
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology October 24, 2011
Professors Erik Demaine and Srini Devadas Problem Set 5

Problem Set 5
Both theory and programming questions are due Monday, October 31 at 11:59PM. Please

download the .zip archive for this problem set, and refer to the README.txt file for instructions
on preparing your solutions.

We will provide the solutions to the problem set 10 hours after the problem set is due. You will
have to read the solutions, and write a brief grading explanation to help your grader understand
your write-up. You will need to submit the grading explanation by Thursday, November 3rd,
11:59PM. Your grade will be based on both your solutions and the grading explanation.

Problem 5-1. [40 points] The Knight’s Shield

The optimized circuit verifier that you developed on your Amdtel internship was a huge success
and got you on a sure track to landing a sweet offer. You also got transferred to a research group
that is working on the Knight’s Shield (KS)1, a high-stakes project to develop a massive multi-core
chip aimed at the exploding secure cloud computing market.

The KS chip packs 16,384 cores in a die that’s the same size as a regular CPU die. However, each
core is very small, and can only do arithmetic operations using 8-bit or 16-bit unsigned integers
(see Table 1). Encryption algorithms typically use 2,048-bit integers, so the KS chip will ship with
software that supports arithmetic on large integers. Your job is to help the KS team assess the
efficiency of their software.

Operation R1 size R2 size Result size Result
ZERO 8 / 16 0 (zero)
ONE 8 / 16 1 (one)
LSB R1 16 8 R1 % 256 (least significant byte)
MSB R1 16 8 R1 / 256 (most significant byte)
WORD R1 8 16 R1 (expanded to 16-bits)
ADD R1, R2 8 / 16 8 / 16 16 R1 + R2
SUB R1, R2 8 / 16 8 / 16 16 R1 − R2 mod 65536
MUL R1, R2 8 8 16 R1 · R2
DIV R1, R2 16 8 8 R1 ÷ R2 mod 256
MOD R1, R2 16 8 8 R1 % R2
AND R1, R2 8 / 16 8 / 16 8 / 16 R1 & R2 (bitwise AND)
OR R1, R2 8 / 16 8 / 16 8 / 16 R1 ‖ R2 (bitwise OR)
XOR R1, R2 8 / 16 8 / 16 8 / 16 R1 ˆ R2 (bitwise XOR)

Table 1: Arithmetic operations supported by the KS chip. All sizes are in bits.

1The code name is Amdtel confidential information. Please refrain from leaking to TechCrunch.

1

Problem Set 5

The KS library supports arbitrarily large base-256 numbers. The base was chosen such that each
digit is a byte, and two digits make up a 16-bit number. Numbers are stored as a little-endian
sequence of bytes (the first byte of a number is the least significant digit, for example 65534
= 0xFFFE would be stored as [0xFE, 0xFF]). For the rest of the problem, assume all the input
numbers have N digits.

Consider the following algorithm for computing A + B, assuming both inputs have N digits.

ADD(A,B,N)

1 C = ZERO(N + 1) // ZERO(k) creates a k-digit number, with all digits set to 0s.
2 carry = 0
3 for i = 1 to N
4 digit = WORD(A[i]) + WORD(B[i]) + WORD(carry)
5 C [i] = LSB(digit)
6 carry = MSB(digit)
7 C[N + 1] = carry
8 return C

(a) [1 point] What is the running time of ADD?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Solution: Θ(N), because of the for loop on line 3.

(b) [1 point] What is the size of ADD’s output?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Solution: Θ(N), because it returns an (N + 1)-digit number.

2

Problem Set 5

(c) [1 point] ADD’s output size suggests an easy lower bound for the subroutine. Does
the running time of ADD match this lower bound?

1. Yes
2. No

Solution: Yes. The running time matches the output size, so the algorithm must be
optimal.

Consider the following brute-force algorithm for computing A · B, assuming both inputs have N
digits.

MULTIPLY(A,B,N)

1 C = ZERO(2N)
2 for i = 1 to N
3 carry = 0
4 for j = 1 to N
5 digit = A[i] ·B[j] + WORD(C[i + j − 1]) + WORD(carry)
6 C[i + j − 1] = LSB(digit)
7 carry = MSB(digit)
8 C [i + N] = carry
9 return C

(d) [1 point] What is the running time of MULTIPLY?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Solution: Θ(N2), because of the nested for loops on lines 2 and 4.

