
MIT OpenCourseWare
http://ocw.mit.edu

6.004 Computation Structures
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

 M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.004 Computation Structures

β Documentation

1. Introduction

This handout is a reference guide for the β, the RISC processor design for 6.004. This is
intended to be a complete and thorough specification of the programmer-visible state and
instruction set.

2. Machine Model

The β is a general-purpose 32-bit architecture: all registers are 32 bits wide and when loaded
with an address can point to any location in the byte-addressed memory. When read, register
31 is always 0; when written, the new value is discarded.

Program Counter Main Memory

232 bytes

…

PC always a multiple of 4

R0

R1

R30

R31 always 0

32 bits

Registers

3 2 1 0

 SUB(R3,R4,R5)

 ST(R5,1000)

32 bits 32 bits

0x00000000:

0x00000004:

0xFFFFFFF8:

0xFFFFFFFC:

…

…

3. Instruction Encoding

Each β instruction is 32 bits long. All integer manipulation is between registers, with up to
two source operands (one may be a sign-extended 16-bit literal), and one destination register.
Memory is referenced through load and store instructions that perform no other computation.
Conditional branch instructions are separated from comparison instructions: branch
instructions test the value of a register that can be the result of a previous compare
instruction.

6.004 Computation Structures - 1 - β Documentation

There are only two types of instruction encoding: Without Literal and With Literal.
Instructions without literals include arithmetic and logical operations between two registers
whose result is placed in a third register. Instructions with literals include all other
operations.

Like all signed quantities on the β, an instruction's literal is represented in two’s complement.

3.1 Without Literal

31 26 25 21 20 16 15 11 10 0

Opcode Rc Ra Rb unused

3.2 With Literal

31 26 25 21 20 16 15 0

Opcode Rc Ra literal (two’s complement)

4. Instruction Summary

Below are listed the 32 β instructions and their 6-bit opcodes. For detailed instruction
operations, see the following section.

Mnemonic Opcode

ADD 0x20
ADDC 0x30
AND 0x28
ANDC 0x38
BEQ 0x1D
BNE 0x1E
CMPEQ 0x24
CMPEQC 0x34

Mnemonic Opcode

CMPLE 0x26
CMPLEC 0x36
CMPLT 0x25
CMPLTC 0x35
DIV 0x23
DIVC 0x33
JMP 0x1B
LD 0x18

Mnemonic Opcode

LDR 0x1F
MUL 0x22
MULC 0x32
OR 0x29
ORC 0x39
SHL 0x2C
SHLC 0x3C
SHR 0x2D

Mnemonic Opcode

SHRC 0x3D
SRA 0x2E
SRAC 0x3E
SUB 0x21
SUBC 0x31
ST 0x19
XOR 0x2A
XORC 0x3A

5. Instruction Specifications

This section contains the specifications for the β instructions, listed alphabetically by
mnemonic. No timing-dependent information is given: it is specifically assumed that there
are no pathological timing interactions between instructions in this specification. Each
instruction is considered atomic and is presumed to complete before the next instruction is
executed. No assumptions are made about branch prediction, instruction prefetch, or
memory caching.

6.004 Computation Structures - 2 - β Documentation

Opcode: 100000 Rc Ra Rb unused

5.1 ADD

Usage: ADD(Ra,Rb,Rc)

Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] + Reg[Rb]

The contents of register Ra are added to the contents of register Rb and the 32-bit sum is
written to Rc. This instruction computes no carry or overflow information. If desired, this
can be computed through explicit compare instructions.

5.2 ADDC

Usage: ADDC(Ra,literal,Rc)
Opcode: 110000 Rc Ra literal
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] + SEXT(literal)

The contents of register Ra are added to literal and the 32-bit sum is written to Rc. This
instruction computes no carry or overflow information. If desired, this can be computed
through explicit compare instructions.

5.3 AND

Usage: AND(Ra,Rb,Rc)
Opcode: 101000 Rc Ra Rb unused
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] & Reg[Rb]

This performs the bitwise boolean AND function between the contents of register Ra and the
contents of register Rb. The result is written to register Rc.

5.4 ANDC

Usage: ANDC(Ra,literal,Rc)
Opcode: 111000 Rc Ra literal
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] & SEXT(literal)

This performs the bitwise boolean AND function between the contents of register Ra and
literal. The result is written to register Rc.

