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   M A S S A C H U S E T T S I N S T I T U T E  O F T E C H N O L O G Y 

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE


6.004 Computation Structures 

β Documentation 

1. Introduction 

This handout is a reference guide for the β, the RISC processor design for 6.004.  This is 
intended to be a complete and thorough specification of the programmer-visible state and 
instruction set. 

2. Machine Model 

The β is a general-purpose 32-bit architecture: all registers are 32 bits wide and when loaded 
with an address can point to any location in the byte-addressed memory.  When read, register 
31 is always 0; when written, the new value is discarded. 

Program Counter Main Memory 

232 bytes 

… 

PC always a multiple of 4 

R0 

R1 

R30 

R31 always 0 

32 bits 

Registers 

3 2 1 0

 SUB(R3,R4,R5)

 ST(R5,1000) 

32 bits 32 bits 

0x00000000: 

0x00000004: 

0xFFFFFFF8: 

0xFFFFFFFC: 

… 

… 

3. Instruction Encoding 

Each β instruction is 32 bits long. All integer manipulation is between registers, with up to 
two source operands (one may be a sign-extended 16-bit literal), and one destination register.  
Memory is referenced through load and store instructions that perform no other computation.  
Conditional branch instructions are separated from comparison instructions: branch 
instructions test the value of a register that can be the result of a previous compare 
instruction. 

6.004 Computation Structures - 1 - β Documentation 



There are only two types of instruction encoding: Without Literal and With Literal. 
Instructions without literals include arithmetic and logical operations between two registers 
whose result is placed in a third register. Instructions with literals include all other 
operations. 

Like all signed quantities on the β, an instruction's literal is represented in two’s complement. 

3.1 Without Literal 

31 26 25 21 20 16 15 11 10 0 

Opcode Rc Ra Rb unused 

3.2 With Literal 

31 26 25 21 20 16 15 0 

Opcode Rc Ra literal (two’s complement) 

4. Instruction Summary 

Below are listed the 32 β instructions and their 6-bit opcodes.  For detailed instruction 
operations, see the following section. 

Mnemonic Opcode 

ADD 0x20 
ADDC 0x30 
AND 0x28 
ANDC 0x38 
BEQ 0x1D 
BNE 0x1E 
CMPEQ 0x24 
CMPEQC 0x34 

Mnemonic Opcode 

CMPLE 0x26 
CMPLEC 0x36 
CMPLT 0x25 
CMPLTC 0x35 
DIV 0x23 
DIVC 0x33 
JMP 0x1B 
LD 0x18 

Mnemonic Opcode 

LDR 0x1F 
MUL 0x22 
MULC 0x32 
OR 0x29 
ORC 0x39 
SHL 0x2C 
SHLC 0x3C 
SHR 0x2D 

Mnemonic Opcode 

SHRC 0x3D 
SRA 0x2E 
SRAC 0x3E 
SUB 0x21 
SUBC 0x31 
ST 0x19 
XOR 0x2A 
XORC 0x3A 

5. Instruction Specifications 

This section contains the specifications for the β instructions, listed alphabetically by 
mnemonic.  No timing-dependent information is given: it is specifically assumed that there 
are no pathological timing interactions between instructions in this specification.  Each 
instruction is considered atomic and is presumed to complete before the next instruction is 
executed. No assumptions are made about branch prediction, instruction prefetch, or 
memory caching. 
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Opcode: 100000 Rc Ra Rb unused 

5.1 ADD 

Usage: ADD(Ra,Rb,Rc) 

Operation:	 PC ← PC + 4 

Reg[Rc] ← Reg[Ra] + Reg[Rb] 


The contents of register Ra are added to the contents of register Rb and the 32-bit sum is 
written to Rc.  This instruction computes no carry or overflow information.  If desired, this 
can be computed through explicit compare instructions. 

