
6.005 Software Construction
Fall 2011
Prof. Rob Miller

L14: Graphical User Interfaces

Today

o View tree
o Listener pattern
o Model-view-controller pattern
o Background threads

Required reading (from the Java Tutorial)

 A Visual Guide to Swing Components

 Using Swing Components, specifically:
o Using Top-Level Containers
o Using Text Components
o How to Use Buttons
o How to Use Lists
o How to Make Frames

 Laying Out Components Within a Container, specifically:
o How to Use GroupLayout

 Writing Event Listeners, specifically:
o Introduction to Event Listeners

 Concurrency in Swing (up to The Event Dispatch Thread)

Today we’ll take a high-level look at the software architecture of GUI software, focusing on the
design patterns that have proven most useful. Three of the most important patterns are:

 the model-view-controller pattern, which has evolved somewhat since its original
formulation in the early 80’s;

 the view tree, which is a central feature in the architecture of every important GUI toolkit;

 the listener pattern, which is essential to decoupling the model from the view and
controller.

View Tree

Graphical user interfaces are composed of view objects, each of which occupies a certain portion of
the screen, generally a rectangular area called its bounding box. The view concept goes by a variety of
names in various UI toolkits. In Java Swing, they’re JComponents; in HTML, they’re elements or
nodes; in other toolkits, they may be called widgets, controls, or interactors.

These lecture notes have been collaboratively authored, with contributions from Saman Amarasinghe, Srini Devadas, Michael Ernst, John
Guttag, Daniel Jackson, Rob Miller, Martin Rinard, and Armando Solar-Lezama. Copyright held by the authors.

1

http://download.oracle.com/javase/tutorial/ui/features/components.html
http://download.oracle.com/javase/tutorial/uiswing/components/index.html
http://download.oracle.com/javase/tutorial/uiswing/components/toplevel.html
http://download.oracle.com/javase/tutorial/uiswing/components/text.html
http://download.oracle.com/javase/tutorial/uiswing/components/button.html
http://download.oracle.com/javase/tutorial/uiswing/components/list.html
http://download.oracle.com/javase/tutorial/uiswing/components/frame.html
http://download.oracle.com/javase/tutorial/uiswing/layout/index.html
http://download.oracle.com/javase/tutorial/uiswing/layout/group.html
http://download.oracle.com/javase/tutorial/uiswing/events/index.html
http://download.oracle.com/javase/tutorial/uiswing/events/intro.html
http://download.oracle.com/javase/tutorial/uiswing/concurrency/initial.html

This leads to the first important pattern we’ll talk about today: the view tree. Views are arranged into
a hierarchy of containment, in which some views contain other views. Typical containers are
windows, panels, and toolbars. The view tree is not just an arbitrary hierarchy, but is in fact a spatial
one: child views are nested inside their parent’s bounding box.

 View hierarchy is an example of the Composite pattern

 Primitive views don’t contain other views

• button, tree widget, textbox, thumbnail, etc.

 Composite views are used for grouping or modifying other views

• JSplitPane displays two views side-by-side with an adjustable splitter

• JScrollPane displays only part of a view, with adjustable scrollbars

scrolling pane
(JSplitPane)

window (JFrame)

tree widget
(JTree)

splitter bar
(JSplitPane)

button (JButton)

2

 Key idea

 primitives and composites implement a common interface (JComponent)

 containers can hold any JComponent: both primitives and other containers

 Composite pattern gives rise to a tree, with primitive views at the leaves and containers
at the internal nodes

How the View Tree is Used

Virtually every GUI system has some kind of view tree. The view tree is a powerful structuring idea,
which is loaded with responsibilities in a typical GUI:

Output. Views are responsible for displaying themselves, and the view hierarchy directs the display
process. GUIs change their output by mutating the view tree. For example, e.g., to show a new set
of photos, the current Thumbnails are removed from the tree and a new set of Thumbnails is added
in their place. A redraw algorithm built into the GUI toolkit automatically redraws the affected parts
of the subtree. In Java Swing, this is done with the Interpreter pattern: every view in the tree has a
paint() method that knows how to draw itself on the screen. The repaint process is driven by calling
paint() on the root of the tree.

Input. Views can have input handlers, and the view tree controls how mouse and keyboard input is
processed. More on this in a moment.

Layout. The view tree controls how the views are laid out on the screen, i.e. how their bounding
boxes are assigned. An automatic layout algorithm automatically calculates positions and sizes of
views. Specialized composites (like JSplitPane, JScrollPane) do layout themselves. More generic
composites (JPanel, JFrame) delegate layout decisions to a layout manager (e.g. GroupLayout,
BorderLayout, BoxLayout, ...)

