MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Optional Lab: Graphical User Interfaces in Swing

Optional Lab: Graphical User Interfaces in Swing

6.005 Elements of Software Construction
Fall 2008
No due date

In this lab, you will become familiar with GUI programming and the Java Swing user interface
toolkit. You will learn about:

Swing widgets, including windows, labels, text fields, lists, scroll panes, menu bars,

and buttons;

using a layout manager to automatically arrange widgets in a window;
using action listeners to respond to user input;

and using a standard dialog provided by Swing.

Swing, and graphical user interface programming in general, is filled with complex APIs and
complicated control flow mechanisms. This lab should give you the basic tools you need to
complete your GUI in Project 3.

— 7
| Note: this lab is not required, but you may find it useful.

L

Before Lab

Before starting this lab, please do the following:

. Read both Project 3 and this lab handout.

. Check out the gui wor ds project from your personal SVN repository.

. If you are new to GUI or Swing programming, familiarize yourself with The Swing
Tutorial. Don't try to read the entire tutorial, but do have an idea of what you can find
there. Here are some of the most useful sections:

o Using Swing Components, which includes a visual index of available components
and lots of how-tos, is the most immediately useful. In this lab, you will already
be using a top-level container, buttons, text fields, labels, lists and models,
scroll panes, menus, dialogs, and others.

o Writing Event Listeners discusses just that.

o Concurrency in Swing covers some important details of multithreaded GUI

programming.

http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.sun.com/docs/books/tutorial/uiswing/components/index.html
http://java.sun.com/docs/books/tutorial/ui/features/components.html
http://java.sun.com/docs/books/tutorial/uiswing/components/toplevel.html
http://java.sun.com/docs/books/tutorial/uiswing/components/button.html
http://java.sun.com/docs/books/tutorial/uiswing/components/textfield.html
http://java.sun.com/docs/books/tutorial/uiswing/components/label.html
http://java.sun.com/docs/books/tutorial/uiswing/components/list.html
http://java.sun.com/docs/books/tutorial/uiswing/components/model.html
http://java.sun.com/docs/books/tutorial/uiswing/components/scrollpane.html
http://java.sun.com/docs/books/tutorial/uiswing/components/menu.html
http://java.sun.com/docs/books/tutorial/uiswing/components/dialog.html
http://java.sun.com/docs/books/tutorial/uiswing/events/index.html
http://java.sun.com/docs/books/tutorial/uiswing/concurrency/initial.html

Optional Lab: Graphical User Interfaces in Swing

. Read through the tutorial on TableLayout.

Word Finder

Word Finder will be a simple application that presents a basic but functional interface for
searching a list of words.

The skeleton of this application is provided for you as follows:

. words: a dictionary of about 45,400 words taken from the standard Linux / usr/ shar e/
di ct/words.

. WordLi st : a backend class that represents a list of words and provides operations for
loading the list from a stream and searching the list.

. Wor dFi nder : a skeleton for the user interface you will implement in this lab.

Getting Started

Begin by running the main methods in Wor dLi st — it should output a list of words containing
"ph" — and Wbr dFi nder , which should display a very preliminary Ul.

Task 1: Add an ActionListener to the fi nd JTextField so that pressing "enter" uses wor ds to
search for the current text in the field and display the results on the console (i.e., System
out).

L

8ce Word Finder -
Find: fool P
WTE Console

WordFinder [Java Application] /System/Library/Frameworks
footprint

footprints

footstep

footsteps

seafood

underfoot

Writabl

https://tablelayout.dev.java.net/articles/TableLayoutTutorialPart1/TableLayoutTutorialPart1.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JTextField.html#addActionListener(java.awt.event.ActionListener)
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JTextField.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/text/JTextComponent.html#getText()

Optional Lab: Graphical User Interfaces in Swing

Layout, Lists, and Labels

A LayoutManger determines how components within a container like JFrame are arranged.
The default Layout Manger for JFr anes, BorderLayout, is simple but not very powerful. Java

provides several other layout managers, some of which are notoriously complicated.

TableLayout is the alternative we will use for this lab, and which you are encouraged to use
for the project. Read the documentation and this tutorial.