(e) [1 point] What is the size of MULTIPLY’s output?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

3

Problem Set 5

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Solution: Θ(N), because it returns a 2N -digit number.

(f) [1 point] MULTIPLY’s output size suggests an easy lower bound for the subroutine.
Does the running time of MULTIPLY match this lower bound?

1. Yes
2. No

Solution: No. In fact, we do not know a multiplication algorithm that runs in Θ(N)
time, and we don’t have a proof for a better lower bound than Θ(N) for multiplica-
tion.

Consider the following brute-force algorithm for computing A ÷ B and A mod B, assuming
both inputs have N digits. The algorithm uses a procedure COPY(A,N) that creates a copy of an
N -digit number A, using Θ(N) time.

DIVMOD(A,B,N)

1 Q = ZERO(N) // quotient
2 R = COPY(A,N) // remainder
3 S0 = COPY(B,N) // Si = B · 2i

4 i = 0
5 repeat
6 i = i + 1
7 Si = ADD(Si-1 , Si-1 , N)
8 until Si [N + 1] > 0 or CMP(Si, A,N) == GREATER

9 for j = i− 1 downto 0
10 Q = ADD(Q,Q,N)
11 if CMP(R, Sj , N) != SMALLER

12 R = SUBTRACT(R, Sj , N)
13 Q[0] = Q[0]‖1 // Faster version of Q = Q + 1
14 return (Q,R)

(g) [1 point] CMP(A,B,N) returns GREATER if A > B, EQUAL if A = B, and
SMALLER if A < B, assuming both A and B are N -digit numbers. What is the
running time for an optimal CMP implementation?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

4

Problem Set 5

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Solution: Θ(N) because, in the worst case, it has to look at every digit in both
numbers. The following pseudo-code runs in Θ(N) time.

GREATEREQUAL(A,B,N)

1 for i = 1 to N
2 if A[i] = B[i]
3 if A[i] > B[i]
4 return GREATER

5 else return SMALLER

6 return EQUAL

(h) [1 point] SUBTRACT(A,B,N) computes A − B, assuming A and B are N -digit
numbers. What is the running time for an optimal SUBTRACT implementation?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Solution: Θ(N). The pseudo-code, run-time analysis, and optimality argument are
very similar to those for ADD discussed above.

(i) [1 point] What is the running time of DIVMOD?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

6

5

Problem Set 5

Solution: Θ(N2). The Repeat . . .Until loop starting on line 5 can increase i up to
8N , which is achieved using the extreme values B = 1 and A = 28N −1. So, both the
Repeat . . .Until loop and the for loop starting on line 9 run Θ(N) times. Each loop
makes a constant number of calls to ADD, SUBTRACT and CMP, all of which have
Θ(N) running time when given N -digit long inputs. Therefore, the total running time
is Θ(N) ·Θ(N) = Θ(N2)

The KS library does not use the DIVMOD implementation above. Instead, it uses Newton’s method
to implement DIV(A,B,N) which computes the division quotient A ÷ B, assuming both inputs
have N digits. DIV relies on the subroutines defined above. For example, it uses MULTIPLY

to perform large-number multiplication and ADD for large-number addition. MOD(A,B,N) is
implemented using the identity A mod B = A− (A÷B) ·B.

(j) [2 points] How many times does DIV call MULTIPLY?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Solution: Θ(logN) times, because it converges quadratically, according to the Lec-
ture 12 notes.

(k) [2 points] What is the running time of MOD?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Solution: Θ(N2).
Although MULTIPLY is called Θ(logN) times in DIV, the operand sizes are different
each time, so the total running time for DIV is Θ(N2). See the Lecture 12 notes for
details.

6

Problem Set 5

MOD performs an extra multiplication and subtraction, so it takes Θ(N2) running time
in addition to the running time of DIV. The total running time of MOD is Θ(N2 +
N2) = Θ(N2)

Consider the following brute-force algorithm for computing BE mod M , assuming all the input
numbers have N digits.