Input Handling

Input is handled somewhat differently in GUIs than we’ve been handling it in parsers and servers. In
those systems, we’ve seen a single parser that peels apart the input and decides how to direct it to
different modules of the program:

 while (true) {

 read mouse click

 if (clicked on New Album) doNewAlbum();

 else if (clicked on Delete Album) doDeleteAlbum();

 else if (clicked on Add Photos) doAddPhotos();

 ...

 else if (clicked on an album in the tree) doSelectAlbum();

 else if (clicked on +/- button in the tree) doToggleTreeExpansion();

 else if (clicked on a thumbnail) doToggleThumbnailSelection();

 ...

3

 }

In a GUI, we don’t directly write this kind of method, because it’s not modular – it mixes up
responsibilities for button panel, album tree, and thumbnails all in one place. Instead, GUIs exploit
the spatial separation provided by the view tree to provide functional separation as well. Mouse
clicks and keyboard events are distributed around the view tree, depending on where they occur.

GUI input event handling is an instance of the Listener pattern (also known as Publish-Subscribe). In
the Listener pattern:

 an event source generates a stream of discrete events, which correspond to state transitions
in the source.

 one or more listeners register interest (subscribe) to the stream of events, providing a
function to be called when a new event occurs.

In this case, the mouse is the event source, and the events are changes in the state of the mouse: its
x,y position or the state of its buttons (whether they are pressed or released). Events often include
additional information about the transition (such as the x,y position of mouse), which might be
bundled into an event object or passed as parameters.

When an event occurs, the event source distributes it to all subscribed listeners, by calling their
callback methods.

 Control flow through a graphical user interface

 A top-level event loop reads input from mouse and keyboard

 For each input event, it finds the right view in the hierarchy (by looking at the x,y
position of the mouse) and sends the event to that view’s listeners

 Listener does its thing (e.g. modifying the view hierarchy) and returns immediately
to the event loop

 Higher-level GUI input events

 JButton sends an action event when it is pressed (whether by the mouse or by the
keyboard)

 JTree sends a selection event when the selected element changes (whether by mouse
or by keyboard)

 JTextbox sends change events when the text inside it changes for any reason

Separating Frontend from Backend

We’ve seen how GUI programs are structured around a view tree, and how input events are handled
by attaching listeners to views. This is the start of a separation of concerns – output handled by views,
and input handled by listeners.

But we’re still missing the application itself – the backend that represents the data and logic that the
user interface is showing and editing. (Why do we want to separate this from the user interface?)

The model-view-controller pattern has this separation of concerns as its primary goal. It separates
the user interface frontend from the application backend, by putting backend code into the model
and frontend code into the view and controller. MVC also separates input from output; the
controller is supposed to handle input, and the view is supposed to handle output.

4

The model is responsible for maintaining application-specific data and providing access to that data.
Models are often mutable, and they provide methods for changing the state safely, preserving its
representation invariants. OK, all mutable objects do that. But a model must also notify its clients
when there are changes to its data, so that dependent views can update their displays, and dependent
controllers can respond appropriately. Models do this notification using the listener pattern, in
which interested views and controllers register themselves as listeners for change events generated by
the model.

View objects are responsible for output. A view usually occupies some chunk of the screen, usually a
rectangular area. Basically, the view queries the model for data and draws the data on the screen. It
listens for changes from the model so that it can update the screen to reflect those changes.

Finally, the controller handles the input. It receives keyboard and mouse events, and instructs the
model to change accordingly.

A simple example of the MVC pattern is a text field widget (this is Java Swing’s text widget). Its
model is a mutable string of characters. The view is an object that draws the text on the screen
(usually with a rectangle around it to indicate that it’s an editable text field). The controller is an
object that receives keystrokes typed by the user and inserts them in the string.

5

Instances of the MVC pattern appear at many scales in GUI software. At a higher level, this text
field might be part of a view (like the address book editor), with a different controller listening to it
(for text-changed events), for a different model (like the address book). But when you drill down to
a lower level, the text field itself is an instance of MVC.

Here’s an example from a photo browsing application:

And here’s a larger example, in which the view is a filesystem browser (like the Mac Finder or
Windows Explorer), the model is the disk filesystem, and the controller is an input handler that
translates the user’s keystrokes and mouse clicks into operations on the model and view.

6

The separation of model and view has several benefits. First, it allows the interface to have multiple
views showing the same application data. For example, a database field might be shown in a table
and in an editable form at the same time. Second, it allows views and models to be reused in other
applications. The MVC pattern enables the creation of user interface toolkits, which are libraries of
reusable views. Java Swing is such a toolkit. You can easily reuse view classes from this library (like
JButton and JTree) while plugging your own models into them.