TableLayout arranges the user interface in a logical table of cells. A 2D array of doubles is
used to specify the percentage or absolute width and height of the columns and rows of the
table.

We would like to lay out the final interface of the Word Finder application like this:

8eme Word Finder
File 5 px
Find{| foo (Search) PAEFEAAED
44 matches for "foo" 5 px
afoot m PAEFEBAED
archfool
barefoot
barefooted FILL
Blackfoot
Blackfoots
M lida als
\\Ep:

5pix 5pix FILL Spx PAEFEAAED 5px
FREFERRED

In this diagram, PREFERRED indicates that the width or height of the column or row is
determined by the "preferred” size of the components in it, and FILL indicates that the
column or row expands to take up any remaining space when the window is shown or its size
is changed by the user.

http://java.sun.com/j2se/1.5.0/docs/api/java/awt/LayoutManager.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Container.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JFrame.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/BorderLayout.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/GridBagLayout.html
https://tablelayout.dev.java.net/
https://tablelayout.dev.java.net/articles/TableLayoutTutorialPart1/TableLayoutTutorialPart1.html

Optional Lab: Graphical User Interfaces in Swing

Task 2: Set the JFr ane's layout manager to an appropriately-initialized Tabl eLayout . Update
the add(...) component calls to replace the Bor der Layout information with the " col um,
row' String used by Tabl eLayout .

A JList is the appropriate component to display the list of matched words. A JLi st separates
the presentation of those words from the list itself by having a separate ListModel. For this
lab, you can safely use a DefaultListModel, and add or remove items from this model as
needed.

Task 3: Add to the window a JLi st contained inside a JScrollPane. Modify your code so that
instead of outputting the matched words to the console, they appear in the scrollable list.

JScr ol | Pane provides scrolling behavior for components that are too large to display in their
entirety and is one example of how the view hierarchy (JLi st inside JScr ol | Pane inside
JFrame) is used to control component display.

Task 4: In addition to the list of results, it is also useful to know the number of matched
words. Add a JLabel to your interface that is updated after every search to display the
number of matches.

Click Me!

It is essential to organize your implementation so that actions are separated from the
particular GUI components that trigger them.

Task 5: Add a "Search™ button to the interface so that in addition to pressing "enter,"” the
user can click "search" to update the list of matched words. If necessary, refactor your
implementation so that code is not duplicated. At the same time, you should also ensure that
when the interface is first displayed, it is identical to what appears when the user searches for
the empty string.

Finally, no interface would be complete without a good old fashioned menu bar. And no user
interface toolkit would be complete without providing standard dialogs for actions that ought
to be consistent across applications, such as choosing a file from the disk. We'll put both of
those features to use.

Task 6: Give your interface a JMenuBar with a "File" JMenu. On this menu, have at least two
options:

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JList.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/ListModel.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/DefaultListModel.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JScrollPane.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JLabel.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JMenuBar.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JMenu.html

Optional Lab: Graphical User Interfaces in Swing

. Open..., which should use a JFileChooser to show an "Open File" dialog in which the
user can choose a new word list. Note that Wr dLi st already provides a |l oad(...)
method once you have obtained an | nput St r eamfor the chosen file.

Exit, which should... exit the application, for example by using System.exit(...).

The Javadoc documentation for JFi | eChooser includes an example that should make this
task straightforward. JOptionPane is another important source for standard dialog boxes.

Finishing Touch

Task 7: You choose...

To finish off this simple Word Finder interface, implement one more feature of your choosing,
as time in the lab permits. This can be anything you like; here are some suggestions:

Add a "Clear" button that clears the text field and resets the current search.

Add a check box to enable or disable case-sensitivity in the search.

Use a different listener on the text field so that searches happen incrementally as you
type, and pressing "enter" or clicking "search" is unnecessary.

Change the list display so that the part of each word that matches the user's search
term is highlighted. (Hint: Swing supports basic HTML, which you may find helpful.)
Improve the performance of Word Finder and eliminate the word list loading delay by
implementing a custom list model.

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JFileChooser.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html#exit(int)
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/JOptionPane.html
http://java.sun.com/docs/books/tutorial/uiswing/components/html.html