POWMOD(B,E,M,N)

1 R = ONE(N) // result
2 X = COPY(B,N) // multiplier
3 for i = 1 to N
4 mask = 1
5 for bit = 1 to 8
6 if E[i] & mask != 0
7 R = MOD(MULTIPLY(R,X,N),M, 2N)
8 X = MOD(MULTIPLY(X,X,N),M, 2N)
9 mask = LSB(mask · 2)

10 return R

(l) [2 points] What is the running time for POWMOD?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Solution: Θ(N3). The for loop on line 3 runs N times, and the inner for loop on
line 7 runs 8 times, so MULTIPLY and MOD on lines 7 and 8 are called Θ(N) times.
The intermediate multiplication results are always reduced modulo N , so R and X
will always have Θ(N) digits, which means that each MOD and MULTIPLY call takes
Θ(N2) time.

Assume the KS library swaps out the brute-force MULTIPLY with an implementation of Karat-
suba’s algorithm.

(m) [1 point] What will the running time for MULTIPLY be after the optimization?

1. Θ(1)

7

Problem Set 5

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Solution: Θ(N log2 3), the running time of Karatsuba’s algorithm.

(n) [2 points] What will the running time for MOD be after the optimization?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Solution: Θ(N log2 3), for the same reason that MOD takes Θ(N2) time when MUL-
TIPLY is implemented using the brute-force algorithm.

(o) [2 points] What will the running time for POWMOD be after the optimization?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Solution: Θ(N log2 6). As argued earlier, POWMOD calls MULTIPLY and MOD

Θ(N) times with Θ(N)-digit long arguments. So the total running time is Θ(N)
Θ(N log2 3) = Θ(N1+log2 3) = Θ(N log2(2·3)) = Θ(N log2 6

·
).

(p) [20 points] Write pseudo-code for KTHROOT(A,K,N), which computes
√
b K Ac us-

ing binary search, assuming that A and K are both N -digit numbers. The running
time for KTHROOT(A,K,N) should be Θ(N2+log2 3).

Solution: The pseudo-code below implements a binary search for the answer.

8

Problem Set 5

KTHROOT(A,K,N)

1 T0 = ONE(N) // Ti = 2i

2 i = 0
3 repeat
4 i = i + 1
5 Ti = ADD(Ti-1 ,Ti-1 , N)
6 until Ti [N + 1] > 0 or POWEXCEEDS(Ti, K,A,N)
7 R = ZERO(N)
8 for j = i− 1 downto 0
9 R′ = ADD(R, Tj)

10 unless POWEXCEEDS(R′, K,A,N)
11 R = R′

12 return R

The pseudo-code uses a helper subroutine POWEXCEEDS(B,E,A,N), which returns
TRUE iff BE > A, assuming all input numbers are N -digits long. This solution takes
a non-standard approach to implementing binary search that is worth taking a look at.
The regular binary search implementation requires a [low , high] range that contains the
answer, and uses a guess g = b low+high

2
c to narrow the range down to a single number.

In contrast, this implementation assumes that the answer is non-negative low = 0, and
does not require a high upper bound on the answer. The repeat-until loop on lines 3-8
computes the upper bound by generating powers of i (Ti is computed to hold 2i inside
the loop) and stopping when the answer is smaller than Ti , which means that we can
use high = Ti and start the typical binary search algorithm on the [0,Ti] interval. If
the answer has n bits, the repeat-until loop runs for n iterations, so having to compute
the upper bound doesn’t change the asymptotic running time of binary search.
Line 7 initializes R, which is going to be returned as the result of the binary search.
R stands for “result”, but is actually the low variable in regulary binary search. This
is because we are asked to compute the floor of the kth root of A. The for loop on
lines 8-11 implements the binary search, by successively computing the bits of R,
from the highest bit to the lowest. The variables map to the classical binary search
implementation as follows: low is R, high is R + 2Tj − 1, and the guess g is R + Tj .
This holds before the loop because R = 0, and we know that the answer is smaller
than Ti, so it has to be ≤ Ti − 1 = 2Ti−1 − 1 = 2Tj − 1. Convince yourself that the
invariant holds throughout the loop, using the fact that Ti = 2Ti−1.
This variant of binary search is interesting because the successive values of the guess g
only differ by one bit, and it can be implemented solely using bitwise operations (shift-
ing, and bitwise OR), whereas the classical binary search implementation requires ad-
dition. Note that the division by two in classical binary search can be implemented
using a right shift, so the only difference is the need for addition (the + operator).
The DIVMOD pseudo-code given in this problemset follows the same binary search
strategy for computing the division quotient. Take another look at the pseudo-code

9

Problem Set 5

and convince yourself that this is the case. The first result of Googling for double
division should help visualize the divsion algorithm.