6.004 Computation Structures - 3 -	 β Documentation

5.5 BEQ/BF

Usage: BEQ(Ra,label,Rc)
BF(Ra,label,Rc)

Opcode: 011101 Rc Ra literal
Operation:	 literal = ((OFFSET(label) − OFFSET(current instruction)) / 4)−1

PC ← PC + 4

EA ← PC + 4*SEXT(literal)

TEMP ← Reg[Ra]

Reg[Rc] ← PC

if TEMP = 0 then PC ← EA

The PC of the instruction following the BEQ instruction (the updated PC) is written to
register Rc. If the contents of register Ra are zero, the PC is loaded with the target address;
otherwise, execution continues with the next sequential instruction.

The displacement literal is treated as a signed word offset. This means it is multiplied by 4
to convert it to a byte offset, sign extended to 32 bits, and added to the updated PC to form
the target address.

5.6 BNE/BT

Usage: 	BNE(Ra,label,Rc)
BT(Ra,label,Rc)

Opcode: 011110 Rc Ra literal
Operation:	 literal = ((OFFSET(label) − OFFSET(current instruction)) ÷ 4)−1

PC ← PC + 4

EA ← PC + 4*SEXT(literal)

TEMP ← Reg[Ra]

Reg[Rc] ← PC

if TEMP ≠ 0 then PC ← EA

The PC of the instruction following the BNE instruction (the updated PC) is written to
register Rc. If the contents of register Ra are non-zero, the PC is loaded with the target
address; otherwise, execution continues with the next sequential instruction.

The displacement literal is treated as a signed word offset. This means it is multiplied by 4
to convert it to a byte offset, sign extended to 32 bits, and added to the updated PC to form
the target address.

6.004 Computation Structures - 4 -	 β Documentation

5.7 CMPEQ

Usage: CMPEQ(Ra,Rb,Rc)
Opcode: 100100 Rc Ra Rb unused
Operation:	 PC ← PC + 4

if Reg[Ra] = Reg[Rb] then Reg[Rc] ← 1 else Reg[Rc] ← 0

If the contents of register Ra are equal to the contents of register Rb, the value one is written
to register Rc; otherwise zero is written to Rc.

5.8 CMPEQC

Usage: CMPEQC(Ra,literal,Rc)
Opcode: 110100 Rc Ra literal
Operation:	 PC ← PC + 4

if Reg[Ra] = SEXT(literal) then Reg[Rc] ← 1 else Reg[Rc] ← 0

If the contents of register Ra are equal to literal, the value one is written to register Rc;
otherwise zero is written to Rc.

5.9 CMPLE

Usage: CMPLE(Ra,Rb,Rc)

Operation:	 PC ← PC + 4

if Reg[Ra] ≤ Reg[Rb] then Reg[Rc] ← 1 else Reg[Rc] ← 0

If the contents of register Ra are less than or equal to the contents of register Rb, the value
one is written to register Rc; otherwise zero is written to Rc.

5.10 CMPLEC

Opcode: 100110 Rc Ra Rb unused

Usage: CMPLEC(Ra,literal,Rc)
Opcode: 110110 Rc Ra literal
Operation:	 PC ← PC + 4

if Reg[Ra] ≤ SEXT(literal) then Reg[Rc] ← 1 else Reg[Rc] ← 0

If the contents of register Ra are less than or eqaul to literal, the value one is written to
register Rc; otherwise zero is written to Rc.

6.004 Computation Structures - 5 -	 β Documentation

Opcode: 100101 Rc Ra Rb unused

5.11 CMPLT

Usage: CMPLT(Ra,Rb,Rc)

Operation:	 PC ← PC + 4

if Reg[Ra] < Reg[Rb] then Reg[Rc] ← 1 else Reg[Rc] ← 0

If the contents of register Ra are less than the contents of register Rb, the value one is written
to register Rc; otherwise zero is written to Rc.

5.12 CMPLTC

Usage: CMPLTC(Ra,literal,Rc)
Opcode: 110101 Rc Ra literal
Operation:	 PC ← PC + 4

if Reg[Ra] < SEXT(literal) then Reg[Rc] ← 1 else Reg[Rc] ← 0

If the contents of register Ra are less than literal, the value one is written to register Rc;
otherwise zero is written to Rc.

5.13 DIV

Usage: DIV(Ra,Rb,Rc)

Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] / Reg[Rb]

The contents of register Ra are divided by the contents of register Rb and the low-order 32
bits of the quotient are written to Rc.

