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L6: Abstract Data Types 

Today 

o Abstract data types 
o Representation independence 
o Rep exposure 
o Abstraction function & rep invariant 

Required Reading (from the Java Tutorial) 

o Interfaces 
o Collection Interfaces (focus on Set, List, and Map) 
o Collection Implementations (again, Set, List, and Map, but also Wrapper and Convenience) 

In this lecture, we look at a powerful idea, abstract data types, which enable us to separate how we 
use a data structure in a program from the particular form of the data structure itself. Abstract data 
types address a particularly dangerous dependence, that of a client of a type on the type’s 
representation. We’ll see why this is dangerous and how it can be avoided. We’ll also discuss the 
classification of operations, and some principles of good design for abstract data types. 

What Abstraction Means 

Abstract data types are an instance of a general principle in software engineering, which goes by 
many names with slightly different shades of meaning.  Here are some of the names that are used for 
this idea: 

 Abstraction.  Omitting or hiding low-level details with a simpler, higher-level idea. 

 Modularity. Dividing up a system into components or modules, each of which can be 
designed, implemented, tested, reasoned about, and reused separately from the rest of the 
system. 

 Encapsulation. Building walls around a module (a hard shell or capsule) so that the module 
is responsible for its own internal behavior, and bugs in other parts of the system can’t 
damage its integrity.  

 Information hiding.  Hiding details of a module’s implementation from the rest of the 
system, so that the those details can be changed later without changing the rest of the 
system. 

 Separation of concerns.  Making a feature (or ―concern‖) the responsibility of a single 
module, rather than spreading it across multiple modules.  

As a software engineer, you should know these terms, because you will run into them frequently.  
The fundamental purpose of all of these ideas is to help achieve the three important properties that 
we care about in 6.005: safety from bugs, ease of understanding, and readiness for change. 

User-Defined Types 

In the early days of computing, a programming language came with built-in types (such as integers, 
booleans, strings, etc.) and built-in procedures, eg. for input and output. Users could define their own 
procedures: that’s how large programs were built. 

______________ 
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A major advance in software development was the idea of abstract types: that one could design a 
programming language to allow user-defined types too. This idea came out of the work of many 
researchers, notably Dahl (the inventor of the Simula language), Hoare (who developed many of the 
techniques we now use to reason about abstract types), Parnas (who coined the term information hiding 
and first articulated the idea of organizing program modules around the secrets they encapsulated), 
and here at MIT, Barbara Liskov and John Guttag, who did seminal work in the specification of 
abstract types, and in programming language support for them -- and developed 6170, the 
predecessor to 6.005.  In 2010, Barbara Liskov earned the Turing Award, computer science’s 
equivalent of the Nobel Prize, for her work on abstract types. 

The key idea of data abstraction is that a type is characterized by the operations you can perform on 
it. A number is something you can add and multiply; a string is something you can concatenate and 
take substrings of; a boolean is something you can negate, and so on. In a sense, users could already 
define their own types in early programming languages: you could create a record type date, for 
example, with integer fields for day, month and year. But what made abstract types new and different 
was the focus on operations: the user of the type would not need to worry about how its values were 
actually stored, in the same way that a programmer can ignore how the compiler actually stores 
integers. All that matters is the operations. 

In Java, as in many modern programming languages, the separation between built-in types and user-
defined types is a bit blurry. The classes in java.lang, such as Integer and Boolean are built-in; 
whether you regard all the collections of java.util as built-in is less clear (and not very important 
anyway). Java complicates the issue by having primitive types that are not objects. The set of these 
types, such as int and boolean, cannot be extended by the user. 

Classifying Types and Operations 

Types, whether built-in or user-defined, can be classified as mutable or immutable. The objects of a 
mutable type can be changed: that is, they provide operations which when executed cause the results 
of other operations on the same object to give different results. So Date is mutable, because you 

can call setMonth and observe the change with the getMonth operation. But String is 

immutable, because its operations create new string objects rather than changing existing ones. 
Sometimes a type will be provided in two forms, a mutable and an immutable form. 
StringBuilder, for example, is a mutable version of String (although the two are certainly not 

the same Java type, and are not interchangeable). 

The operations of an abstract type are classified as follows: 

 Creators create new objects of the type. A constructor may take an object as an argument, but 
not an object of the type being constructed. 

 Producers create new objects from old objects of the type. The concat method of String, 

for example, is a producer: it takes two strings and produces a new one representing their 
concatenation. 