5.2 ADDC 

Usage: ADDC(Ra,literal,Rc) 
Opcode: 110000 Rc Ra literal 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] + SEXT(literal)


The contents of register Ra are added to literal and the 32-bit sum is written to Rc.  This 
instruction computes no carry or overflow information.  If desired, this can be computed 
through explicit compare instructions. 

5.3 AND 

Usage: AND(Ra,Rb,Rc) 
Opcode: 101000 Rc Ra Rb unused 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] & Reg[Rb] 


This performs the bitwise boolean AND function between the contents of register Ra and the 
contents of register Rb. The result is written to register Rc. 

5.4 ANDC 

Usage: ANDC(Ra,literal,Rc) 
Opcode: 111000 Rc Ra literal 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] & SEXT(literal) 


This performs the bitwise boolean AND function between the contents of register Ra and 
literal. The result is written to register Rc. 
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5.5 BEQ/BF


Usage: BEQ(Ra,label,Rc) 
BF(Ra,label,Rc) 

Opcode: 011101 Rc Ra literal 
Operation:	 literal = ((OFFSET(label) − OFFSET(current instruction)) / 4)−1 


PC ← PC + 4 

EA ← PC + 4*SEXT(literal) 

TEMP ← Reg[Ra] 

Reg[Rc] ← PC 

if TEMP = 0 then PC ← EA 


The PC of the instruction following the BEQ instruction (the updated PC) is written to 
register Rc. If the contents of register Ra are zero, the PC is loaded with the target address; 
otherwise, execution continues with the next sequential instruction. 

The displacement literal is treated as a signed word offset.  This means it is multiplied by 4 
to convert it to a byte offset, sign extended to 32 bits, and added to the updated PC to form 
the target address. 

5.6 BNE/BT 

Usage: 	BNE(Ra,label,Rc) 
BT(Ra,label,Rc) 

Opcode: 011110 Rc Ra literal 
Operation:	 literal = ((OFFSET(label) − OFFSET(current instruction)) ÷ 4)−1 


PC ← PC + 4 

EA ← PC + 4*SEXT(literal) 

TEMP ← Reg[Ra] 

Reg[Rc] ← PC 

if TEMP ≠ 0 then PC ← EA 


The PC of the instruction following the BNE instruction (the updated PC) is written to 
register Rc. If the contents of register Ra are non-zero, the PC is loaded with the target 
address; otherwise, execution continues with the next sequential instruction. 

The displacement literal is treated as a signed word offset.  This means it is multiplied by 4 
to convert it to a byte offset, sign extended to 32 bits, and added to the updated PC to form 
the target address. 
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5.7 CMPEQ


Usage: CMPEQ(Ra,Rb,Rc) 
Opcode: 100100 Rc Ra Rb unused 
Operation:	 PC ← PC + 4 


if Reg[Ra] = Reg[Rb] then Reg[Rc] ← 1 else Reg[Rc] ← 0 


If the contents of register Ra are equal to the contents of register Rb, the value one is written 
to register Rc; otherwise zero is written to Rc. 

5.8 CMPEQC 

Usage: CMPEQC(Ra,literal,Rc) 
Opcode: 110100 Rc Ra literal 
Operation:	 PC ← PC + 4 


if Reg[Ra] = SEXT(literal) then Reg[Rc] ← 1 else Reg[Rc] ← 0 


If the contents of register Ra are equal to literal, the value one is written to register Rc; 
otherwise zero is written to Rc. 

5.9 CMPLE 

Usage: CMPLE(Ra,Rb,Rc) 

Operation:	 PC ← PC + 4 

if Reg[Ra] ≤ Reg[Rb] then Reg[Rc] ← 1 else Reg[Rc] ← 0 


If the contents of register Ra are less than or equal to the contents of register Rb, the value 
one is written to register Rc; otherwise zero is written to Rc. 