Risks of Event-Based Programming

Control flow through an event-based program is not simple. You can’t follow the control just by
studying the source code, because control flow depends on listener relationships established at
runtime, and input events happening nondeterministically. Careful discipline about who listens to
what (like the model-view-controller pattern) is essential for limiting the complexity of control flow
and understanding how to debug your program.

The hidden control flow leads to some unexpected pitfalls, which is the next thing we’ll look at in
this lecture.

First, a bit of notation. The diagram below is a sequence diagram, which is useful for depicting
control flow. Time flows downward. Vertical time lines represent objects, such as an event source
or a listener. Horizontal arrows show method calls and returns passing control between objects.
Finally, dark rectangles show when a method is active (i.e., on the call stack).

Here’s the conventional interaction that occurs in the listener pattern. A client uses addListener (or
a similar method) registers a listener to receive notifications from the event source. Then, when the
source changes state (usually due to some other object calling a mutator method), it fires an event to
all its registered listeners by calling changeEvent on them.

Pitfall #1: Listener Calls Observer Methods

This leads to the first pitfall. The listener often reacts to the change in the model by pulling more
data from the source using observer method calls. For example, when a textbox gets a change event
from its model, it needs to call getText() to get the new text and display it. So calls to observer() may
occur while mutator() is still in progress.

7

Why is this a potential problem? Because the mutator() method hasn’t returned yet, it’s possible that
the source data structure is not yet in a consistent state (i.e. not yet satisfying its rep invariant), which
might cause the observer() method to return garbage (or worse, throw an exception).

When the source calls changeEvent() on its listeners, it is giving up control – in much the same way
that a method gives up control when it returns to its caller, or that a thread gives up control when its
timeslice is over and another thread takes control of the processor. In fact, what we’re seeing here is
a concurrency problem!

Here’s some pseudocode that demonstrates this pitfall:

class Filesystem {

 private Map<File, List<File>> cache;

 public List<File> getContents(File folder) {

 ... check for folder in cache, else read it from disk and update

cache

 }

 public void deleteContents(File folder) {

 for (File f: getContents(folder)) {

 f.delete();

 fireChangeEvent(f, REMOVED); // notify listeners that f was

deleted

 }

 cache.remove(folder); // cache is no longer valid for this folder

 }

}

Filesystem is a model class that represents a disk filesystem. It has an observer method
getContents(), which returns the files in a folder, and a mutator method deleteContents(), which
deletes all the files in a folder. To minimize disk traffic, it also maintains a cache mapping folder
names to their files, so getContents() doesn’t always have to hit the disk.

Now suppose a filesystem browser view is showing the files from a folder (which it obtained with
getContents()) and then deleteContents() is invoked. One by one the files are removed from the
folder on disk, and change events are sent back to the view – but if the view is calling getContents()
to update itself, it will always see the stale copy in the cache. The cache isn’t invalidated until the
end of deleteContents(), which is too late for the view.

The essential problem is that this class has a rep invariant (that the cache correctly reflects the state
of the filesystem) that doesn’t hold when the view calls getContents(). It’s quite normal, even
inevitable, for invariants to be temporarily unsatisfied while a mutator method is executing. In this
case, event-passing has created an opportunity for a client to get control during that period of
inconsistency, and see buggy results.

So an event source has to make sure that it’s consistent --- i.e., that it has established all of its
internal invariants – before it starts issuing notifications to listeners. It’s often best to delay firing off
events until the end of the method that caused the modification. Don’t fire events while you’re in
the midst of making changes to the model’s data structure. This example could be fixed either by

8

batching up events until the end of deleteContents(), or by invalidating the cache before starting to
remove files, so that the invariant is never unsatisfied.

9

Pitfall #2: Listener Calls Mutator Methods

Another pitfall occurs when a listener responds to an update message by calling the mutator on the
model. Why would it do that? It might, for instance, be trying to keep the model within some legal
range. Or two models could be listening to each other in order to keep their state synchronized. So
recursive calls to mutator() may occur while mutator() is still in progress. Obviously, this could lead
to infinite regress if you’re not careful.

Here’s a concrete example of this pitfall: a numeric slider and a textbox, which you want to
synchronize with each other so that the user can change the value using either widget:

So both widgets end up listening to each other’s changes, and an infinite regress might result.

A good practice for models to protect themselves against this regress is to only send update events if
a change actually occurs; if a client calls mutator() but it has no actual effect on the model, then no
events should be sent.

Pitfall #3: Listener Removes Itself

Another potential pitfall is a listener that unregisters itself with removeListener. For example,
suppose we have a model of stock market data, and a listener that’s watching for a certain stock to
reach a certain price. Once the stock hits the target price, the listener does its thing (e.g., popping up
a window to notify the user, or executing a trade); but then it’s no longer needed, so it unregisters
itself from the model.

