
Massachusetts Institute of Technology
6.005: Elements of Software Construction

Fall 2011
Quiz 2

November 21, 2011

Name:

Athena* User Name:

Instructions

This quiz is 50 minutes long. It contains 8 pages (including this page) for a
total of 100 points. The quiz is closed-book, closed-notes.

Please check your copy to make sure that it is complete before you start.
Turn in all pages, together, when you finish. Write your name on the top of
every page. Please write neatly. No credit will be given if we cannot read
what you write. Good luck!

Question Name Page Maximum
Points

Points
Given

Design Patterns 2 20
Interpreter/Visitor 3 16
Map/Filter/Reduce 4 12
Concurrency 5 16
Deadlock 6 16
Thread Safety 7-8 20

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

 Name:

Design Patterns [20 pts]

For each of the following statements, name the design pattern that it best describes, from the list
below.

 Interpreter

2

 Visitor
 Event Listener
 Map/Filter/Reduce
 Client/Server
 Model/View/Controller
 Composite

You may use a design pattern more than once in your answers. If you’re torn between two best
answers, you can give both, but in that case you should justify both answers.

(a) This design pattern produces tree-like data structures.

(b) This design pattern is used for operating over sequences of elements.

(c) This design pattern uses higher-order functions.

(d) This design pattern is used to separate concerns in user interfaces.

(e) This design pattern is used for message passing over a network.

 Name:

Interpreter/Visitor [16 pts]

You want to write a program to perform operations on all your Foos.

3

A Foo can perform lots of different tricks, like bazzle and glibble.

There are (and will always be) exactly 4 types of Foo, each of which does something different
when they bazzle or glibble.

But every so often your Foos learn a new trick, and you must update your program to include the
new operation.

For example, last week your Foos learned how to joople.

a) Would it be better to use the interpreter pattern or the visitor pattern for implementing the
datatype representing a Foo?

b) Assuming you designed your program according to your choice in part (a), now you want to
add the joople operation. Explain what classes and methods you will change, or what classes
and methods you would add, in order to support the joople operation.

 Name:

Map/Filter/Reduce [12 pts]

Suppose you want to rewrite the following Python code using map, filter, and reduce:

def ssp(list): # sum of squares of positive numbers in list

 result = 0

 for x in list:

 if x > 0:

 result += x*x

4

 return result

Fill in the blanks in the map/filter/reduce version below.

def ssp(list): # sum of squares of positive numbers in list

 return reduce(r, map(m, filter(f, list)), 0)

def f():

 return .

def m():

 return .

def r():

 return .

 Name:

Concurrency [16 pts]

Read the following code:

 public static void main() {

 Thread t1 = new Thread(new Runnable() {

 public void run() {

5

 System.out.print("O");

 System.out.print ("Y");

 }

 });

 Thread t2 = new Thread(new Blue());

 System.out.print("R");

 t1.start();

 System.out.print("G");

 t2.start();

 System.out.print("I");

 t1.join();

 System.out.print("V");

 t2.join();

 System.out.print("K");

 }

 public static class Blue implements Runnable {

 public void run() {

 System.out.print("B");

 }

 }

Assume that print() is threadsafe and atomic. Which of the following sequences can be printed by
this code? Circle possible or impossible.

 ROYGBIVK possible impossible

 ROYBGIVK possible impossible

 RGOYIBVK possible impossible

 OYBRGIVK possible impossible

 Name:

Deadlock [16 pts]

You have two threads (T0 and T1) and two locks (X and Y). Which of the following situations can
lead to deadlock? If deadlock can occur, circle the method call in each thread where the thread

6

would stop in the event of deadlock. If deadlock is impossible, circle “no deadlock.”

a)

T0:

X.acquire();

Y.acquire();

Y.release();

X.release();

T1:

X.acquire();

Y.acquire();

X.release();

Y.release();

 no deadlock

b)

T0: (same as T0 above)

X.acquire();

Y.acquire();

Y.release();

X.release();

T1:

Y.acquire();

X.acquire();

X.release();

Y.release();

 no deadlock

c)

T0: (same as T0 above)

X.acquire();

Y.acquire();

Y.release();

X.release();

T1:

Y.acquire();

Y.release();

X.acquire();

X.release();

 no deadlock

 Name:

Thread Safety [20 pts]

7

Consider the following code, and answer the questions on the next page.

public class Widget extends Thread {

 public static List<String> strings = new ArrayList<String>();

 public int count;

 public List<Integer> numbers;

 public Widget() {

 count = 0;

 numbers = new ArrayList<Integer>();

 }

 public void run() {

 for (int i = 0; i < 1000; ++i) {

 synchronized (this) {

 count++;

 synchronized (numbers) {

 numbers.add(i);

 }

 synchronized (Widget.strings) {

 Widget.strings.add(“x”);

 }

 }

 }

 }

 public static void main(String[] args) {

 List<Widget> widgets = new ArrayList<Widget>();

 for (int i = 0; i < 1000; ++i) {

 Widget w = new Widget();

 widgets.add(w);

 w.start();

 }

 for (Widget w : widgets) {

 synchronized (w) {

 w.count++;

 synchronized (w.numbers) {

 w.numbers.add(1000);

 }

 }

 synchronized (Widget.strings) {

 Widget.strings.clear();

 }

 }

 for (Widget w : widgets) {

 w.join();

 }

 }

}

You are reviewing a concurrency argument about this code. Circle whether you agree or
disagree with each of the following statements in the concurrency argument, and add a brief (1
sentence) justification of your answer.

(a) Accesses to the widgets list are safe because the list is confined to the main thread.

 Name:

 AGREE DISAGREE

8

(b) Accesses to the numbers list are safe because they acquire the list’s lock.

 AGREE DISAGREE

(c) Assuming that the program terminates without throwing an exception, count for every widget
is 1001 at the end of main.

 AGREE DISAGREE

(d) Assuming that the program terminates without throwing an exception, strings has size 0 at
the end of main.

 AGREE DISAGREE

END OF QUIZ

MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

