
6.005 Elements of Software Construction | Fall 2011
Problem Set 2: Midi Piano

The purpose of this problem set is to give you a chance to design with state machines, and to
see one way of translating such a design into code.

The code in the later questions depends on the code in question 1 to work. Questions 2, 3,
and 4 can be completed in any order. Question 5 depends on Question 4. Question 4 may
take more time to complete than the previous questions.

Do not change the signatures or specifications of any methods, classes, or packages
that we have provided you. Your code will be tested automatically, and will break
our testing suite if you do so.

Overview

Throughout this problem set we will be implementing a simple midi keyboard. We will give it
the capability to:

1. Play notes using a row of keys on your computer keyboard
2. Change among a number of instruments
3. Change octaves
4. Record sequences of notes and play them back.

We have provided you with code that wraps a midi device, some abstractions for dealing with
musical notes, and some Java Applet code that listens for keypresses. Our applet code calls
several methods of PianoMachine; you should keep those methods as the entry points for
PianoMachine and not change their signatures or specs (as we will use these functions for
automated testing.) Do not modify any code inside the 'midi' or 'music' packages. For the first
four questions, do not modify any code in the PianoApplet class. Please note that we have
provided a method, Midi.history(), which gives a text output from the piano and can be used
for testing.

1

https://courses.csail.mit.edu/6.005/svnadmin/

A slight annoyance: you'll need to click on the applet's panel with your mouse to give it
keyboard focus before playing any notes.

Problem 1: Piano Keys

Our midi piano should allow us to play a set of pitches {C, C#, D, ... A#, B} using the keys
{'1', '2', ... '-', '='} respectively. When one of these keys is pressed, a note should begin if it
isn't already sounding; likewise, when such a key is released, a note should end if it is
currently sounding. We provide method signatures for PianoMachine.beginNote and
PianoMachine.endNote, which will be triggered by appropriate key presses and releases. Use
those methods as entry points in your implementation.

a. [5 points] Write the specs for PianoMachine.beginNote and PianoMachine.endNote, and
for any other helper methods you expect to need.

b. [5 points] Write test cases for these methods. You will find Midi.history() useful for this
and other tests in this assignment.

c. [15 points] Add this functionality by implementing the beginNote and endNote methods,
as well as any helper methods, and adding any necessary state to PianoMachine. To start you
off, we've given a provisional implementation of beginNote and endNote which always plays
middle 'C'.

Problem 2: Switching Instruments

The midi piano should be able to switch instruments. The 'I' key should switch our instrument
mode to the next instrument in a list, or back to the start if we're at the end. We have
mapped the 'I' key to PianoMachine.changeInstrument; use this method in your
implementation.

a. [5 points] Write the spec for the changeInstrument method, and for any helper methods
you expect to need.

b. [5 points] Write test cases for these methods.

c. [10 points] Add state to the PianoMachine class which reflects the instrument mode, fill in
the changeInstrument method, and update any other code necessary so that your piano can
switch instruments as specified. You may find the Instrument enum in the package 'midi' to

2

be useful.

Problem 3: Switching Octaves

Pressing the 'C' and 'V' keys should shift the notes that the keys play down and up,
respectively, by one octave (12 semitones). We should be able to shift by two octaves,
maximum, in either direction from the starting pitches. We have mapped the appropriate
keys to PianoMachine.shiftUp and PianoMachine.shiftDown; use these methods in your
solution.

a. [5 points] Write the spec for the shiftUp and shiftDown methods, and for any helper
methods you expect to need.

b. [5 points] Write test cases for these methods.

c. [10 points] Add this functionality by adding the appropriate state to PianoMachine,
implementing the shiftUp and shiftDown methods, and updating any other methods necessary.

Problem 4: Recording and Playback

The piano should have the ability to record and playback sequences of notes, preserving the
rhythm they were played with. When you make a new recording it should replace the
previous one. 'R' should toggle record mode on and off, and 'P' should trigger playback. As
before, we've provided you with signatures for PianoMachine.toggleRecording and
PianoMachine.playback as entry points; use these methods.

a. [5 points] Write the spec for the toggleRecording and playback methods, and for any
helper methods you expect to need.

b. [5 points] Write test cases for these methods.

c. [15 points] Add this functionality, by making PianoMachine keep track of the necessary
state, implementing the playback and toggleRecording methods, and adding any other
necessary code. You might find the NoteEvent class useful.

Note: try triggering some new notes while the piano is in playback mode. You may find that
the notes all sound together after playback finishes, as a single chord. Consider why this
might be the case. For this problem, we will not deduct points for this behavior.

3

Problem 5: Keyboard Input During Playback

[10 points] If your application exhibits the (undesirable) behavior we describe at the end of
Problem 4c, eliminate that behavior to complete this problem. That is, in your
implementation, keyboard input that occurs during playback should have no effect, either
immediately or later. You may edit piano.PianoApplet for this part of the assignment.

Hint: You may find the method KeyEvent.getWhen() to be useful.

Optional Extension

This extension is optional and will not affect your grade in any way. The only reason to try it
is to quench your burning desire to program.

Add a "chord mode" to your keyboard, where each key you press will trigger several notes at
once. A straightforward mapping would be to trigger a major triad for each note (e.g. pitches
C, E, and G, if you press '1'.) You may also wish you make a different harmonization, at your
musical discretion.

Before You're Done...

Double check that you didn't change the signatures of any of the code we gave you.

Make sure the code you implemented doesn't print anything to System.out. It's a helpful
debugging feature, but writing output is a definite side effect of methods.

Make sure you don't have any outdated comments in the code you turn in. In particular, get
rid of blocks of code that you may have commented out when doing the pset, and get rid of
any TODO comments that are no longer TODOs.

Make sure your code compiles, and all the methods you've implemented pass all the tests
that you added.

Does your code compile without warnings? In particular, you should have no unused
variables, and no unneeded imports.

4

Make sure you check the last version of your code in SVN is the version you want to be
graded.

Try to make sure that your code conforms to standard Java naming conventions. That is,
class names should be StartingUpperCamelCase, and variables and methods should be
startingLowerCamelCase.

5

MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6

http://ocw.mit.edu
http://ocw.mit.edu/terms