POWEXCEEDS(B,E,A,N)

1 A2 = ZERO(2N) // A, zero-extended to 2N digits
2 for i = 1 to N
3 A2 [i] = A[i]
4 ones = 0 // number of set bits in E
5 for i = 1 to N
6 mask = 1
7 for bit = 1 to 8
8 if E[i] & mask != 0
9 ones = ones + 1

10 mask = LSB(mask · 2)
11 R = ONE(N) // result
12 X = COPY(B,N) // multiplier
13 for i = 1 to N
14 mask = 1
15 for bit = 1 to 8
16 if E[i] & mask != 0
17 R = MULTIPLY(R,X,N)
18 if CMP(R,A2, 2N) == GREATER

19 return TRUE

// ones is the number of 1s that haven’t yet contributed to R
20 ones = ones − 1
21 if ones == 0
22 return FALSE // R = BE ≤ A
23 X = MULTIPLY(X,X,N)
24 if CMP(X,A2, 2N) == GREATER

25 return TRUE

26 mask = LSB(mask · 2)
27 return FALSE

The POWEXCEEDS implementation is similar to that of POWMOD. Instead of calling
MOD, lines 18 and 24 return FALSE if the intermediate result is greater than A, so
a modular reduction would occur. If R ever gets greater than A, we know that the
final result will also be greater than A, so it’s safe to return FALSE. However, X is
not always multiplied by R, so we must take some precaution. This implementation
counts the 1 bits in the exponent, and returns as soon as R receives the result of the
multiplication corresponding to the most significant exponent bit that is set to 1. This
means that when we square X , we know the value will eventually be multiplied into
R. Therefore, it is also safe to return FALSE when an intermediate X value exceeds
A.

10

Problem Set 5

Because of all the precautions above, all the intermediate results in POWEXCEEDS

are at most 2N digits long, so the subroutine has the same running time as POWMOD,
Θ(N log2 6).
NTHROOT performs a binary search, which may use up to 8N trials. So the total
running time of NTHROOT is Θ(N ·N log2 6) = Θ(N1+log2 6) = Θ(N2+log2 3)

11

Problem Set 5

Problem 5-2. [18 points] RSA Public-Key Encryption

The RSA (Rivest-Shamir-Adelman) public-key cryptosystem is a cornerstone of Internet security.
It provides the “S” (security) in the HTTPS sessions used for e-commerce and cloud services that
handle private information, such as e-mail. RSA secures SSH sessions (used to connect to Athena,*
for example), and MIT certificates used to log into Stellar. You figure that the KS chip must
perform RSA efficiently, since RSA plays such an important role in cloud security. This problem
will acquaint you with the encryption and decryption algorithms in RSA.

RSA works as follows. Each user generates two large random primes p and q, and sets his public
modulus m = p · q. The user then chooses a small number2 e that is co-prime with (p− 1)(q− 1),
and computes d = e−1 mod (p − 1)(q − 1). The user announces his public key (e,m) to the
world, and keeps d private. In order to send an encrypted message to our user, another user would
encode the message as a number smaller than n, and encrypt it as c = E(n) = ne mod m. Our
user would decode the message using D(c) = cd mod m. Assume that keys can be generated
reasonably fast and that D(E(n)) = n, for all but a negligible fraction of values of n.

(a) [1 point] What is the running time of an implementation of D(n) that uses the KS li-
brary in Problem 1, with the optimized version of MULTIPLY (Karatsuba’s algorithm),
assuming that n, d and m are N -byte numbers?

1. Θ(1)

2. Θ(logN)

3. Θ(N)

4. Θ(N2)

5. Θ(N2 logN)

6. Θ(N log2 3)

7. Θ(N log2 6)

8. Θ(N3)

Solution: Θ(N log2 6), because D(n) can be computed using a single call to POWMOD.

