
Massachusetts Institute of Technology
6.005: Elements of Software Construction

Fall 2011
Quiz 1

October 14, 2011

Name: SOLUTIONS

Athena* User Name:

Instructions

This quiz is 50 minutes long. It contains 1 pages (including this page) for a
total of 100 points. The quiz is closed-book, closed-notes.

Please check your copy to make sure that it is complete before you start.
Turn in all pages, together, when you finish. Write your name on the top of
every page. Please write neatly. No credit will be given if we cannot read
what you write. Good luck!

Question Name Page Maximum
Points

Points
Given

Regexes & grammars 2 12
State machines & testing 3 15
Specifications 4 18
Abstract data types (a) 5 5
Abstract data types (b) 6 18
Recursive data types (a) 7 15
Recursive data types (b) 8 15

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

1

 Name:

2

Regular Expressions and Grammars

Consider the following grammar:

F ::= B? E N* M

B ::= >

E ::= : | ; | 8

N ::= - | ^
M ::= D | O | P

(a) [8 pts] Which of the following strings could be legally and entirely recognized by the
grammar? (circle all that apply)

 ;P

:-^[

>8O

:^OD

B:^D

<3

O^:

:---D

(b) [4 pts] Write a regular expression for this grammar. You can use any operators from
common regular expression syntax. Quoting or escaping is unnecessary if your meaning
is clear.

>?[:;8][-^]*[DOP]

or

>?(:|;|8)(-|^)*(D|O|P)

 Name:

State Machines and Testing

3

Before going to bed every night, Ben Bitdiddle turns on his alarm clock. It rings in the
morning to wake him up, and he turns it off. Sometimes – not often – he wakes up early
and turns the alarm off before it has a chance to ring.

(a) [12 pts] Draw a state machine for the alarm clock below. Label the states and the
transitions, using only the labels shown at the right. Some labels may be used more
than once, and some may be unused.

bed
clock
early
off
on
ring
ringing
turnoff
turnon

(b) [3 pts] Devise one or more test cases that together achieve all-transitions coverage for
this state machine. Write each test case below, not as Java code but as an event trace -- a
sequence of event labels from the state machine above.

start in off state, then
turnon, ring, turnoff, turnon, turnoff

or

start in off state, then turnon, ring, turnoff
start in off state, then turnon, turnoff

 Name:

Specifications

Write good specifications for the following methods. Do not change the parameter types
or return type of the method, but you may change other parts of the method signature if
you feel it’s necessary to write a good spec.

/** Compute the square root of a number.

@param x Requires x >= 0
@returns largest integer n such that n*n <= x

or

@param x Requires x is a perfect square
@returns square root of x

or

@param x
@returns square root of x
@throws IllegalArgumentException if x < 0 or x is not a
perfect square

 */
public static int squareRoot(int x);

// IntSet represents a set of integers.
public class IntSet {
 ... // other fields and methods here
 /** Find the smallest element in the set.

Requires this set is nonempty.
@returns smallest x such that x is in this set

or

@returns smallest x such that x is in this set
@throws EmptyException if set is empty

4

 Name:

or

@returns smallest x such that x is in this set, or
Integer.MIN_INT if set is empty

 */
 public int smallest();
}

/** Double every number.

Modifies nothing / Doesn’t modify lst.
@returns new list lst2, of same length as lst, such that for
all i (0<=i<lst.length), lst2[i] = lst[i]*2

or

Modifies lst such that lst[i] after the call is twice as large as
lst[i] before the call.
@returns lst

*/
public static List<Integer> doubleAll(List<Integer> lst);

5

 Name:

6

Abstract Data Types

Consider the following code.

 1 /** Text is an immutable data type representing English text. */

 2 public class Text {

 3 private final String text;

 4 private final String[] words;

 5

 6 // Rep invariant:

 // text != null; words != null;

 7 // concatenation of words (words[0]+words[1]+...+words[words.length-1])

 8 // is the same as text with spaces and punctuation removed

 9 // Abstraction function:

10 // represents the English text in the string variable text

11

12 /**

13 * Make a Text object.

