
Due Dates:
Milestone 1: midnight, Tuesday, November 29
Milestone 2: midnight, Tuesday, December 6
Possible amendment: Wednesday, December 7
Prize consideration: 11am, Tuesday, December 13
Final version: midnight, Wednesday, December 14
Reflection: midnight, Thursday, December 15

Problem
Purpose
Specification
Tasks
Infrastructure
Deliverables and Grading
Hints

Problem

Instant messaging (IM) is a staple of the web and has been around almost since its inception,
starting with simple text-based programs like talk and IRC and progressing to today's GUI-
based IM clients from Google, Yahoo, Microsoft, AOL, etc. In this project you will design and
implement an IM system, including both the client and the server. The following
characteristics constrain the design space of an IM system:

● Real-time communication. An IM conversation happens in real time: one person
types some text, presses "enter," and the other person (almost) immediately sees the
text.

● Number of parties. An IM conversation can happen between two or more people.
Some systems only allow two people to communicate; others allow more than two
people. Most systems allow a person to be involved in multiple conversations at the

6.005 Elements of Software Construction
 Fall 2011

 Project 2: Instant Messaging
 Monday, November 21

1

http://en.wikipedia.org/wiki/Instant_messaging
http://en.wikipedia.org/wiki/Talk_(Unix)
http://en.wikipedia.org/wiki/IRC

same time.
● Based on typed text. The main mode of communication is via text, as opposed to

voice or video.
● Connected over a network. The parties involved in the communication may be in

physically remote locations, and are connected over the internet.

Your task will be to design an instant messaging system with the above properties, as well as
additional properties that you will incorporate into your design. This system will include a
server component that handles the transfer of messages and other data, and a client
component with a graphical user interface.

Purpose

The purpose of this project is twofold. First, you will use several Java technologies, including
networking (to support connectivity over a network), sockets and I/O (to support real-time,
text-based communication), and threads (to support two or more people communicating
concurrently). State machines may be useful to specify certain aspects of the system's
behavior.

Second, you will have to think about the best way to present your chat system, this will
required a graphical user interfaces. You will:

● become more familiar with Swing, a graphical user interface (GUI) toolkit for Java, that
is similar to many other such toolkits;

● use important GUI programming concepts, including the notion of a view hierarchy and
the model-view-controller design pattern;

● use the event-listening design pattern in several ways, not only in your GUI but also in
the more general publish-subscribe sense.

Throughout the project, you will need to design and implement mutable datatypes, paying
particular attention to their specifications, how they interact with one another, and
concurrency issues.

Specification

Implement an IM system in Java with the following properties:

● Client. The client is a program that opens a network connection with the IM server at a
2

http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

specified IP address and port number. The client should have a way of specifying the
server IP, port, and a username. Once the connection is open, the client program
presents a graphical user interface for performing the interactions listed below.

● Server. The server is a program that accepts connections from clients. A server should
be able to maintain a large number of open client connections (limited only by the
number of free ports), and clients should be able to connect and disconnect as they
please. The server also has to verify that client usernames are unique and handle
collisions gracefully.

The server is responsible for managing the state of both clients and conversations.

● Conversations. A conversation is an interactive text-exchange session between some
number of clients, and is the ultimate purpose of the IM system. The exact nature of a
conversation is not specified (although the hints section details a couple of
possibilities), except to say that it allows clients to send text messages to each other.
Messaging in a conversation should be instantaneous, in the sense that incoming
messages should be displayed immediately, not held until the recipient requests them.
You should visually separate messages of different conversations (e.g., into distinct
windows, tabs, panes, etc).

● Client/server interaction. A client and server interact by exchanging messages in a
protocol of your devising — the protocol is not specified. Using this protocol, the user
interface presented by the client should:

�❍ Provide a facility for seeing which users are currently logged in;
�❍ Provide a facility for creating, joining and leaving conversations;
�❍ Allow the user to participate in multiple conversations simultaneously;
�❍ Provide a history of all the messages within a conversation for as long as the

client is in that conversation;
● No authentication. In a production system, logging in as a client would require some

form of password authentication. For simplicity, this IM system will not use
authentication, meaning that anyone can log in as a client and claim any username
they choose.

