
MIT OpenCourseWare
http://ocw.mit.edu 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

6.004 Computation Structures 
Spring 2009 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Programmable machines

Problem 1. Consider the following circuit: 

 

The heavy lines represent busses, which are many signals grouped together, e.g., an eight-bit bus is eight 
separate signal wires that are treated as a group. When a bus connects to one or more components, it's just 
shorthand for drawing the individual signal wires between those components. 

A.  The components with triangular schematic symbols are tristate drivers that operate like buffers 
except that they have an additional control input called an enable. When the enable is high, the 
buffer is on and the input value is driven onto the output. When the enable is low, the buffer is off 
and doesn't drive anything onto its output (i.e., the output pin is in a high-impedance state). What 
rules should the designer follow when designing the logic that generates DRA, DRB and DRALU in 
order to ensure that the DBUS signals always have legitimate values? 

The designer should have at most one of the signals DRA, DRB, or DRALU asserted during any 
clock cycle. While these signals are being computed, it is possible that more than one might be 
asserted simultaneously due to logic glitches or computation paths of different length. The designer 
should take care to eliminate or at least minimize this occurrence. 

B.   Draw a schematic showing how a tristate driver might be implemented using mosfets. Hint: The 
following schematic shows one way of implementing a tristate driver. 



 

You just have to fill in the logic inside each of the clouds-think about for what values of DATA, 
ENABLE you want the pullup to be on and replace the upper cloud with one or more logic gates that 
implement that equation. Ditto for the pulldown and lower cloud. 

 

C.   The register-like symbols labeled "Reg A" and "Reg B" also have an additional enable input and 
are called load-enabled registers. When the enable is high, the register will be loaded from the 
incoming data. When the enable is low, the register reloads itself with its previous value. Show how 
to implement a load-enabled register from a regular D-register and a 2-way multiplexer. 

Just add the mux before the register to clock in either the old value or the new value 

 

D.  It's considered bad practice to control the loading of a register by "gating" its clock, i.e., by adding 
some logic that controls whether or not the register sees a rising clock edge. Briefly explain why 
"gating the clock" is discouraged. Hint: consider the effects of clock skew and logic hazards. 

"Gating" the clock is not good practice for 2 reasons: 



(1) The possibility of glitches in the load enable signal. Combinational logic often controls the load 
enable signal, so there may be periods of time when the load enable momentarily changes value. If 
load enable is supposed to remain low, but changes to a high value while CLK has a high value, then 
the register will see a rising clock edge and sample its inputs. This unwanted sampling of its inputs 
may cause the register to remember incorrect values, or even worse, enter a metastable state if the 
inputs are changing. 

(2) Clock skew. Placing a logic gate in front of the CLK input of a register introduces delay, as the 
logic gate has intrinsic delay. This delay skews the clock signal, and as we have seen, clock skew 
can require slower clocking of the circuit or could cause hold time requirements to be violated. 

E.  The arithmetic-logic unit (ALU) has two data inputs (A and B) and, in this circuit, can perform only 
two operations, based on the single control signal FN: 

when FN = 0, the ALU output is A-B 
when FN = 1, the ALU output is B-A 

The ALU also generates two condition codes which give us some additional information about the 
ALU output: 

Z = 1 when the ALU output is the number "0" 
N = 1 when the ALU output is a negative number 

Assuming that we have 8-bit data values and use a two's complement representation for the data 
values processed by the ALU, draw gate-level schematics for the logic that generates the Z and N 
signals from the ALU output value. 

 

F.   Your job is to build a controller that will cause the circuit above to execute the following 
algorithm which computes the greatest common divisor of two inputs: 

        while (a != b)
                if (a > b) a = a - b;



                else b = b - a;

The controller will be a state machine that takes 2 bits of input (Z and N) and produces control 
signals for the data paths (DRA, DRB, DRALU, LDA, LDB, FN). 

Draw a state diagram for the controller. Outputs from your FSM should depend only on the current 
state. Indicate which are the initial and final states of your FSM on the diagram. 

 

G.   Supply a truth table for the logic that generates the control signals. 

 

Problem 2. The material in this question will not covered by any quizzes. It's presented here as an 
extended example of a programmable datapath. 



The following diagram shows the datapath and control circuitry for a nifty little microprogrammed 
architecture the students used to build in the 6.004 lab: 

 

Some features of the MAYBE: 

●     The datapath is 8 bits wide. All the subsystems connect to a common 8-bit bus which routes data 
between the subsystems. In a particular cycle, one of the subsystems is selected to drive data onto 
the bus (chosen by the DR signals) which can then be loaded into the selected destination (chosen by 
the LD signals).