5.10 CMPLEC 

Opcode: 100110 Rc Ra Rb unused 

Usage: CMPLEC(Ra,literal,Rc) 
Opcode: 110110 Rc Ra literal 
Operation:	 PC ← PC + 4 


if Reg[Ra] ≤ SEXT(literal) then Reg[Rc] ← 1 else Reg[Rc] ← 0 


If the contents of register Ra are less than or eqaul to literal, the value one is written to 
register Rc; otherwise zero is written to Rc. 
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Opcode: 100101 Rc Ra Rb unused 

5.11 CMPLT 

Usage: CMPLT(Ra,Rb,Rc) 

Operation:	 PC ← PC + 4 

if Reg[Ra] < Reg[Rb] then Reg[Rc] ← 1 else Reg[Rc] ← 0 


If the contents of register Ra are less than the contents of register Rb, the value one is written 
to register Rc; otherwise zero is written to Rc. 

5.12 CMPLTC 

Usage: CMPLTC(Ra,literal,Rc) 
Opcode: 110101 Rc Ra literal 
Operation:	 PC ← PC + 4 


if Reg[Ra] < SEXT(literal) then Reg[Rc] ← 1 else Reg[Rc] ← 0 


If the contents of register Ra are less than literal, the value one is written to register Rc; 
otherwise zero is written to Rc. 

5.13 DIV 

Usage: DIV(Ra,Rb,Rc) 

Operation:	 PC ← PC + 4 

Reg[Rc] ← Reg[Ra] / Reg[Rb] 


The contents of register Ra are divided by the contents of register Rb and the low-order 32 
bits of the quotient are written to Rc. 

5.14 DIVC 

Opcode: 100011 Rc Ra Rb unused 

Usage: DIVC(Ra,literal,Rc) 
Opcode: 110011 Rc Ra literal 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] / SEXT(literal)


The contents of register Ra are divided by literal and the low-order 32 bits of the quotient is 
written to Rc. 
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Opcode: 011011 Rc Ra 0000000000000000 

5.15 JMP 

Usage: JMP(Ra,Rc) 

Operation:	 PC ← PC+4 

EA ← Reg[Ra] & 0xFFFFFFFC 

Reg[Rc] ← PC 

PC ← EA


The PC of the instruction following the JMP instruction (the updated PC) is written to 
register Rc, then the PC is loaded with the contents of register Ra.  The low two bits of Ra 
are masked to ensure that the target address is aligned on a 4-byte boundary.  Ra and Rc may 
specify the same register; the target calculation using the old value is done before the 
assignment of the new value.  The unused literal field should be filled with zeroes.  Note that 
JMP can clear the supervisor bit (bit 31 of the PC) but not set it – see section 6.3 for details. 

5.16 LD 

Usage: LD(Ra,literal,Rc) 
Opcode: 011000 Rc Ra literal 
Operation:	 PC ← PC+4 


EA ← Reg[Ra] + SEXT(literal) 

Reg[Rc] ← Mem[EA] 


The effective address EA is computed by adding the contents of register Ra to the sign-
extended 16-bit displacement literal.  The location in memory specified by EA is read into 
register Rc. 

5.17 LDR 

Usage: LDR(label,Rc) 
Opcode: 011111 Rc 11111 literal 
Operation:	 literal = ((OFFSET(label) − OFFSET(current instruction)) / 4)−1 


PC ← PC + 4 

EA ← PC + 4*SEXT(literal) 

Reg[Rc] ← Mem[EA] 


The effective address EA is computed by multiplying the sign-extended literal by 4 (to 
convert it to a byte offset) and adding it to the updated PC.  The location in memory specified 
by EA is read into register Rc. The Ra field is ignored and should be 11111 (R31). The 
supervisor bit (bit 31 of the PC) is ignored (i.e., treated as zero) when computing EA. 
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Opcode: 100010 Rc Ra Rb unused 

5.18 MUL 

Usage: MUL(Ra,Rb,Rc) 

Operation:	 PC ← PC + 4 

Reg[Rc] ← Reg[Ra] * Reg[Rb] 


The contents of register Ra are multiplied by the contents of register Rb and the low-order 32 
bits of the product are written to Rc. 