You’re thinking of using RSA to encrypt important sensitive images, such as last night’s picture of
you doing a Keg stand. Formally, a picture has R×C pixels (R rows, C columns), and each pixel
is represented as 3 bytes that are RGB color space coordinates3. The RSA key is (e,m), where m
is an N -byte number. An inefficient encryption method would process each row of pixel data as
follows:

1.Break the 3C bytes of pixel data into groups of N − 1 bytes

2.Pad the last group with 0 bytes up to N − 1 bytes

265,537 is a popular choice nowadays
3see http://en.wikipedia.org/wiki/RGB_color_space

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

12

http://en.wikipedia.org/wiki/RGB_color_space

Problem Set 5

3.Encrypt each group of N − 1 bytes to obtain an N -byte output

4.Concatenate the N -byte outputs

(b) [1 point] How many calls to the RSA encryption function E(n) are necessary to
encrypt an R× C-pixel image?

1. Θ(1)

2. Θ(RC)

3. Θ(RC)
N

4. Θ(RN)
C

5. Θ(CN)
R

Solution: The exact number is Rd C e, which is Θ(RC)
N−1 N

.

(c) [1 point] What is the running time for decrypting an R× C-pixel image that was en-
crypted using the method above, using the KS library in Problem 1, with the optimized
version of MULTIPLY (Karatsuba’s algorithm)?

1. Θ(N)

2. Θ(N2)

3. Θ(N2 logN)

4. Θ(N log2 3)

5. Θ(N log2 6)

6. Θ(RCN)

7. Θ(RCN2)

8. Θ(RCN2 logN)

9. Θ(RCN log2 3)

10. Θ(RCN log2 6)

11. Θ(RN)

12. Θ(RN2)

13. Θ(RN2 logN)

14. Θ(RN log2 3)

15. Θ(RN log2 6)

Solution: Θ(RCN log2 3)

The running time of one decryption operation is Θ(N log2 6), and decrypting the en-
tire image requires

log 6

Θ(RC) operations, so the total running time is Θ(RC
N

·N 2) =
N

Θ(RC·N1+log 32) = Θ(RCN log2 3)
N

.

(d) [5 points] A fixed point under RSA is a number n such that E(n) ≡ n mod m, so
RSA does not encrypt the number at all. Which of the following numbers are fixed
points under RSA? (True / False)

13

Problem Set 5

1. 0

2. 1

3. 2

4. 3

5. m− 2

6. m− 1

Solution: 0, 1, and m− 1 are fixed points.
0e = 0 and 1e = 1 for any value of e > 0. m − 1 ≡ −1 mod m, and we know that
(−1)e = −1 if e is odd. The other choices can be eliminated by choosing e = 3 and
m = 35 = 5 · 7. 23 ≡ 8 mod 35, 33 ≡ 27 mod 35, and (35− 2)3 ≡ (−2)3 ≡ −8 ≡
27 mod 35.

(e) [5 points] What other weaknesses does the RSA algorithm have? (True / False)

1. E(−n) ≡ −E(n) mod m

2. E(n1) + E(n2) ≡ E(n1 + n2) mod m

3. E(n1)− E(n2) ≡ E(n1 − n2) mod m

4. E(n1) · E(n2) E(n1 n2) mod m

5. E(n)n2

≡ ·
1 ≡ E(nn2

1) mod m

Solution: E(−n) ≡ −E(n) mod m, E(n1) E(n2) E(n1 n2) mod m, and
E(n)n2 ≡ E(nn2

· ≡ ·
1 1) mod m

The positive answers can be proven by using algebra on the definition of E(n). E(n1

n) ≡ (n · n)e ≡ (ne e

·
2 1 2 1) · (n2) ≡ E(n1) · E(n2) mod m. Also, E(−n) ≡ (−n)e ≡
−(ne), because e is odd. Last, (n e)

E(nn2
1) ≡ (nn2 e 2 e (n2

1) ≡ n1
· ≡ (n1) n2) ≡ E(n1) .