 Mutators change objects. The add method of List, for example, mutates a list by adding an 

element to the end. 

 Observers take objects of the abstract type and return objects of a different type. The size 

method of List, for example, returns an integer. 

 

We can summarize these distinctions schematically like this: 

creator: t* → T  
producer: T

+
,t*  → T  

mutator: T
+
,t*  → void 
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observer: T
+
,t*  → t 

 
These show informally the shape of the signatures of operations in the various classes. Each T is the 
abstract type itself; each t is some other type. In general, when a type is shown on the left, it can 
occur more than once. For example, a producer may take two values of the abstract type; string 
concat takes two strings. The occurrences of t on the left may also be omitted; some observers take 
no non-abstract arguments (e.g., size), and some take several. 

 

Here are some examples of abstract data types, along with their operations: 

 

int is Java’s primitive integer type. int is immutable, so it has no mutators. 

creators: the numeric literals 0, 1, 2,  

producers: arithmetic operators +, −, ×, ÷ 
observers: comparison operators ==, !=, <, >  
mutators: none (it’s immutable) 

 

List is Java’s list interface. List is mutable.  List is also an interface, which means that other 
classes provide the actual implementation of the data type.  These classes include ArrayList 
and Linked List. 

 
creators: ArrayList constructor, LinkedList constructor, Collections.singletonList() 
producers: Collections.unmodifiableList() 
observers: size(), get() 
mutators: add(), remove(), addAll(), Collections.sort() 

 

String is Java’s string interface.  String is immutable. 
 

creators: String(), String(char[]) constructors 
producers: concat(), substring(), toUpperCase() 
observers: length(), charAt() 
mutators: none (it’s immutable) 

 

This classification gives some useful terminology, but it’s not perfect. In complicated data types, 
there may be an operation that is both a producer and a mutator, for example. Some people use the 
term producer to imply that no mutation occurs. 

Designing an Abstract Type 

Designing an abstract type involves choosing good operations and determining how they should 
behave. A few rules of thumb. 

It’s better to have a few, simple operations that can be combined in powerful ways than lots of 
complex operations. 

Each operation should have a well-defined purpose, and should have a coherent behavior rather than 
a panoply of special cases. We probably shouldn’t add a sum operation to List, for example. It 
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might help clients who work with lists of Integers, but what about lists of Strings? Or nested 

lists? All these special cases would make sum a hard operation to understand and use. 

The set of operations should be adequate; there must be enough to do the kinds of computations 
clients are likely to want to do. A good test is to check that every property of an object of the type 
can be extracted. For example, if there were no get operation, we would not be able to find out 

what the elements of a list are. Basic information should not be inordinately difficult to obtain. The 
size method is not strictly necessary for List, because we could apply get on increasing indices 

until we get a failure, but this is inefficient and inconvenient. 

The type may be generic: a list or a set, or a graph, for example. Or it may be domain-specific: a 
street map, an employee database, a phone book, etc. But it should not mix generic and domain-
specific features. A Deck type intended to represent a sequence of playing cards shouldn’t have a 

generic add method that accepts arbitrary objects (like integers or strings). Conversely, it wouldn’t 

make sense to put a domain-specific method like dealCards into the generic type List.  

Representation Independence 

A good abstract data type should be representation independent. This means that the use of an abstract 
type is independent of its representation (the actual data structure or data fields used to implement 
it), so that changes in representation have no effect on code outside the abstract type itself. For 
example, the operations offered by List are independent of whether the list is represented as a 

linked list or as an array. 

You won’t be able to change the representation of an ADT at all unless its operations are fully 
specified with preconditions (requires), postconditions (effects), and frame conditions (modifies), so 
that clients know what to depend on, and you know what you can safely change. 

Preserving Invariants 

Finally, and perhaps most important, a good abstract data type should preserve its own invariants. An 
invariant is a property of a program that is always true. Immutability is one crucial invariant that we’ve 
already encountered: once created, an immutable object should always represent the same value, for 
its entire lifetime. 

When an ADT preserves its own invariants, reasoning about the code becomes much easier. If you 
can count on the fact that Strings never change, you can rule out that possibility when you’re 

debugging code that uses Strings — or when you’re trying to establish an invariant for another 

ADT. Contrast that with a string class that guarantees that it will be immutable only if its clients 
promise not to change it. Then you’d have to check all the places in the code where the string might 
be used. 

