct algorithm. You can describe your algorithm in words, pseudocode or both.

Problem 6-2. [30 points] RenBook Competitor
Having experienced RenBook and its alternatives, you’ve come to the conclusion that the social
networking websites currently out there lack focus. You’ve decided to create a social network that
caters specifically to the algorithms-in-Python crowd. Excited about this idea, you’ve pitched to
various investors, a few of whom have traded you a check in return for convertible debt. You’re
ready to go! Now you have to implement your idea.

1

Problem Set 6

The first step is to rent a machine on the web, a task which you’ve easily accomplished using your
newly-acquired funding. The next step, however, is harder to complete: you must install a web
server library and all of its dependencies. Each library that you wish to install can depend on a
number of other libraries, which you will have to install first. Each of those libraries can in turn
have its own dependencies.

You can try to install the libraries one-by-one and resolve the dependencies by hand, but you’d like
to write a script that will do the work for you. Fortunately, having studied graphs in 6.006, you’re
confident that you will be able to accomplish this task. You will need to determine which libraries
need to be installed and then generate the order in which the libraries will be installed so that there
will be no dependency problems.

Examining the software library repository, you see that there are V total libraries, which together
have a total of E dependencies. The repositories enforces the rule that dependencies cannot be
cyclic. Libraries rarely all depend on one another, so you can safely assume that E � V 2.

(a) An installation order is an ordering of all the libraries such that each library’s depen-
dencies appear prior to it in the sequence. If we install each library in this sequence
in order, we are guaranteed to avoid dependency problems. Describe in detail how to
generate an installation order for the entire repository in O(V + E) time.

We wish to install a web server library along with its dependencies. Suppose that some libraries
are already installed on your system, and that only P libraries remain to be installed (you can
determine whether a library has already been installed by performing a dictionary lookup in O(1)
time). Assume that the maximum number of dependencies for any given library is D.

(b) Give pseudocode for an algorithm that generates an installation order for the non-
installed libraries that are needed for installing the web server library in O(P + PD)
time. Describe your algorithm. You may use any routine given in CLRS as a subrou-
tine in your pseudocode, and you can use a textual description, a clarifying example,
or a correctness proof for the description.

Problem 6-3. [30 points] Rubik’s Cube
In this problem, you will develop algorithms for solving the 2× 2× 2 Rubik’s Cube, known as the
Pocket Cube. Call a configuration of the cube “k levels from the solved position” if it can reach
the solved configuration in exactly k twists, but cannot reach the solved configuration in any fewer
twists.

The rubik directory in the problem set package contains the Rubik’s Cube library and a graphical
user interface to visualize your algorithm.

We will solve the Rubik’s Cube puzzle by finding the shortest path between two configurations
(the start and goal) using BFS.

A BFS that goes as deep as 14 levels (the diameter of the pocket cube) will take a few minutes (not
to mention the memory needed). A few minutes is too slow for us: we want to solve the cube very
quickly!

2

Problem Set 6

Instead, we will take advantage of a fact that we saw in lecture: the number of nodes at level 7
(half the diameter) is much smaller than half the total number of nodes.

With this in mind, we can instead do a two-way BFS, starting from each end at the same time, and
meeting in the middle. At each step, expand one level from the start position, and one level from
the end position, and then check to see whether any of the new nodes have been discovered in both
searches. If there is such a node, we can read off parent pointers (in the correct order) to return the
shortest path.

Write a function shortest path in solver.py that takes two positions, and returns a list of
moves that is a shortest path between the two positions.

Test your code using test solver.py. Check that your code runs in less than 5 seconds.

Problem 6-4. [30 points] From Berklee to Berkeley

Jack Florey and his fellow hackers are planning to put a TARDIS1 on Berkeley’s most symbolic
tower. However, the company responsible for transporting the construction material mistook the
destination as Berklee College of Music. In order to save the extra cost of transportation back to
Berkeley, Jack wants to help them to find the fastest route from Berklee to Berkeley. He down-
loaded the data from the National Highway Planning Network (NHPN)2. However, as he did not
take 6.006 and does not know how to implement the Dijkstra’s algoritm, he turns to you for help.

The partial code is in the dijkstra directory in the zip file for this problem set. It contains
a data directory which includes node and link text files from the NHPN. Open nhpn.nod
and nhpn.lnk in a text editor to get a sense of how the data is stored (datadict.txt and
format.txt have more precise descriptions of the data fields and their meanings). The Python
module nhpn.py provided contains code to load the text files into Node and Link objects. Read
nhpn.py to understand the format of the Node and Link objects.

In dijkstra.py, the PathFinder object contains a source node, a destination node, and a
Network object which represents the highway network with a list of Node objects. For each
node, node.adj contains a list of all nodes adjacent to node.

Your task is implementing the method

PathFinder.dijkstra(weight, nodes, source, destination)

using Dijkstra’s algorithm. It is given a function weight(node1, node2) that returns the
weight of the link between node1 and node2, a list of all the nodes, a source node and a
destination node in the network. The method should return a tuple of the shortest path from
the source to the destination as a list of nodes, and the number of nodes visited during
the execution of the algorithm. A node is visited if the shortest path of it from the source is
computed. You should stop the search as soon as the shortest path to the destination is found.

Function distance(node1, node2) is a weight function used by the main program to
call the dijkstra method. It returns the distance between two NHPN nodes. Nodes come with

1Doctor Who’s Time And Relative Dimension In Space
2http://www.fhwa.dot.gov/planning/nhpn/

3

http://www.fhwa.dot.gov/planning/nhpn/

Problem Set 6

latitude and longitude (in millionths of degrees). For simplicity, we treat these as (x, y) coordinates
on a flat surface, where the distance between two points can be calculated using the Pythagorean
Theorem.

The NodeDistancePair object wraps a given node and its distance which can be used as a key
in the priority queue.

The Python module priority queue.py contains a min-heap based implementation of prior-
ity queue. It is augmented with a map of keys to their indices in the heap, so that the decrease key(key)
method takes O(1) time to lookup the key in the priority queue.

After implementing PathFinder.dijkstra(), you can run

python dijkstra.py < tests/0boston berkeley.in

to see the shortest distance from Boston, MA to Berkeley, CA.

To visualize the result, you can run the following command.

TRACE=kml python dijkstra.py < tests/0boston berkeley.in

On Windows, use the following command instead:

dijkstra kml.bat < tests/0boston berkeley.in

This will create two files, path flat.kml and path curved.kml. Both should be paths
from Boston, MA to Berkeley, CA. path flat.kml is created using the distance function de-
scribed earlier, and path curved.kml is created using a distance function that does not assume
that the Earth is flat. .kml files can be viewed using Google Maps, by putting the file in a web-
accessible location (such as your Athena Public directory), going to http://maps.google.
com and putting the URL (http://. . .) in the search box. Try asking Google Maps for driving
directions from Berklee to Berkeley to get a sense of how similar their answer is. Two sample
.kml files path flat sol.kml and path curved sol.kml are provided in the same
directory and you can check your results against the samples.

You can use the following command to run all the tests on your Dijkstra’s implementation:

python dijkstra test.py

When your code passes all the tests and runs reasonably fast (the tests should complete in less
than 40s when using CPython), upload your modified dijkstra.py to the course submission
site. Our automated grading code will use our versions of dijkstra test.py, nhpn.py, and
priority queue.py, so please do not modify these files.

4

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

*

http://maps.google.com
http://maps.google.com

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