Tasks
1. Team preparation. Meet with your team and write a team contract.

2. Conversation design. Define a precise notion of conversation in your IM system. See
3

the hints on how to do this. Specifically, name the Java classes you will create to
implementing conversations, give specs of their public methods, and give a brief
description of how they will interact. Include a snapshot diagram of a conversation in
action.

3. Client/server protocol. Design a set of commands the clients and server will use to
communicate, allowing clients to perform the actions stipulated by the specification.
Create a specification of the client/server protocol as a grammar. Also think about the
state of the server, and the state of the client (if it stores any).

4. Usability design. Sketch your user interface and its various screens and dialogs. Use
these sketches to explore alternatives quickly and to plan the structure and flow of
your interface. Sketching on paper is recommended. Turn in the sketches you decided
to go with for Milestone 2, along with commentary as needed to explain non-obvious
parts.

5. Concurrency strategy. You should argue that your design is free or race conditions
and deadlocks. Be specific about which data structures or design patterns you will use
to ensure thread safe behavior.

6. Testing strategy. Devise a strategy for testing your IM system. Describe what
automated tests you will use, and what manual tests you will perform. Since UI front-
end testing is often most easily done by hand, documentation of your strategy is
especially important. As you think about how to test your program, you are likely to
find that you want to revisit your code design (for example, to make a cleaner API to
permit unit testing independently of the GUI).

7. Implementation. As always, your code should be clear, well-organized, and usefully
documented. See the hints for further suggestions.

8. Testing. Execute your testing strategy, using JUnit and by performing manual tests of
the GUI. In your report, document the results of your manual tests.

9. Reflection. Each team member is to write a brief commentary describing what you
learned from this experience, with one paragraph each about:

�❍ Product. What was easy? What was hard? What was unexpected? What would
you do differently in designing the chat system if you were to do it again?

�❍ Team. How did you feel the group did? How did your team work? How was the
coding? How did you split the work?

�❍ Individual. How do you think you did, personally? What did you do in the
project? How do you feel about it?

Infrastructure

No initial code is provided for this project. However, two runner classes are provided with
4

main methods you should fill in:

● Running main.Client.main() with no command-line arguments must start an instance
of your GUI chat client.

● Running main.Server.main() with no command-line arguments must start an instance
of your chat server.

You should consider using packages other than main to organize your code.

Deliverables and Grading

There are four deadlines for this project.

For the first deadline (midnight, November 29), you will have a meeting with your TA, and
your deliverables are:

● the team contract;
● the conversation design;
● the client/server protocol;

This design deliverable should be submitted by committing one PDF to the root of your
project repository.

During lecture on November 30th you will meet with your project TA discuss your design
and client/server protocol.

For the second deadline (midnight, December 6), you will have another meeting with your
TA, and your deliverables are:

● concurrency strategy;
● UI sketches (paper sketches);
● the testing strategy;
● and a demo of some working portion of the project that demonstrates significant effort

towards understanding a critical or high-risk area of the design.

The code designs and testing strategy must be submitted by midnight on December 6 as one
PDF to the root of your repository. The demo will take place at the meeting with your TA.

Your demo might show, for example, a basic server that sends and receives messages but
5

without a GUI client. Or you might have a working basic GUI with no server backend but a
simple API for connecting to one. Talk to your TA beforehand if you are unsure about what is
sufficient.

You will meet with your project TA sometime Dec. 7-9. Be prepared to show UI sketches,
present your demo, and discuss your design.

On December 7th, the staff may or may not release an amendment to this project. This will
mean an additional requirement or feature to implement before the final deadline. When
designing your instant messaging system, watch out for designs that will make extensions
difficult.

For the third deadline (midnight, December 14), your deliverables are:

● the implementation;
● the tests;
● and the testing report.