5.19 MULC 

Usage: MULC(Ra,literal,Rc) 
Opcode: 110010 Rc Ra literal 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] * SEXT(literal)


The contents of register Ra are multiplied by literal and the low-order 32 bits of the product 
are written to Rc. 

5.20 OR 

Usage: OR(Ra,Rb,Rc) 

Operation:	 PC ← PC + 4 

Reg[Rc] ← Reg[Ra] | Reg[Rb] 


This performs the bitwise boolean OR function between the contents of register Ra and the 
contents of register Rb. The result is written to register Rc. 

5.21 ORC 

Opcode: 101001 Rc Ra Rb unused 

Usage: ORC(Ra,literal,Rc) 
Opcode: 111001 Rc Ra literal 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] | SEXT(literal)


This performs the bitwise boolean OR function between the contents of register Ra and 
literal. The result is written to register Rc. 
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Opcode: 101100 Rc Ra Rb unused 

5.22 SHL 

Usage: SHL(Ra,Rb,Rc) 

Operation:	 PC ← PC + 4 

Reg[Rc] ← Reg[Ra] << Reg[Rb]4:0


The contents of register Ra are shifted left 0 to 31 bits as specified by the five-bit count in 
register Rb. The result is written to register Rc.  Zeroes are propagated into the vacated bit 
positions. 

5.23 SHLC 

Usage: SHLC(Ra,literal,Rc) 
Opcode: 111100 Rc Ra literal 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] << literal4:0


The contents of register Ra are shifted left 0 to 31 bits as specified by the five-bit count in 
literal. The result is written to register Rc.  Zeroes are propagated into the vacated bit 
positions. 

5.24 SHR 

Usage: SHR(Ra,Rb,Rc) 
Opcode: 101101 Rc Ra Rb unused 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] >> Reg[Rb]4:0


The contents of register Ra are shifted right 0 to 31 bits as specified by the five-bit count in 
register Rb. The result is written to register Rc.  Zeroes are propagated into the vacated bit 
positions. 

5.25 SHRC 

Usage: SHRC(Ra,literal,Rc) 
Opcode: 111101 Rc Ra literal 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] >> literal4:0


The contents of register Ra are shifted right 0 to 31 bits as specified by the five-bit count in 
literal. The result result is written to register Rc.  Zeroes are propagated into the vacated bit 
positions. 
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Opcode: 101110 Rc Ra Rb unused 

5.26 SRA 

Usage: SRA(Ra,Rb,Rc) 

Operation:	 PC ← PC + 4 

Reg[Rc] ← Reg[Ra] >> Reg[Rb]4:0


The contents of register Ra are shifted arithmetically right 0 to 31 bits as specified by the 
five-bit count in register Rb. The result is written to register Rc.  The sign bit (Reg[Ra]31) is 
propagated into the vacated bit positions. 

5.25 SRAC 

Usage: SRAC(Ra,literal,Rc) 
Opcode: 111110 Rc Ra literal 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] >> literal4:0


The contents of register Ra are shifted arithmetically right 0 to 31 bits as specified by the 
five-bit count in literal. The result is written to register Rc.  The sign bit (Reg[Ra]31) is 
propagated into the vacated bit positions. 

5.28 ST 

Usage: ST(Rc,literal,Ra) 
Opcode: 011001 Rc Ra literal 
Operation:	 PC ← PC+4 


EA ← Reg[Ra] + SEXT(literal) 

Mem[EA] ← Reg[Rc] 


The effective address EA is computed by adding the contents of register Ra to the sign-
extended 16-bit displacement literal. The contents of register Rc are then written to the 
location in memory specified by EA. 

5.29 SUB 

Usage: SUB(Ra,Rb,Rc) 
Opcode: 100001 Rc Ra Rb unused 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] − Reg[Rb] 


The contents of register Rb are subtracted from the contents of register Ra and the 32-bit 
difference is written to Rc.  This instruction computes no borrow or overflow information.  If 
desired, this can be computed through explicit compare instructions. 