●     The Control ROM is programmed as a nanointerpreter that executes one of 256 microinstructions 
selected by the contents of the OP register. Each microinstruction consists of up to 16 
nanoinstruction; the nanoPC is generated by the PHASE counter which is reset to 0 each time the 
OP register is loaded.



●     The Control ROM is programmed using the following template:

Opcode Phase COND = ADR+ ALU CC DRSEL LDSEL Comment
******** **** * = 1 111111 11 001 000 Opcode = uROM; ADR+

"*" is used to match either "0" or "1" on the corresponding address line. The template above 
initializes every nanoinstruction in the Control ROM to an operation that reads the next byte from 
the UROM (DRSEL = 001), places it in the OP register (LDSEL = 000), and then increments the 
ADRHI/ADRLO registes (ADR+ = 1). 

●     The UROM contains a microprogram that is executed by the nanointerpreter. Each microinstruction 
in the UROM begins with an 8-bit opcode; microinstruction execution begins by loading the opcode 
into the OP register. As the nanointerpreter executes the nanocode associated with that opcode, 
additional operand bytes may be fetched from the UROM. The final step in executing a 
microinstruction is to load the OP register with the opcode of the next microinstruction.

●     The ADRHI/ADRLO registers form a 16-bit program counter for the UROM program. These 
registers can be loaded from the data bus (eg, when doing a branch) or simply incremented by 
asserting ADR+. Note that the ADRHI/ADRLO registers are incremented at the end of the cycle 
after they have been used as the address for the UROM in the current cycle.

A.  If we inadvertently switch connections on two of the wires that run from the MAR register to the 
address inputs of the SRAM will operation be affected? Is your answer the same if we switch two 
wires running between ADRHI/ADRLO and the address inputs to the UROM? If the answers are not 
the same, what constitutes the difference between the SRAM and UROM? 

Reordering connections between the MAR and the address inputs of the SRAM won't have any 
observable effect since there will still be a unique location for each possible MAR value (the actual 
location in SRAM will change but who could tell?). 

Switching the ADRHI/ADRLO connections could be detected since after the switch incrementing 
the registers would not fetch the immediately adjacent location. If we also permuted the contents of 
the UROM to match the change in address wiring, the switch would not be detectable. 

B.  What, if anything, prevents two drivers from putting conflicting data on the data bus of the MAYBE 
(ignore transients during propagation delays of the control circuitry)? Can such conflicts happen if 
there are programming errors in the Control ROM? 

The data bus drivers are controlled by a 3-to-8 decoder. For any given 3-bit input, this device asserts 
only one of its outputs, so no conflicts are possible. Programming errors might result in the wrong 
value being driven onto the bus, but never multiple values at the same time. 



C.  Given a big enough Control ROM, could the LDSEL and DRSEL decoders be eliminated 
(producing the load and drive signals directly as Control ROM outputs)? If so, what advantage 
might this have? 

Yes, simply replace each 3-bit control value that drives the decoder with an 8-bit value that connects 
directly to the LDxx or DRxx control signals. Now each signal could be asserted independently, 
perhaps in concert with other signals. This isn't useful for the DRxx signals (see answer to previous 
question), but would allow several registers to be loaded with the same data bus value 
simultaneously. 

D.  Execution of a nanoprogram can be influenced by information for the datapath? Explain how a 
nanoprogram can make data-dependent decisions. 

The low-order control ROM address bit comes from a shift register that is loaded with condition 
codes from the ALU. Non-data-dependent nanoinstructions are loaded twice into consecutive even/
odd locations of the control ROM, so the address bit from the shift register will select the same 
instruction regardless of whether it's is 0 or 1. However if different instructions are loaded into the 
even/odd locations, the nanoprogram will execute differently depending on the output of the shift 
register. 

By shifting the shift register before executing the data-dependent nanoinstruction, it's possible to use 
any of the latched condition codes. 

E.  Given a big enough Control ROM, could the condition shift register be eliminated (using the 
condition bits directly as Control ROM inputs)? If so, what advantage might this have? How many 
more (or fewer) outputs and inputs would the Control ROM need to have to implement this? What 
would be the size (in bits) of the Control ROM? 

In theory if we used the 7 condition code signals as additional address signals, we could test all 7 
bits at the same time and execute one of 128 different instructions as a result. We might want to add 
a latch-enabled register to capture the signals on some specific cycle and save them for testing at 
some later cycle (the current design does this using the CONDCTL signals). 

With 7 additional address inputs the control rom would grow from 213 locations to 219 locations. 
Assuming we need to control a latch-enabled register to capture the signal values, the number of 
control outputs would decrease by 1 (CONDCTL would go from 2 bits to 1). 