14 * @param sentence a sentence in English. Requires sentence != null.

15 */

16 public Text(String sentence) {

17 this.text = sentence;

18 this.words = sentence.split(" ");

19 }

20

21 /** @return the words in the sentence */

22 public String[] getWords() {

23 return words;

24 }

25

26 /** @return the sentence as a string */

27 public String toString() {

28 return text;

29 }

30

31 /** concatenates this Text to that Text. Requires that != null. */

32 public Text add(Text that) {

33 return new Text(this.text + that.text);

34 }

35

36 /** @return true if and only if the word w is in the sentence.

37 Requires w != null */

38 public boolean contains(String w) {

39 for (String v : words) { if (w.equals(v)) { return true; } }

40 return false;

41 }

42

43 }

(a) [5 pts] For each constructor and method above, write in the box next to it:
 C for creator
 P for producer
 O for observer
 M for mutator

(b) [18 pts] The code above was code-reviewed, producing the comments below. Circle
AGREE or DISAGREE depending on whether the comment is correct or incorrect, and
add your own one-sentence comment explaining your answer. The right explanation is
worth more than the right circle.

line 23: Rep exposure threatens the rep invariant! AGREE DISAGREE

C

O

O

P

O

 Name:

7

Yes, the caller could mutate the words array, making it
no longer match sentence (and Text also no longer
immutable).

line 23 reply: No it doesn’t, words is a final variable.

final just makes the words reference
unchangeable; it doesn’t prevent the words
array from being mutated.

AGREE DISAGREE

line 18: Constructor doesn’t establish the rep invariant.

Needs to look at punctuation too.

AGREE DISAGREE

line 17: Rep exposure! Need to make a copy of text before storing it in
your rep.

String is immutable, so it’s safe to share it
between rep and caller.

AGREE DISAGREE

line 33: add() changes this.text, you shouldn’t do that in an immutable
type.

add is a producer, not a mutator; it doesn’t
modify this.text, and can’t anyway because
this.text is a final reference to an immutable
object.

AGREE DISAGREE

line 39: the compiler’s static checking will throw an exception here if
w == null

an exception will be thrown, but not by the
compiler and not by static checking;
exceptions are thrown at runtime.

AGREE DISAGREE

Recursive Data Types

In this problem you will implement a recursive data type representing sets of words and
intersections of those sets. The datatype definition is:

 Name:

 WordSet = Base(t:Text) + Intersect(left:WordSet, right:WordSet)

8

(a) [15pts] Write Java code below that implements this datatype. Include the reps (fields)
and creators (constructors), but no other methods. You don’t need to write specs for
your methods in this problem. Note that you will need to use the Text datatype defined
in the previous problem; assume that all its implementation bugs have been fixed so that
it behaves according to its spec.

public interface WordSet {

}

public class Base implements WordSet {

 private final Text t;

 public Base(Text t) {

 this.t = t;

 }

}

public class Intersect implements WordSet {

 private final WordSet left, right;

 public Intersect(WordSet left, WordSet right) {

 this.left = left;

 this.right = right;

 }

}

 Name:

(b) [15pts] Define a function over your datatype:
 contains: WordSet ws, String w => boolean
 // requires: w is a word, with no spaces or punctuation

9

 // returns: true if and only if w is an element of the
// set of words represented by ws

Implement the function using the Interpreter pattern. Write your Java code below.
Again, you don’t need to write specs for this problem. You also don’t need to repeat the
code you wrote above, but if you need to insert methods into classes you wrote above,
just put a brief outline around it with the name of the class, e.g.
 ClassName {

 public void myNewMethod() {

 ...

 }

 }

WordSet {

 public boolean contains(String w);

}

Base {

 public boolean contains(String w) {

 return t.contains(w);

 }

}

Intersect {

 public boolean contains(String w) {

 return left.contains(w) || right.contains(w);

 }

}

END OF QUIZ

MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