The fourth and final deadline (midnight, December 15th) is the individual reflection.

The grading breakdown is as follows:

● 25% for the design, protocol, and usability design, and concurrency strategy
● 50% for initial demo and implementation
● 15% for testing strategy and testing
● 10% for team contract and reflections

Awards

The course staff will judge and award prizes to teams whose instant messaging systems
embody exemplary design and implementation.

You may optionally submit your project for prize consideration on Tuesday December
13. There will be some time slots during the day for your team to present your system, which
you can sign up for in advance. Your team will give a 5-minute presentation to the course
staff in which you demonstrate your system and describe its design. You must commit your
work (up to that point) to Subversion by 10 am on December 13th. You are not required to
give this presentation (but then you won't win anything, either). Everyone can continue to
work on the project until the final deadline, but only the work demonstrated in this

6

presentation will be considered for prizes.

Serious award contenders should consider going above and beyond the required specification
to implement their own extensions.

You might add standard instant messaging features like away messages, auto-replies, offline
messaging, password-protected accounts, user icons, graphical emoticons... or you might
integrate voice chat, a shared whiteboard, encrypted conversations with perfect forward
secrecy, or something as yet unheard of!

Hints
Defining a conversation. Part of your job is to determine what a conversation means. For
example, does a conversation have a name, and can other users join the conversation by
specifying the name? Is it like a chat room, that people can enter and exit? In that case, can
a conversation be empty (a chatroom can), waiting for users?

Or is a conversation more like a phone call, where a person "dials" another person? In that
case, can the receiving party deny the conversation?

However you define a conversation, remember to keep it simple for your first iteration. You
can always extend your program with interesting ideas if you have time left.

Designing a protocol. You must also devise a client/server protocol for this project. You
should strongly consider using a text-based protocol, which may be easier for testing and
debugging.

Services that use plaintext protocols — e.g. HTTP or SMTP — can talk to a human just as well
as another machine by using a client program that sends and receives characters. Think back
to the protocol used in telnet. You can run telnet by opening a command prompt and
typing telnet hostname port. The protocol is simple enough for humans to use and for
machines to pass messages to each other.

Handling multiple clients. Since instant messaging is useless without at least two people,
your server must be able to handle multiple clients connected at the same time. One
reasonable design approach is using one thread for reading input from each client but adds a
central state machine representing the state of the server (using one more thread, to which
each of the client threads pass messages through a shared queue).

7

http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/SMTP

Design for safe concurrency. In general, making an argument that an implementation is
free of concurrency bugs (like race conditions and deadlocks) is very difficult and error-prone.
The best strategy therefore is to design your program to allow a very simple argument, by
limiting your use of concurrency and especially avoiding shared state wherever possible. For
example, one approach is to use concurrency only for reading sockets, and to make the rest
of the design single-threaded.

And note that, even though user interfaces are concurrent by nature, Swing is not thread
safe. Understand what code will run in the main thread, threads you explicitly spin, or the
Swing event dispatching thread. Recommended reading: Threads and Swing.

Design for testability. To make it possible to write unit tests without having to open socket
connections and parse streams of responses, you should design your state machine(s) in such
a way that they can be driven directly by a unit test -- either by calling methods, or by
putting messages into a queue read by the state machine's thread.

Testing GUIs is particularly challenging. Follow good design practice and separate as much
functionality as possible into modules you can test using automated mechanisms. You should
maximize the amount of your system you can test with complete independence from any GUI.

Another useful testing technique is the idea of a stub (method stubs, mock objects). To test
one component of your system in isolation, you can create trivial implementations of the
other components with which it is coupled. This might allow you to test your server without
opening network connections, or to test your client backend with automated rather than GUI
tests.

Implementation. Develop in iterations. Focus on important modules first, and defer making
cosmetic improvements to your user interface until after all the code is well-organized and
thoroughly tested. Make use of assertions.

8

http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://en.wikipedia.org/wiki/Method_stub
http://en.wikipedia.org/wiki/Mock_object

MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