F.  The nanoinstruction shown above selects the UROM as the data source and asserts ADR+ during the 
same clock cycle. How does this work, i.e., is the original or incremented address used when 
accessing the UROM? 

The increment happens at the end of the clock cycle (ie, at the next rising edge of the clock), so for 
this current clock cycle the original address is used. 



G.  What does the following nanocode program do? 

Opcode Phase COND = ADR+ ALU CC DRSEL LDSEL Comment
00001010 0000 * = 1 111111 11 001 101 MAR = uROM; ADR+
00001010 0001 * = 0 111111 11 100 010 A = SRAM
00001010 0010 * = 1 111111 11 001 101 MAR = uROM; ADR+
00001010 0011 * = 0 111111 11 100 011 B = SRAM
00001010 0100 * = 1 111111 11 001 101 MAR = uROM; ADR+
00001010 0101 * = 0 100110 00 010 100 SRAM = A + B; latch CCs
00001010 0110 * = 1 111111 11 001 000 OP = uROM; ADR+

Implements the "ADD(X,Y,Z)" microprogram instruction which stores the sum of SRAM locations 
X and Y into SRAM location Z. ADD has an opcode of 00001010 and takes 7 cycles to execute. 

H.  What does the following nanocode program do? 

Opcode Phase COND = ADR+ ALU CC DRSEL LDSEL Comment
00001011 0000 * = 1 111111 11 001 010 A = uROM; ADR+
00001011 0001 * = 1 111111 11 001 101 MAR = uROM; ADR+
00001011 0010 * = 0 111111 11 100 011 B = SRAM
00001011 0011 * = 1 111111 11 001 101 MAR = uROM; ADR+
00001011 0100 * = 0 100110 00 010 100 SRAM = A + B; latch CCs
00001011 0101 * = 1 111111 11 001 000 OP = uROM; ADR+

Implements the "CADD(CX,Y,Z)" microprogram instruction which stores the sum of the constant 
CX and SRAM location Y into SRAM location Z. CADD has an opcode of 00001011 and takes 6 
cycles to execute. 

I.  What does the following nanocode program do? 

Opcode Phase COND = ADR+ ALU CC DRSEL LDSEL Comment
00001100 0000 * = 1 111111 11 001 010 A = uROM; ADR+
00001100 0001 * = 0 111111 11 001 001 ADR = uROM
00001100 0010 * = 0 111111 11 010 001 ADR = A
00001100 0011 * = 1 111111 11 001 000 OP = uROM; ADR+



Implements the "JMP(addrlo,adrhi)" microprogram instruction which changes the microcode 
program counter to the specified address. JMP has an opcode of 00001100 and takes 4 cycles to 
execute. 

J.  What does the following nanocode program do? 

Opcode Phase COND = ADR+ ALU CC DRSEL LDSEL Comment
00010111 0000 * = 1 111111 11 001 010 A = uROM; ADR+
00010111 0001 * = 0 111111 01 010 010 Shift CC's
00010111 0010 1 = 0 111111 11 001 001 ADR = uROM
00010111 0011 1 = 0 111111 11 010 001 ADR = A
00010111 0100 1 = 1 111111 11 001 000 OP = uROM; ADR+
00010111 0010 0 = 1 111111 11 001 010 A = uROM; ADR+
00010111 0011 0 = 1 111111 11 001 000 OP = uROM; ADR+

Implements the "JNC(addrlo,adrhi)" microprogram instruction which changes the microcode 
program counter to the specified address if the carry bit (captured from the ALU by some previous 
microinstruction) is not set. JNC has an opcode of 00010111 and takes 4 cycles to execute if the 
branch is not taken and 5 cycles to execute if the branch is taken. 

K.  What does the following nanocode program do? 

Opcode Phase COND = ADR+ ALU CC DRSEL LDSEL Comment
00000011 0000 * = 0 110011 11 010 101 MAR = 11111111
00000011 0001 * = 0 111111 11 100 010 A = SRAM
00000011 0010 * = 0 111110 11 010 100 SRAM = A - 1
00000011 0011 * = 1 111111 11 001 101 MAR = uROM; ADR+
00000011 0100 * = 0 111111 11 100 011 B = SRAM
00000011 0101 * = 0 111111 11 010 101 MAR = A
00000011 0110 * = 0 101011 11 010 100 SRAM = B
00000011 0111 * = 1 111111 11 001 000 OP = uROM; ADR+

Implements the "PUSH(x)" microprogram instruction which decrements the microstack pointer 
(stored in SRAM location 255 = 0xFF) and then stores the contents of SRAM location x in the 
SRAM location pointed to by the microstack pointer. PUSH has an opcode of 00000011 and takes 8 
cycles to execute. 