6.004 Computation Structures - 10 -	 β Documentation 



5.30 SUBC 

Usage: SUBC(Ra,literal,Rc) 
Opcode: 110001 Rc Ra literal 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] − SEXT(literal)


The constant literal is subtracted from the contents of register Ra and the 32-bit difference is 
written to Rc.  This instruction computes no borrow or overflow information.  If desired, this 
can be computed through explicit compare instructions. 

5.31 XOR 

Usage: XOR(Ra,Rb,Rc) 
Opcode: 101010 Rc Ra Rb unused 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] ^ Reg[Rb] 


This performs the bitwise boolean XOR function between the contents of register Ra and the 
contents of register Rb. The result is written to register Rc. 

5.32 XORC 

Usage: XORC(Ra,literal,Rc) 
Opcode: 111010 Rc Ra literal 
Operation:	 PC ← PC + 4 


Reg[Rc] ← Reg[Ra] ^ SEXT(literal)


This performs the bitwise boolean XOR function between the contents of register Ra and 
literal. The result is written to register Rc. 

6. Extensions for Exception Handling 

The standard β architecture described above is modified as follows to support exceptions and 
privileged instructions. 

6.1 Exceptions 

β exceptions come in three flavors: traps, faults, and interrupts. 

Traps and faults are both the direct outcome of an instruction (e.g., an attempt to execute an 
illegal opcode) and are distinguished by the programmer's intentions.  Traps are intentional 
and are normally used to request service from the operating system.  Faults are unintentional 
and often signify error conditions. 
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Interrupts are asynchronous with respect to the instruction stream, and are usually caused by 
external events (e.g., a character appearing on an input device). 

6.2 The XP Register 

Register 30 is dedicated as the ``Exception Pointer'' (XP) register.  When an exception 
occurs, the updated PC is written to the XP.  For traps and faults, this will be the PC of the 
instruction following the one which caused the fault; for interrupts, this will be the PC of the 
instruction following the one which was about to be executed when the interrupt occurred.  
The instruction pointed to by XP–4 has not been executed. 

Since the XP can be overwritten at unpredictable times as the result of an interrupt, it should 
not be used by user-mode programs while interrupts are enabled. 

6.3 Supervisor Mode 

The high bit of the PC is dedicated as the “Supervisor” bit.  The instruction fetch and LDR 
instruction ignore this bit, treating it as if it were zero.  The JMP instruction is allowed to 
clear the Supervisor bit but not set it, and no other instructions may have any effect on it.  
Only exceptions cause the Supervisor bit to become set. 

When the Supervisor bit is clear, the processor is said to be in “user mode”.  Interrupts are 
enabled while in user mode. 

When the Supervisor bit is set, the processor is said to be in “supervisor mode”.  While in 
supervisor mode, interrupts are disabled and privileged instructions (see below) may be used.  
Traps and faults while in supervisor mode have implementation-defined (probably fatal) 
effects. 

Since the JMP instruction can clear the Supervisor bit, it is possible to load the PC with a 
new value and enter user mode in a single atomic action.  This provides a safe mechanism for 
returning from a trap to the Operating System, even if an interrupt is pending at the time. 

6.4 Exception Handling 

When an exception occurs and the processor is in user mode, the updated PC is written to the 
XP, the Supervisor bit is set, the PC is loaded with an implementation-defined value, and the 
processor begins executing instructions from that point.  This value is called 
the “exception vector”, and may depend on the kind of exception which occurred. 

The only exception which must be supported by all implementations is the “reset” exception 
(also called the “power up” exception), which occurs immediately before any instructions are 
executed by the processor. The exception vector for power up is always 0.  Thus, at power 
up time, the Supervisor bit is set, the XP is undefined, and execution begins at location 0 of 
memory. 
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6.5 Privileged Instructions 

Some instructions may be available while in supervisor mode which are not available in user 
mode (e.g., instructions which interface directly with I/O devices).  These are called 
“privileged instructions”.  These instructions always have an opcode of 0x00; otherwise, their 
form and semantics are implementation-defined. Attempts to use privileged instructions 
while in user mode will result in an illegal instruction exception. 