5.14 DIVC

Opcode: 100011 Rc Ra Rb unused

Usage: DIVC(Ra,literal,Rc)
Opcode: 110011 Rc Ra literal
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] / SEXT(literal)

The contents of register Ra are divided by literal and the low-order 32 bits of the quotient is
written to Rc.

6.004 Computation Structures - 6 -	 β Documentation

Opcode: 011011 Rc Ra 0000000000000000

5.15 JMP

Usage: JMP(Ra,Rc)

Operation:	 PC ← PC+4

EA ← Reg[Ra] & 0xFFFFFFFC

Reg[Rc] ← PC

PC ← EA

The PC of the instruction following the JMP instruction (the updated PC) is written to
register Rc, then the PC is loaded with the contents of register Ra. The low two bits of Ra
are masked to ensure that the target address is aligned on a 4-byte boundary. Ra and Rc may
specify the same register; the target calculation using the old value is done before the
assignment of the new value. The unused literal field should be filled with zeroes. Note that
JMP can clear the supervisor bit (bit 31 of the PC) but not set it – see section 6.3 for details.

5.16 LD

Usage: LD(Ra,literal,Rc)
Opcode: 011000 Rc Ra literal
Operation:	 PC ← PC+4

EA ← Reg[Ra] + SEXT(literal)

Reg[Rc] ← Mem[EA]

The effective address EA is computed by adding the contents of register Ra to the sign-
extended 16-bit displacement literal. The location in memory specified by EA is read into
register Rc.

5.17 LDR

Usage: LDR(label,Rc)
Opcode: 011111 Rc 11111 literal
Operation:	 literal = ((OFFSET(label) − OFFSET(current instruction)) / 4)−1

PC ← PC + 4

EA ← PC + 4*SEXT(literal)

Reg[Rc] ← Mem[EA]

The effective address EA is computed by multiplying the sign-extended literal by 4 (to
convert it to a byte offset) and adding it to the updated PC. The location in memory specified
by EA is read into register Rc. The Ra field is ignored and should be 11111 (R31). The
supervisor bit (bit 31 of the PC) is ignored (i.e., treated as zero) when computing EA.

6.004 Computation Structures - 7 -	 β Documentation

Opcode: 100010 Rc Ra Rb unused

5.18 MUL

Usage: MUL(Ra,Rb,Rc)

Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] * Reg[Rb]

The contents of register Ra are multiplied by the contents of register Rb and the low-order 32
bits of the product are written to Rc.

5.19 MULC

Usage: MULC(Ra,literal,Rc)
Opcode: 110010 Rc Ra literal
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] * SEXT(literal)

The contents of register Ra are multiplied by literal and the low-order 32 bits of the product
are written to Rc.

5.20 OR

Usage: OR(Ra,Rb,Rc)

Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] | Reg[Rb]

This performs the bitwise boolean OR function between the contents of register Ra and the
contents of register Rb. The result is written to register Rc.

5.21 ORC

Opcode: 101001 Rc Ra Rb unused

Usage: ORC(Ra,literal,Rc)
Opcode: 111001 Rc Ra literal
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] | SEXT(literal)

This performs the bitwise boolean OR function between the contents of register Ra and
literal. The result is written to register Rc.

6.004 Computation Structures - 8 -	 β Documentation

Opcode: 101100 Rc Ra Rb unused

5.22 SHL

Usage: SHL(Ra,Rb,Rc)

Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] << Reg[Rb]4:0

The contents of register Ra are shifted left 0 to 31 bits as specified by the five-bit count in
register Rb. The result is written to register Rc. Zeroes are propagated into the vacated bit
positions.

5.23 SHLC

Usage: SHLC(Ra,literal,Rc)
Opcode: 111100 Rc Ra literal
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] << literal4:0

The contents of register Ra are shifted left 0 to 31 bits as specified by the five-bit count in
literal. The result is written to register Rc. Zeroes are propagated into the vacated bit
positions.

5.24 SHR

Usage: SHR(Ra,Rb,Rc)
Opcode: 101101 Rc Ra Rb unused
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] >> Reg[Rb]4:0

The contents of register Ra are shifted right 0 to 31 bits as specified by the five-bit count in
register Rb. The result is written to register Rc. Zeroes are propagated into the vacated bit
positions.

5.25 SHRC

Usage: SHRC(Ra,literal,Rc)
Opcode: 111101 Rc Ra literal
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] >> literal4:0

The contents of register Ra are shifted right 0 to 31 bits as specified by the five-bit count in
literal. The result result is written to register Rc. Zeroes are propagated into the vacated bit
positions.