Immutability 

We’ll see many interesting invariants. Let’s focus on immutability for now. Here’s a specific example: 

public class Transaction { 

    public int amount; 

    public Calendar date; 

     

    public Transaction(int amount, Date date) { 

        this.amount = amount; 

        this.date = date; 

    } 

} 
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How do we guarantee that Transaction objects are immutable — that, once a transaction is 

created, its date and amount can never be changed? 

The first threat to immutability comes from the fact that clients can (in fact, must!) directly access its 
fields. So nothing’s stopping us from writing code like this: 

Transaction t = new Transaction(10, new Calendar ());  

t.amount += 10; 

This is a trivial example of representation exposure, meaning that code outside the class can modify the 
representation directly. Rep exposure like this threatens not only invariants, but also representation 
independence. We can’t change the implementation of Transaction without affecting all the 

clients who are directly accessing those fields. 

Fortunately, Java gives us language mechanisms to deal with this kind of rep exposure: 

public class Transaction { 

    private final int amount; 

    private final Calendar date; 

     

    public Transaction(int amount, Calendar date) { 

        this.amount = amount; 

        this.date = date; 

    } 

     

    public int getAmount() { 

        return amount; 

    } 

     

    public Calendar getDate() { 

        return date; 

    } 

} 

The private and public keywords indicate which fields and methods are accessible only within the class 
and which can be accessed from outside the class.  The final keyword also helps by guaranteeing that 
the fields of this immutable type won’t be reassigned after the object is constructed. 

But that’s not the end of the story: the rep is still exposed! Consider this (perfectly reasonable) client 
code that uses Transaction: 

    /** @return a transaction of same amount as t, one month later */ 

    public static Transaction makeNextPayment(Transaction t) { 

        Calendar d = t.getDate();  

        d.add(Calendar.MONTH, 1); 

        return new Transaction (t.getAmount(), d); 

    } 

makeNextPayment takes a transaction and should return another transaction for the same amount 

but dated a month later. The makeNextPayment method might be part of a system that schedules 

recurring payments. 
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What’s the problem here? The getDate call returns a reference to the same calendar object 

referenced by transaction t. So when the calendar object is mutated by add(), this affects the date in 

t as well: 

 

Transaction’s immutability invariant has been broken. The problem is that Transaction 

leaked out a reference to a mutable object that its invariant depended on. We exposed the rep, in such a 
way that Transaction can no longer guarantee that its objects are immutable. Perfectly reasonable 

client code created a subtle bug. 

We can patch this kind of rep exposure by defensive copying: making a copy of a mutable object to avoid 
leaking out references to the rep. Here’s the code: 

    public Calendar getDate() { 

        return (Calendar)date.clone(); 

    } 

clone() is probably the best way to do this with Calendar (despite the unfortunate problems with 
clone() in general – see Josh Bloch, Effective Java, item 10).  Other classes offer a copy constructor, 
like StringBuilder(String).  

But we’re not done yet! There’s still rep exposure. Consider this (again perfectly reasonable) client 
code: 

 

    /** @return a list of 12 monthly payments of identical amounts */ 

    public static List<Transaction> makeYearOfPayments (int amount) { 

        List<Transaction> list = new ArrayList<Transaction> ();  

        Calendar date = new GregorianCalendar ();  

        for (int i=0; i < 12; i++) { 

            list.add (new Transaction (amount, date)); 

            date.add (Calendar.MONTH, 1); 

        }  

        return list; 

    } 
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This code intends to advance a single Calendar object through 12 months, creating a transaction for 
each date. But notice that the constructor of Transaction saves the reference that was passed in, 

so all 12 transaction objects end up pointing to the same date: 

 
 

Again, the immutability of Transaction has been violated. We can fix this problem too by 

judicious defensive copying, this time in the constructor: 

    public Transaction(int amount, Calendar date) { 

        this.amount = amount; 

        this.date = (Calendar)date.clone(); 

    } 

In general, you should carefully inspect the argument types and return types of all your ADT 
operations. If any of the types are mutable, make sure your implementation doesn’t return direct 
references to its representation. 

You may object that this seems wasteful. Why make all these copies of dates? Why can’t we just solve 
this problem by careful specification: 

    /** 

     * ... 

     * @param date Date of transaction.  Caller must never mutate date again! 

     */ 

    public Transaction(int amount, Calendar date) { ... 

This approach is sometimes taken when there isn’t any other reasonable alternative – for example, 
when the mutable object is too large to copy efficiently. But the cost in your ability to reason about 
the program, and your ability to avoid bugs, is enormous. In the absence of compelling arguments to 
the contrary, it’s almost always worth it for an abstract data type to guarantee its own invariants, and 
preventing rep exposure is essential to that. 