The negative answers can be proven by counter-example. E(1) + E(1) = 2 = 8 =
23 = E(1 + 1) for n1 = n2 = 1, e = 3 and m = 35. Similarly, E(2) − E(1) =
23 − 1 = 7 = 1 = E(2− 1).

(f) [5 points] Amdtel plans to use RSA encryption to secretly tell Gopple when its latest
smartphone CPU is ready to ship. Amdtel will send one message every day to Gopple,
using Gopple’s public key (eG, mG). The message will be NO (the number 20079
when using ASCII), until the day the CPU is ready, then the message will change
to YES (the number 5858675 when using ASCII). You pointed out to your manager
that this security scheme is broken, because an attacker could look at the encrypted
messages, and know that the CPU is ready when the daily encrypted message changes.
This is a problem of deterministic encryption. If E(20079) always takes the same
value, an attacker can distinguish E(20079) from E(5858675). How can the problem
of deterministic encryption be fixed? (True / False)

1. Append the same long number (the equivalent of a string such as ’XXXPADDINGXXX’)
to each message, so the messages are bigger.

6

6

14

Problem Set 5

2. Append a random number to each message. All random numbers will have the
same size, so the receiver can recognize and discard them.

3. Use a different encryption key to encrypt each message, and use Gopple’s public
exponent and modulus to encrypt the decryption key for each message.

4. Use an uncommon encoding, such as UTF-7, so that the attacker will not know
the contents of the original messages.

5. Share a “secret” key with Gopple, so that the attacker can’t use the knowledge on
Gopple’s public exponent and modulus.

Solution: Appending a random number and using per-message encryption keys both
work, because they make the encryption output non-deterministic. All the other pro-
posals don’t change the fact that a message will always look the same after encryption,
which is what the attacker uses to detect the change from NO to YES.

15

Problem Set 5

Problem 5-3. [42 points] Image Decryption

Your manager wants to show off the power of the Knight’s Shield chip by decrypting a live video
stream directly using the RSA public-key crypto-system. RSA is quite resource-intensive, so most
systems only use it to encrypt the key of a faster algorithm. Decrypting live video would be an
impressive technical feat!

Unfortunately, the performance of the KS chip on RSA decryption doesn’t come even close to
what’s needed for streaming video. The hardware engineers said the chip definitely has enough
computing power, and blamed the problem on the RSA implementation. Your new manager has
heard about your algorithmic chops, and has high hopes that you’ll get the project back on track.
The software engineers suggested that you benchmark the software using images because, after
all, video is just a sequence of frames.

The code is in the rsa directory in the zip file for this problem set.

(a) [2 points] Run the code under the python profiler with the command below, and
identify the method inside bignum.py that is most suitable for optimization. Look
at the methods that take up the most CPU time, and choose the first method whose
running time isn’t proportional to the size of its output.
python -m cProfile -s time rsa.py < tests/1verdict 32.in

Warning: the command above can take 1-10 minutes to complete, and bring the CPU
usage to 100% on one of your cores. Plan accordingly. If you have installed PyPy
successfully, you should replace python with pypy in the command above for a
2-10x speed improvement.
What is the name of the method with the highest CPU usage?

Solution: fast mul

The first line in the profiler output points to add , but the addition algorithm is
optimal (O(N) running time, O(N) output size). The next line points to fast mul.
PyPy’s output may have init and normalize above fast mul. These
methods are also implemented using optimal algorithms, so they are not good answers
for the question.

(b) [1 point] How many times is the method called?

Solution: The second line in the profiler output indicates that fast mul is called
93496 times.

(c) [1 point] The troublesome method is implementing a familiar arithmetic operation.
What is the tightest asymptotic bound for the worst-case running time of the method
that contains the bottleneck? Express your answer in terms of N , the number of digits
in the input numbers.

1. Θ(N).
2. Θ(N log n)

16

Problem Set 5

3. Θ(N log2 n)

4. Θ(N log2 3)

5. Θ(N2)

6. Θ(N log2 7)

7. Θ(N3)

Solution: mul implements multiplication using Karatsuba’s algorithm. The
running time for this algorithm is Θ(N log2 3).

(d) [1 point] What is the tightest asymptotic bound for the worst-case running time of di-
vision? Express your answer in terms of N , the number of digits in the input numbers.