6.004 Computation Structures - 9 -	 β Documentation

Opcode: 101110 Rc Ra Rb unused

5.26 SRA

Usage: SRA(Ra,Rb,Rc)

Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] >> Reg[Rb]4:0

The contents of register Ra are shifted arithmetically right 0 to 31 bits as specified by the
five-bit count in register Rb. The result is written to register Rc. The sign bit (Reg[Ra]31) is
propagated into the vacated bit positions.

5.25 SRAC

Usage: SRAC(Ra,literal,Rc)
Opcode: 111110 Rc Ra literal
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] >> literal4:0

The contents of register Ra are shifted arithmetically right 0 to 31 bits as specified by the
five-bit count in literal. The result is written to register Rc. The sign bit (Reg[Ra]31) is
propagated into the vacated bit positions.

5.28 ST

Usage: ST(Rc,literal,Ra)
Opcode: 011001 Rc Ra literal
Operation:	 PC ← PC+4

EA ← Reg[Ra] + SEXT(literal)

Mem[EA] ← Reg[Rc]

The effective address EA is computed by adding the contents of register Ra to the sign-
extended 16-bit displacement literal. The contents of register Rc are then written to the
location in memory specified by EA.

5.29 SUB

Usage: SUB(Ra,Rb,Rc)
Opcode: 100001 Rc Ra Rb unused
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] − Reg[Rb]

The contents of register Rb are subtracted from the contents of register Ra and the 32-bit
difference is written to Rc. This instruction computes no borrow or overflow information. If
desired, this can be computed through explicit compare instructions.

6.004 Computation Structures - 10 -	 β Documentation

5.30 SUBC

Usage: SUBC(Ra,literal,Rc)
Opcode: 110001 Rc Ra literal
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] − SEXT(literal)

The constant literal is subtracted from the contents of register Ra and the 32-bit difference is
written to Rc. This instruction computes no borrow or overflow information. If desired, this
can be computed through explicit compare instructions.

5.31 XOR

Usage: XOR(Ra,Rb,Rc)
Opcode: 101010 Rc Ra Rb unused
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] ^ Reg[Rb]

This performs the bitwise boolean XOR function between the contents of register Ra and the
contents of register Rb. The result is written to register Rc.

5.32 XORC

Usage: XORC(Ra,literal,Rc)
Opcode: 111010 Rc Ra literal
Operation:	 PC ← PC + 4

Reg[Rc] ← Reg[Ra] ^ SEXT(literal)

This performs the bitwise boolean XOR function between the contents of register Ra and
literal. The result is written to register Rc.

6. Extensions for Exception Handling

The standard β architecture described above is modified as follows to support exceptions and
privileged instructions.

6.1 Exceptions

β exceptions come in three flavors: traps, faults, and interrupts.

Traps and faults are both the direct outcome of an instruction (e.g., an attempt to execute an
illegal opcode) and are distinguished by the programmer's intentions. Traps are intentional
and are normally used to request service from the operating system. Faults are unintentional
and often signify error conditions.

6.004 Computation Structures - 11 -	 β Documentation

Interrupts are asynchronous with respect to the instruction stream, and are usually caused by
external events (e.g., a character appearing on an input device).

6.2 The XP Register

Register 30 is dedicated as the ``Exception Pointer'' (XP) register. When an exception
occurs, the updated PC is written to the XP. For traps and faults, this will be the PC of the
instruction following the one which caused the fault; for interrupts, this will be the PC of the
instruction following the one which was about to be executed when the interrupt occurred.
The instruction pointed to by XP–4 has not been executed.

Since the XP can be overwritten at unpredictable times as the result of an interrupt, it should
not be used by user-mode programs while interrupts are enabled.

6.3 Supervisor Mode

The high bit of the PC is dedicated as the “Supervisor” bit. The instruction fetch and LDR
instruction ignore this bit, treating it as if it were zero. The JMP instruction is allowed to
clear the Supervisor bit but not set it, and no other instructions may have any effect on it.
Only exceptions cause the Supervisor bit to become set.

When the Supervisor bit is clear, the processor is said to be in “user mode”. Interrupts are
enabled while in user mode.

When the Supervisor bit is set, the processor is said to be in “supervisor mode”. While in
supervisor mode, interrupts are disabled and privileged instructions (see below) may be used.
Traps and faults while in supervisor mode have implementation-defined (probably fatal)
effects.