7. Software Conventions 

This section describes our software programming conventions that supplement the basic architecture. 

7.1 Reserved Registers 
It is convenient to reserve a number of registers for pervasive standard uses. The hardware 
itself reserves R31 and R30; in addition, our software conventions reserve R29, R28, and 
R27. 
These are summarized in the following table and are described more fully below. 

Register Symbol Usage 
R31 R31 Always zero 
R30 XP Exception pointer 
R29 SP Stack pointer 
R28 LP Linkage pointer 
R27 BP Base of frame pointer 

7.2 Convenience Macros 
We augment the basic β instruction set with the following macros, making it easier to express 
certain common operations: 

Macro Definition 
BEQ(Ra, label) BEQ(Ra, label, R31) 
BF(Ra, label) BF(Ra, label, R31) 
BNE(Ra, label) BNE(Ra, label, R31) 
BT(Ra, label) BT(Ra, label, R31) 
BR(label, Rc) BEQ(R31, label, Rc) 
BR(label) BR(label, R31) 
JMP(Ra) JMP(Ra, R31) 
LD(label, Rc) LD(R31, label, Rc) 
ST(Rc, label) ST(Rc, label, R31) 
MOVE(Ra, Rc) ADD(Ra, R31, Rc) 
CMOVE(c, Rc) ADDC(R31, c, Rc) 
PUSH(Ra) ADDC(SP, 4, SP) 

ST(Ra, -4, SP) 
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POP(Rc) LD(SP, -4, Rc) 
SUBC(SP, 4, SP) 

ALLOCATE(k) ADDC(SP, 4*k, SP) 
DEALLOCATE(k) SUBC(SP, 4*k, SP) 

7.3 Stack Implementation 
SP is a reserved register that points to the top of the stack. The stack is an arbitrary con-
tiguous region of memory. The contents of SP are always a multiple of 4 and each stack slot 
is 4 bytes. SP points to the location just beyond the topmost element on the stack. The stack 
grows upward in memory (i.e., towards higher addresses). Four macros are defined for 
manipulating the stack: 

PUSH(Ra) - Push the contents of register Ra onto the stack 
POP(Rc) - Pop the top element of the stack into Rc 
ALLOCATE(k) - Push k words of uninitialized data onto the stack 
DEALLOCATE(k) - Pop k words off of the stack and throw them away 

7.4 Procedure Linkage 
A procedure’s arguments are passed on the stack. Specifically, when a procedure is entered, 
the topmost element on the stack is the first argument to the procedure; the next element on 
the stack is the second argument to the procedure, and so on. A procedure’s return address is 
passed in LP, which is a register reserved for this purpose. A procedure returns its value (if 
any) in R0 and must leave all other registers, including the reserved registers, unaltered. 
Thus, a typical call to a procedure named F looks like: 
 (push argn-1) 

... 
 (push arg1) 
 (push arg0) 

BR (F, LP)
 DEALLOCATE (n) 

(use R0, which is now F(arg0, arg1, ... , argn-1)) 
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7.5 Stack Frames 
The preceeding section describes the rules which procedures must follow to interoperate 
properly. This section describes our conventional means of writing a procedure which fol-
lows those rules. 
A procedure invocation requires storage for its arguments, its local variables, and any reg-
isters it needs to save and restore. All of this storage is allocated in a contiguous region of the 
stack called a “stack frame”. Procedures “activate” stack frames on entry and “deactivate” 
them on exit. BP is a reserved register which points to a fixed location within the currently 
active stack frame. Procedures use a standard prologue and epilogue to activate and 
deactivate the stack frame. 
The standard prologue is: 
 PUSH (LP)

 PUSH (BP) 


MOVE (SP, BP) 

ALLOCATE (k)  | allocate space for locals 

(push registers which are used by procedure) 