1. Θ(N).
2. Θ(N log n)

3. Θ(N log2 n)

4. Θ(N log2 3)

5. Θ(N2)

6. Θ(N log2 7)

7. Θ(N3)

Solution: div uses divmod , which implements division using New-
ton’s algorithm. The asymptotic running time is the same as the running time of the
underlying multiplication algorithm which is Θ(N log2 3) in this case.

We have implemented a visualizer for your image decryption output, to help you debug your code.
The visualizer will also come in handy for answering the question below. To use the visualizer,
first produce a trace.

TRACE=jsonp python rsa.py < tests/1verdict 32.in > trace.jsonp

On Windows, use the following command instead.

rsa jsonp.bat < tests/1verdict 32.in > trace.jsonp

Then use Google Chrome to open visualizer/bin/visualizer.html

(e) [6 points] The test cases that we supply highlight the problems of RSA that we dis-
cussed above. Which of the following is true? (True / False)

1. Test 1verdict 32 shows that RSA has fixed points.
2. Test 1verdict 32 shows that RSA is deterministic.
3. Test 2logo 32 shows that RSA has fixed points.
4. Test 2logo 32 shows that RSA is deterministic.
5. Test 5future 1024 shows that RSA has fixed points.
6. Test 5future 1024 shows that RSA is deterministic.

17

Problem Set 5

Solution: Test 1verdict 32 shows both fixed points (the black eyes and mouth
remain black in the encrypted image) and determinism (the rest of the face looks the
same, so we can guess it’s the same color). In 4verdict 512, the bigger key size
hides the fixed points.
Test 2logo 32 shows fixed points. Although the colors are off, the encrypted image
clearly represents the MIT logo.
Test 5future 1024 does not shows fixed points or deterministic encryption, be-
cause of the noise in the source image. The encrypted image looks like white noise.

(f) [1 point] Read the code in rsa.py. Given a decrypted image of R × C pixels
(R rows, C columns), where all the pixels are white (all the image data bytes are
255), how many times will powmod be called during the decryption operation in
decrypt image?

1. Θ(1)

2. Θ(RC)

3. Θ(RC)
N

4. Θ(RN)
C

5. Θ(CN)
R

Solution: Θ(1). RsaKey uses a dictionary to cache decryption results, so powmod
is called at most twice: once for a “chunk” of pixels inside a row, and once for a
“chunk” of pixels at the end of the row, which would be padded with 0s.

(g) [30 points] The multiplication and division operations in big num.py are im-
plemented using asymptotically efficient algorithms that we have discussed in class.
However, the sizes of the numbers involved in RSA for typical key sizes aren’t suit-
able for complex algorithms with high constant factors. Add new methods to BigNum
implementing multiplication and division using straight-forward algorithms with low
constant factors, and modify the main multiplication and division methods to use the
simple algorithms if at least one of the inputs has 64 digits (bytes) or less. Please note
that you are not allowed to import any additional Python libraries and our test will
check this.

The KS software testing team has put together a few tests to help you check your code’s cor-
rectness and speed. big num test.py contains unit tests with small inputs for all BigNum
public methods. rsa test.py runs the image decryption code on the test cases in the tests/
directory.

You can use the following command to run all the image decryption tests.

python rsa test.py

To work on a single test case, run the simulator on the test case with the following command.

python rsa.py < tests/1verdict 32.in > out

18

Problem Set 5

Then compare your output with the correct output for the test case.

diff out tests/1verdict 32.gold

For Windows, use fc to compare files.

fc out tests/1verdict 32.gold

While debugging your code, you should open a new Terminal window (Command Prompt in
Windows), and set the KS DEBUG environment variable (export KS DEBUG=true; on Win-
dows, use set KS DEBUG=true) to use a slower version of our code that has more consistency
checks.

When your code passes all tests, and runs reasonably fast (the tests should complete in less than
90 seconds on any reasonably recent computer using PyPy, or less than 600 seconds when using
CPython), upload your modified big num.py to the course submission site. Our automated
grading code will use our versions of test rsa.py, rsa.py and ks primitives.py /
ks primitives unchecked.py, so please do not modify these files.

Solution: The solution archive on the course Web site contains the staff’s solution and secret test
cases.

19

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