Since the JMP instruction can clear the Supervisor bit, it is possible to load the PC with a
new value and enter user mode in a single atomic action. This provides a safe mechanism for
returning from a trap to the Operating System, even if an interrupt is pending at the time.

6.4 Exception Handling

When an exception occurs and the processor is in user mode, the updated PC is written to the
XP, the Supervisor bit is set, the PC is loaded with an implementation-defined value, and the
processor begins executing instructions from that point. This value is called
the “exception vector”, and may depend on the kind of exception which occurred.

The only exception which must be supported by all implementations is the “reset” exception
(also called the “power up” exception), which occurs immediately before any instructions are
executed by the processor. The exception vector for power up is always 0. Thus, at power
up time, the Supervisor bit is set, the XP is undefined, and execution begins at location 0 of
memory.

6.004 Computation Structures - 12 - β Documentation

6.5 Privileged Instructions

Some instructions may be available while in supervisor mode which are not available in user
mode (e.g., instructions which interface directly with I/O devices). These are called
“privileged instructions”. These instructions always have an opcode of 0x00; otherwise, their
form and semantics are implementation-defined. Attempts to use privileged instructions
while in user mode will result in an illegal instruction exception.

7. Software Conventions

This section describes our software programming conventions that supplement the basic architecture.

7.1 Reserved Registers
It is convenient to reserve a number of registers for pervasive standard uses. The hardware
itself reserves R31 and R30; in addition, our software conventions reserve R29, R28, and
R27.
These are summarized in the following table and are described more fully below.

Register Symbol Usage
R31 R31 Always zero
R30 XP Exception pointer
R29 SP Stack pointer
R28 LP Linkage pointer
R27 BP Base of frame pointer

7.2 Convenience Macros
We augment the basic β instruction set with the following macros, making it easier to express
certain common operations:

Macro Definition
BEQ(Ra, label) BEQ(Ra, label, R31)
BF(Ra, label) BF(Ra, label, R31)
BNE(Ra, label) BNE(Ra, label, R31)
BT(Ra, label) BT(Ra, label, R31)
BR(label, Rc) BEQ(R31, label, Rc)
BR(label) BR(label, R31)
JMP(Ra) JMP(Ra, R31)
LD(label, Rc) LD(R31, label, Rc)
ST(Rc, label) ST(Rc, label, R31)
MOVE(Ra, Rc) ADD(Ra, R31, Rc)
CMOVE(c, Rc) ADDC(R31, c, Rc)
PUSH(Ra) ADDC(SP, 4, SP)

ST(Ra, -4, SP)

6.004 Computation Structures - 13 - β Documentation

POP(Rc) LD(SP, -4, Rc)
SUBC(SP, 4, SP)

ALLOCATE(k) ADDC(SP, 4*k, SP)
DEALLOCATE(k) SUBC(SP, 4*k, SP)

7.3 Stack Implementation
SP is a reserved register that points to the top of the stack. The stack is an arbitrary con-
tiguous region of memory. The contents of SP are always a multiple of 4 and each stack slot
is 4 bytes. SP points to the location just beyond the topmost element on the stack. The stack
grows upward in memory (i.e., towards higher addresses). Four macros are defined for
manipulating the stack:

PUSH(Ra) - Push the contents of register Ra onto the stack
POP(Rc) - Pop the top element of the stack into Rc
ALLOCATE(k) - Push k words of uninitialized data onto the stack
DEALLOCATE(k) - Pop k words off of the stack and throw them away

7.4 Procedure Linkage
A procedure’s arguments are passed on the stack. Specifically, when a procedure is entered,
the topmost element on the stack is the first argument to the procedure; the next element on
the stack is the second argument to the procedure, and so on. A procedure’s return address is
passed in LP, which is a register reserved for this purpose. A procedure returns its value (if
any) in R0 and must leave all other registers, including the reserved registers, unaltered.
Thus, a typical call to a procedure named F looks like:
 (push argn-1)

...
 (push arg1)
 (push arg0)

BR (F, LP)
 DEALLOCATE (n)

(use R0, which is now F(arg0, arg1, ... , argn-1))