An even better solution is to prefer immutable types. If we had used an immutable date object 
instead of the mutable Calendar, then we would have ended this section after talking about 

public and private. No rep exposure would have been possible. 

The Java Collections classes offer an interesting compromise: immutable wrappers.  
Collections.unmodifiableList() takes a (mutable) List and wraps it with an object that looks like a List, 
but whose mutators are disabled – set(), add(), remove() throw exceptions.  So you can construct a 
list using mutators, then seal it up in an unmodifiable wrapper (and throw away your reference to the 
original mutable list), and get an immutable list.  The downside here is that you get immutability at 
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runtime, but not at compile time – Java won’t warn you at compile time if you try to sort() this 
unmodifiable list.  You’ll just get an exception at runtime. 

How to establish invariants 

An invariant is a property that is true for the entire program – which in the case of an invariant about 
an object, reduces to the entire lifetime of the object.  

If the object is a state machine, then we need to: 

- establish invariant in the initial state 
- ensure that all state transitions preserve the invariant 

So your creators and producers must establish the invariant for new instances, and all mutators (and 
observers, too, but particularly mutators) must preserve it. 

Immutable types are simpler, because they have only one state to reason about. 

The risk of rep exposure makes the situation more complicated.  So the full rule for proving 
invariants is: 
 

Structural induction: If an invariant of an abstract data type is  

(1) established by creators;  

(2) preserved by producers, mutators, and observers;  

and (3) no rep exposure occurs,  

then the invariant is true of all instances of the abstract data type. 

 

Rep Invariant and Abstraction Function 

We now take a deeper look at the theory underlying abstract data types. This theory is not only 
elegant and interesting in its own right; it also has immediate practical application to the design and 
implementation of abstract types. If you understand the theory deeply, you’ll be able to build better 
abstract types, and will be less likely to fall into subtle traps. 

In thinking about an abstract type, it helps to consider the relationship between two spaces of values. 

The space of rep or representation values consists of the values of the actual implementation entities. In 
simple cases, an abstract type will be implemented as a single object, but more commonly a small 
network of objects is needed, so this value is actually often something rather complicated. For now, 
though, it will suffice to view it simply as a mathematical value. 

The space of abstract values consists of the values that the type is designed to support. These are a 
figment of our imagination. They’re platonic entities that don’t exist as described, but they are the 
way we want to view the elements of the abstract type, as clients of the type. For example, an abstract 
type for unbounded integers might have the mathematical integers as its abstract value space; the fact 
that it might be implemented as an array of primitive (bounded) integers, say, is not relevant to the 
user of the type. 

Now of course the implementor of the abstract type must be interested in the representation values, 
since it is the implementor’s job to achieve the illusion of the abstract value space using the rep value 
space. 

8



Suppose, for example, that we choose to use a string to represent a set of characters. Then these 
form our two value spaces. We can show the two value spaces graphically, with an arc from a rep 
value to the abstract value it represents: 

 

There are several things to note about this graph: 

 Every abstract value is mapped to. The purpose of implementing the abstract type is to 
support operations on abstract values. Presumably, then, we will need to be able to create 
and manipulate all possible abstract values, and they must therefore be representable. 

 Some abstract values are mapped to by more than one rep value. This happens because the 
representation isn’t a tight encoding. There’s more than one way to represent an unordered 
set of characters as a string. 

Not all rep values are mapped. In this case, the string "abbc" is not mapped. If the type of threp is 

nontrivial, it will not make sense to give an interpretation for all rep values. A doubly-linked list 
representation, for example, can be twisted into all kinds of pretzel configurations that won’t 
correspond to simple sequences, and for which we won’t want to write special cases in the code. Or 
sometimes we will want to impose certain properties on the rep to make the code of the operations 
more efficient or easier to write. In this case, we have decided that the array should not contain 
duplicates. This will allow us to terminate the remove method when we hit the first instance of a 

particular character, since we know there can be at most one. 

In practice, we can only illustrate a few elements of the two spaces and their relationships; the graph 
as a whole is infinite. So we describe it by giving two things: 

An abstraction function that maps rep values to the abstract values they represent:  

AF : R → A 

The arcs in the diagram show the abstraction function. In the terminology of functions, the 
properties we discussed above can be expressed by saying that the function is onto, not necessarily 
one-to-one, and often partial. 