10

This is a problem if the model is iterating naively over its collection of listeners, and the collection is
allowed to change in the midst of the iteration. Here’s some concrete code showing the problem –
the listeners are stored as a simple fixed-size array. Trace through and see what happens if the ith
listener calls removeListener() on itself from its changeEvent() method:

class Source {

 private Listener[] listeners;

 private int size;

 public void removeListener(Listener l) {

 for (int i = 0; i < size; ++i) {

 if (listeners[i] == l) {

 listeners[i] = listeners[size-1]; --size;

 }

 }

 }

 private void fireChangeEvent(...) {

 for (int i = 0; i < size; ++i) {

 listeners[i].changeEvent(...);

 }

 }

}

Most Java collections (Lists, Sets) have the same problem. If you’re lucky, Java will throw a
ConcurrentModificationException when you mutate a collection that you’re currently iterating. If
you’re not, your list will simply be quietly corrupted.

It’s safer to iterate over a copy of the listener list. Since one-shot listeners are not particularly
common, however, this imposes an extra cost on every event broadcast. So the ideal solution is to
copy the listener list only when necessary – i.e., when a register or unregister occurs in the midst of
event dispatch. javax.swing.EventListenerList works this way.

Background Processing in Graphical User Interfaces

The last major topic for today connects back to concurrency.

First, some motivation. Why do we need to do background processing in graphical user interfaces?
Even though computer systems are steadily getting faster, we’re also asking them to do more. Many
programs need to do operations that may take some time: retrieving URLs over the network, running
database queries, scanning a filesystem, doing complex calculations, etc.

But graphical user interfaces are event-driven programs, which means (generally speaking)
everything is triggered by an input event handler. For example, in a web browser, clicking a
hyperlink starts loading a new web page. But if the click handler is written so that it actually retrieves
the web page itself, then the web browser will be very painful to use. Why? Because its interface will
appear to freeze up until the click handler finishes retrieving the web page and returns to the event
loop. Here’s why.

11

This happens because input handling and screen repainting is all handled from a single thread. That
thread (called the event handling thread) has a loop that reads an input event from the queue and
dispatches it to listeners on the view hierarchy. When there are no input events left to process, it
repaints the screen. But if an input handler you’ve written delays returning to this loop – because it’s
blocking on a network read, or because it’s searching for the solution to a big Sudoku puzzle – then
input events stop being handled, and the screen stops updating. So long tasks need to run in the
background.

 In Java, the event-handling thread is distinct from the main thread of the program (see below). It is
started automatically when a user interface object is created. As a result, every Java GUI program is
automatically multithreaded. Many programmers don’t notice, because the main thread typically
doesn’t do much in a GUI program – it starts creation of the view, and then the main thread just
exits, leaving only the event-handling thread to do the main work of the program.

The fact that Swing programs are multithreaded by default creates risks. There’s very often a shared
mutable datatype in your GUI: the model. If you use background threads to modify the model
without blocking the event-handling thread, then you have to make sure your data structure is
threadsafe.

But another important shared mutable datatype in your GUI is the view tree. Java Swing’s view
tree is not threadsafe. In general, you cannot safely call methods on a Swing object from anywhere
but the event-handling thread.

 The view tree is a big meatball of shared state

 And there’s no lock protecting it at all

 It’s confined (by specification) to the event-handling thread, so it’s ok to access view
objects from the event-handling thread (i.e., in response to input events)

 But the Swing specification forbids touching – reading or writing – any JComponent
objects from a different thread

• See “Threads and Swing”,
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html

• The truth is that Swing’s implementation does have one big lock
(Component.getTreeLock()) but only some Swing methods use it (e.g.
layout)

 Solution: the event queue is also a message-passing queue

 To access or update Swing objects from a different thread, you can put a message
(represented as a Runnable object) on the event queue

SwingUtilities.invokeLater(new Runnable() {

 public void run() {

content.add(thumbnail);

...

12

}

});

 The event loop handles one of these pseudo-events by calling run()

Summary

 View hierarchy

 Organizes the screen into a tree of nested rectangles

 Used for dispatching input as well as displaying output

 Uses the Composite pattern: compound views (windows, panels) can be treated just
like primitive views (buttons, labels)

 Publish-subscribe pattern

 An event source sends a stream of events to registered listeners

 Decouples the source from the identity of the listeners

 Beware of pitfalls

 MVC pattern

 Separation of responsibilities: model=data, view=output, controller=input

 Decouples view from model

 Background threads

 Swing view tree is confined to the event-handling thread

 To read and write the tree from another thread, use the event loop as a message-
passing queue

13

MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