6.004 Computation Structures - 14 - β Documentation

7.5 Stack Frames
The preceeding section describes the rules which procedures must follow to interoperate
properly. This section describes our conventional means of writing a procedure which fol-
lows those rules.
A procedure invocation requires storage for its arguments, its local variables, and any reg-
isters it needs to save and restore. All of this storage is allocated in a contiguous region of the
stack called a “stack frame”. Procedures “activate” stack frames on entry and “deactivate”
them on exit. BP is a reserved register which points to a fixed location within the currently
active stack frame. Procedures use a standard prologue and epilogue to activate and
deactivate the stack frame.
The standard prologue is:
 PUSH (LP)

 PUSH (BP)

MOVE (SP, BP)

ALLOCATE (k) | allocate space for locals

(push registers which are used by procedure)

Note that either of the last two steps may be omitted if there are no local variables or if there
are no registers to save.
The standard epilogue is:

(pop registers which are used by procedure)

MOVE (BP, SP) | deallocate space for locals

 POP (BP)

POP (LP)

 JMP (LP)

Note that the epilogue assumes that the body of the procedure has no net effect on SP. Also
note that either or both of the first two steps may be omitted if there are no registers to restore
or if there are no local variables.
The standard prologue and epilogue together with the argument passing conventions imply
the following layout for a stack frame:

BP⇒

argn-1

 …
arg1

 arg0

 saved LP
 saved BP

local0

 local1

 …
localK-1 Higher

Addresses

6.004 Computation Structures - 15 - β Documentation

 (saved regs)

Note that BP always points to the first stack slot above the saved BP, which is the same as
the first local variable (if any). It also points to the third stack slot above the first argument (if
any). So within the procedure’s body, its arguments and locals may be accessed via constant
offsets from BP.

6.004 Computation Structures - 16 - β Documentation

Summary of β Instruction Formats

Operate Class:

31 26 25 21 20 16 15 11 10 0

10xxxx Rc Ra Rb unused

Register Symbol Usage
R31 R31 Always zero
R30 XP Exception pointer
R29 SP Stack pointer
R28 LP Linkage pointer
R27 BP Base of frame pointer

OP(Ra,Rb,Rc): Reg[Rc] ← Reg[Ra] op Reg[Rb]

Opcodes: ADD (plus), SUB (minus), MUL (multiply), DIV (divided by)
AND (bitwise and), OR (bitwise or), XOR (bitwise exclusive or)
CMPEQ (equal), CMPLT (less than), CMPLE (less than or equal) [result = 1 if true, 0 if false]
SHL (left shift), SHR (right shift w/o sign extension), SRA (right shift w/ sign extension)

31 26 25 21 20 16 15 0

11xxxx Rc Ra literal (two’s complement)

OPC(Ra,literal,Rc): Reg[Rc] ← Reg[Ra] op SEXT(literal)

Opcodes: ADDC (plus), SUBC (minus), MULC (multiply), DIVC (divided by)
ANDC (bitwise and), ORC (bitwise or), XORC (bitwise exclusive or)
CMPEQC (equal), CMPLTC (less than), CMPLEC (less than or equal) [result = 1 if true, 0 if false]
SHLC (left shift), SHRC (right shift w/o sign extension), SRAC (right shift w/ sign extension)

Other:

31 26 25 21 20 16 15 0

01xxxx Rc Ra literal (two’s complement)

LD(Ra,literal,Rc): Reg[Rc] ← Mem[Reg[Ra] + SEXT(literal)]

ST(Rc,literal,Ra): Mem[Reg[Ra] + SEXT(literal)] ← Reg[Rc]

JMP(Ra,Rc): Reg[Rc] ← PC + 4; PC ← Reg[Ra]

BEQ/BF(Ra,label,Rc): Reg[Rc] ← PC + 4; if Reg[Ra] = 0 then PC ← PC + 4 + 4*SEXT(literal)

BNE/BT(Ra,label,Rc): Reg[Rc] ← PC + 4; if Reg[Ra] ≠ 0 then PC ← PC + 4 + 4*SEXT(literal)

LDR(Ra,label,Rc): Reg[Rc] ← Mem[PC + 4 + 4*SEXT(literal)]

Opcode Table: (*optional opcodes)

2:0
5:3 000 001 010 011 100 101 110 111

000
001
010
011 LD ST JMP BEQ BNE LDR
100 ADD SUB MUL* DIV* CMPEQ CMPLT CMPLE
101 AND OR XOR SHL SHR SRA
110 ADDC SUBC MULC* DIVC* CMPEQC CMPLTC CMPLEC
111 ANDC ORC XORC SHLC SHRC SRAC

6.004 Computation Structures - 17 - β Documentation