Note that either of the last two steps may be omitted if there are no local variables or if there 
are no registers to save. 
The standard epilogue is: 

(pop registers which are used by procedure) 

MOVE (BP, SP) | deallocate space for locals 


 POP (BP) 

POP (LP) 


 JMP (LP) 


Note that the epilogue assumes that the body of the procedure has no net effect on SP. Also 
note that either or both of the first two steps may be omitted if there are no registers to restore 
or if there are no local variables. 
The standard prologue and epilogue together with the argument passing conventions imply 
the following layout for a stack frame: 

BP⇒ 

argn-1

 … 
arg1

 arg0

 saved LP 
 saved BP 

local0

 local1

 … 
localK-1 Higher 

Addresses 
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 (saved regs) 

Note that BP always points to the first stack slot above the saved BP, which is the same as 
the first local variable (if any). It also points to the third stack slot above the first argument (if 
any). So within the procedure’s body, its arguments and locals may be accessed via constant 
offsets from BP. 
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Summary of β Instruction Formats 

Operate Class: 

31 26 25 21 20 16 15 11 10 0 

10xxxx Rc Ra Rb unused 

Register Symbol Usage 
R31 R31 Always zero 
R30 XP Exception pointer 
R29 SP Stack pointer 
R28 LP Linkage pointer 
R27 BP Base of frame pointer 

OP(Ra,Rb,Rc): Reg[Rc] ← Reg[Ra] op Reg[Rb] 

Opcodes:  ADD (plus), SUB (minus), MUL (multiply), DIV (divided by) 
AND (bitwise and), OR (bitwise or), XOR (bitwise exclusive or) 
CMPEQ (equal), CMPLT (less than), CMPLE (less than or equal)  [result = 1 if true, 0 if false] 
SHL (left shift), SHR (right shift w/o sign extension), SRA (right shift w/ sign extension) 

31 26 25 21 20 16 15 0 

11xxxx Rc Ra literal (two’s complement) 

OPC(Ra,literal,Rc): Reg[Rc] ← Reg[Ra] op SEXT(literal) 

Opcodes: ADDC (plus), SUBC (minus), MULC (multiply), DIVC (divided by) 
ANDC (bitwise and), ORC (bitwise or), XORC (bitwise exclusive or) 
CMPEQC (equal), CMPLTC (less than), CMPLEC (less than or equal)  [result = 1 if true, 0 if false] 
SHLC (left shift), SHRC (right shift w/o sign extension), SRAC (right shift w/ sign extension) 

Other: 

31 26 25 21 20 16 15 0 

01xxxx Rc Ra literal (two’s complement) 

LD(Ra,literal,Rc): Reg[Rc] ← Mem[Reg[Ra] + SEXT(literal)] 

ST(Rc,literal,Ra): Mem[Reg[Ra] + SEXT(literal)] ← Reg[Rc]

JMP(Ra,Rc): Reg[Rc] ← PC + 4; PC ← Reg[Ra] 

BEQ/BF(Ra,label,Rc): Reg[Rc] ← PC + 4; if Reg[Ra] = 0 then PC ← PC + 4 + 4*SEXT(literal) 

BNE/BT(Ra,label,Rc): Reg[Rc] ← PC + 4; if Reg[Ra] ≠ 0 then PC ← PC + 4 + 4*SEXT(literal) 

LDR(Ra,label,Rc):  Reg[Rc] ← Mem[PC + 4 + 4*SEXT(literal)] 


Opcode Table: (*optional opcodes) 

2:0 
5:3 000 001 010 011 100 101 110 111 

000 
001 
010 
011 LD ST JMP BEQ BNE LDR 
100 ADD SUB MUL* DIV* CMPEQ CMPLT CMPLE 
101 AND OR XOR SHL SHR SRA  
110 ADDC SUBC MULC* DIVC* CMPEQC CMPLTC CMPLEC  
111 ANDC ORC XORC SHLC SHRC SRAC 
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