
MIT OpenCourseWare
http://ocw.mit.edu

6.004 Computation Structures
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

 M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.004 Computation Structures
Lab #7

The goal of this lab is to add support for two new instructions to the Beta. But instead of adding
hardware, we’ll support the instructions in software (!) by writing the appropriate emulation code
in the handler for “illegal instruction” exceptions.

 The new instructions implement load and store operations for byte (8-bit) data:

LDB

Usage: LDB(Ra,literal,Rc)

Operation: PC ← PC+4
EA ← Reg[Ra] + SEXT(literal)
MDATA ← Mem[EA]
Reg[Rc]7:0 ← if EA1:0 = 0b00 then MDATA7:0

 else if EA1:0 = 0b01 then MDATA15:8
else if EA1:0 = 0b10 then MDATA23:16
else if EA1:0 = 0b11 then MDATA31:24

Reg[Rc]31:8 ← 0x000000

The effective address EA is computed by adding the contents of register Ra to the sign-
extended 16-bit displacement literal. The byte location in memory specified by EA is
read into the low-order 8 bits of register Rc; bits 31:8 of Rc are cleared.

STB

Opcode: 010000 Rc Ra literal

Usage: STB(Rc,literal,Ra)
Opcode: 010001 Rc Ra literal
Operation: 	 PC ← PC+4

EA ← Reg[Ra] + SEXT(literal)
MDATA ← Mem[EA]
if EA1:0 = 0b00 then MDATA7:0 ← Reg[Rc]7:0

else if EA1:0 = 0b01 then MDATA 15:8 ← Reg[Rc]7:0

else if EA1:0 = 0b10 then MDATA 23:16 ← Reg[Rc]7:0

else if EA1:0 = 0b11 then MDATA 31:24 ← Reg[Rc]7:0

Mem[EA] ← MDATA

The effective address EA is computed by adding the contents of register Ra to the sign-
extended 16-bit displacement literal. The low-order 8-bits of register Rc are written into
the byte location in memory specified by EA. The other bytes of the memory word
remain unchanged.

6.004 Computation Structures - 1 -	 Lab #7

When the Beta hardware (which doesn’t know about these instructions) detects either of the two
opcodes above, it will cause an “illegal instruction” exception (see section 6.4 of the Beta
documentation) and set the PC to 4.

The checkoff code has loaded location 4 with “BR(UI)” that branches to an assembly language
routine labeled UI which handles illegal instructions – this is the routine that you need to write.
It should do the following:

1.	 Determine if the opcode for the illegal instruction is for LDB or STB. The address of
the instruction after the illegal instruction has been loaded into register XP by the
hardware (i.e., the illegal instruction is at memory address Reg[XP]-4).

2.	 If the illegal instruction is not LDB or STB, your routine should branch to the label
_IllegalInstruction – note the leading underscore. Before branching, the contents of all
the registers should be the same as they were when your routine was entered. So you
should save and restore any registers you use in Step 1.

3.	 If the illegal instruction is LDB or STB, your routine should perform the appropriate
memory and register accesses to emulate the operation of these instructions. Your
routine will have to decode the instruction at Reg[XP]-4 to determine what registers and
memory locations to use.

4.	 When your emulation is complete, return control to the interrupted program at the
instruction following the LDB or STB. The contents of all the registers should be the
same as they were when your routine was entered, except for the register changed by
LDB. So you need to save and restore any registers you use in steps 1 and 3.

To test your code, we’ll be using the BSim beta simulator. In order to interface properly with
the checkoff code, your assembly language program should follow the template below:

.include /mit/6.004/bsim/beta.uasm

.include /mit/6.004/bsim/lab7checkoff.uasm

UI:
… your assembly language code here …

Lab7checkoff.uasm contains the checkoff code for this lab. When execution begins, it does
the appropriate initialization (setting SP to point to an area of memory used for the stack, etc.)
and then executes a small test program that includes LDB and STB instructions that test your
emulation routine. The program will type out messages as it executes, reporting any errors it
detects. When it types “Checkoff tests completed successfully!”, you’re ready to submit your
code to the on-line checkoff system.

To help you get started here’s an example illegal instruction handler that emulates a new
instruction swapreg(RA,RC) which interchanges the values in registers RA and RC. This
example can found on-line in /mit/6.004/bsim/swapregs.uasm and on the Courseware
webpage. The example includes lab7macros.uasm, a file containing some useful macros for
saving/restoring registers and extracting bit fields from a 32-bit word.

.include /mit/6.004/bsim/beta.uasm

.include /mit/6.004/bsim/lab7macros.uasm

6.004 Computation Structures - 2 -	 Lab #7

||| Handler for opcode 1 extension:

||| swapreg(RA,RC) swaps the contents of the two named registers.

||| UASM defn = .macro swapreg(RA,RC) betaopc(0x01,RA,0,RC)

regs: RESERVE(32) | Array used to store register contents

UI:
save_all_regs(regs)

LD(xp,-4,r0) | illegal instruction

extract_field(r0, 31, 26, r1) | extract opcode, bits 31:26

CMPEQC(r1,0x1,r2) | OPCODE=1?

BT(r2, swapreg) | yes, handle the swapreg instruction.

LD(r31,regs,r0) | It’s something else. Restore regs

LD(r31,regs+4,r1) | we've used, and go to the system's

LD(r31,regs+8,r2) | Illegal Instruction handler.

BR(_IllegalInstruction)

swapreg:
extract_field(r0, 25, 21, r1) | extract rc field
MULC(r1, 4, r1) | convert to byte offset into regs array
extract_field(r0, 20, 16, r2) | extract ra
MULC(r2, 4, r2) | convert to byte offset into regs array
LD(r1, regs, r3) | r3 <- regs[rc]
LD(r2, regs, r4) | r4 <- regs[ra]
ST(r4, regs, r1) | regs[rc] <- old regs[ra]
ST(r3, regs, r2) | regs[ra] <- old regs[rc]

restore_all_regs(regs)

JMP(xp)

6.004 Computation Structures - 3 - Lab #7