A rep invariant that maps rep values to boolean:  

RI : R → boolean 

For a rep value r, RI r is true if and only if r is mapped by AF. In other words, RI tells us whether a 
given rep value is well-formed. Alternatively, you can think of RI as a set: it’s the subset of rep values 
on which AF is defined. 

A common confusion students have about abstraction functions and rep invariants is that they 
imagine that they are determined by the choice of rep and abstract value spaces, or even by the 
abstract value space alone. If this were the case, they would be of little use, since they would be 
saying something redundant that’s already available elsewhere. 
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It’s easy to see why the abstract value space alone doesn’t determine AF or RI: there can be several 
representations for the same abstract type. A set of characters could equally be represented as a 
string, as above, or as a bit vector, with one bit for each possible character. Clearly we need two 
separate functions to map these two different rep value spaces. 

It’s less obvious why the choice of both spaces doesn’t determine AF and RI. The key point is that 
defining a type for the rep, and thus choosing the values for the space of rep values, does not 
determine which of the rep values will be deemed to be legal, and of those that are legal, how they 
will be interpreted. Rather than deciding, as we did above, that the strings have no duplicates, we 
could instead allow duplicates, but at the same time require that the characters be sorted, appearing in 
nondecreasing order. This would allow us to perform a binary search on the string and thus check 
membership in logarithmic rather than linear time. Same rep value space — different rep invariant. 

Even with the same type for the rep value space and the same rep invariant RI, we might still have 
different interpretations AF. Suppose RI admits any string of characters. Then we could define AF, 
as above, to interpret the array’s elements as the elements of the set. But there’s no a priori reason to 
let the rep decide the interpretation. Perhaps we’ll interpret consecutive pairs of characters as 
subranges, so that the string "acgg" represents the set {a,b,c,g}. 

The essential point is that designing an abstract type means not only choosing the two spaces — the 
abstract value space for the specification and the rep value space for the implementation — but also 
deciding what rep values to use and how to interpret them. 

Example: Rational Numbers 

Here’s an example of an abstract data type for rational numbers.  Look closely at its rep invariant and 
abstraction function.  

 
public class RatNum { 

    private final int numer; 

    private final int denom; 

 

    // Rep invariant: 

    //   denom > 0 

    //   numer/denom is in reduced form 

 

    // Abstraction Function: 

    //   represents the rational number numer / denom 

 

    /** Make a new Ratnum == n. */ 

    public RatNum(int n) { 

        numer = n; 

        denom = 1; 

        checkRep(); 

    } 

 

    /** 

     * Make a new RatNum == (n / d). 

     * @param n numerator 

     * @param d denominator 

     * @throws ArithmeticException if d == 0 

     */ 

    public RatNum(int n, int d) throws ArithmeticException { 

        // reduce ratio to lowest terms 

        int g = gcd(n, d); 

        n = n / g; 

        d = d / g; 
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        // make denominator positive 

        if (d < 0) { 

            numer = -n; 

            denom = -d; 

        } else { 

            numer = n; 

            denom = d; 

        } 

        checkRep(); 

    } 

} 

 
 

 

Checking Rep Invariants and Implementing Abstraction 

Functions 

The rep invariant isn’t just a neat mathematical idea. If your implementation asserts the rep invariant 
at run time, then you can catch bugs early. 

    // Check that the rep invariant is true 

    // *** Warning: this does nothing unless you turn on assertion checking 

    // by passing -enableassertions to Java 

    private void checkRep() { 

        assert denom > 0; 

        assert gcd(numer, denom) == 1; 

    } 

toString() is a useful place to implement the abstraction function: 

    /** 

     * @return a string representation of this rational number 

  

abstract type A 

0 

3/2 

1/2 

representation type R 

(1,0)  

(0,1) 

(1,2) 

(3,2) 
(2,4) 

(18,12) 

rep invariant RI
describes legal reps 

abstraction function AF
maps legal reps to abstract
values 

 

Abstraction barrier preserves 
representation independence 
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     */ 

    // This effectively implements the abstraction function 

    public String toString() { 

        return (denom > 1) ? (numer + "/" + denom) : (numer + ""); 

    } 

Summary 

Abstract data types are characterized by their operations. Representation independence makes it 
possible to change the representation of a type without its clients being changed. An abstract data 
type that preserves its own invariants is easier and safer to use. Java language mechanisms like access 
control help ensure rep independence and invariants, but representation exposure is a trickier issue, 
and needs to be handled by careful programmer discipline. 
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