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M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE


6.004 Computation Structures 
Lab #6 

Preparation: the description of the Beta implementation in lecture 14, the ALU function codes 
from Lab #3, and the Summary of Instruction Formats will be useful when working on this lab. 
Note: this is a long assignment, please plan accordingly! 

The goal of this lab is to complete your Beta design. We’ll do it in two steps: first get the design 
to the point where it can execute a “basic block” of instructions, i.e., a sequence of instructions 
that does not contain any branches or jumps. And second, add the circuitry to handle transfers of 
control (JMP, BNE, BEQ). The following diagram of a simplified Beta that can execute basic 
blocks shows what needs to be done for the first step: 

It’s probably best to tackle this step in stages. Here are some step-by-step design notes keyed to 
the dotted-line boxes in the block diagram shown above. 
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PC 

The 32-bit multiplexer selects the value to be loaded into the PC at next rising edge of the clock. 
Eventually the mux will have inputs used for implementing branches, jumps, exceptions, etc. but 
for now use a two-input 32-bit mux that selects 0x00000000 when the RESET signal is asserted, 
and the output of the PC+4 logic when RESET is not asserted. We will use the RESET signal to 
force the PC to zero during the first clock period of the simulation. 

The PC is a separate 32-bit register that can be built using the dreg component from the parts 
library. You should include hardware for the bottom two bits of the PC even though they are 
always 0; this will make debugging traces easier to interpret. 

Conceptually, the increment-by-4 circuit is just a 32-bit adder with one input wired to the 
constant 4. You can implement it this way, but it is possible to build a much smaller circuit if you 
design an adder optimized knowing that one of its inputs is 0x00000004. 

We’ve created a test jig to test your PC circuitry. Your netlist should incorporate the following 
three .include statements 

.include "/mit/6.004/jsim/nominal.jsim"


.include "/mit/6.004/jsim/stdcell.jsim"


.include "/mit/6.004/jsim/lab6pc.jsim"


and the following subcircuit definition (you can of course define other subcircuits as well) 

.subckt pc clk reset ia[31:0]

… your mux/register/+4 circuit here …

.ends


REGFILE 

The register file is a 3-port memory.  Here’s a template netlist for specifying the 3-port register 
file: 

Xregfile

+ vdd 0 0 ra[4:0] adata[31:0]  // A read port

+ vdd 0 0 ra2mux[4:0] bdata[31:0] // B read port

+ 0 clk werf rc[4:0] wdata[31:0] // write port

+ $memory width=32 nlocations=31


A more complete description of how to use the $memory JSim component can be found at the 
end of this writeup. 

Note that the memory component doesn’t know that location 31 of the register file should always 
read as zero, so you’ll have to add additional logic around the memory that makes this happen. 
You can use muxes or ANDs to force the register data for each read port to “0” when the port 
address = 0b11111 (i.e., R31). And you’ll need a mux controlled by RA2SEL to select the 
correct address for the B read port. 

We’ve created a test jig to test your register file circuitry. Your netlist should incorporate the 
following three .include statements 
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.include "/mit/6.004/jsim/nominal.jsim"


.include "/mit/6.004/jsim/stdcell.jsim"


.include "/mit/6.004/jsim/lab6regfile.jsim"


and the following subcircuit definition (you can of course define other subcircuits as well) 

.subckt regfile clk werf ra2sel ra[4:0] rb[4:0] rc[4:0]

+ wdata[31:0] radata[31:0] rbdata[31:0]

… your register file circuit here …

.ends


CTL 

The control logic should be tailored to generate the control signals your logic requires, which may 
differ from what’s shown in the diagram above. Note that a ROM can be built by specifying a 
memory with just one read port; the ROM contents are set up using the contents keyword in 
the netlist description of the memory. For example, the netlist for a ROM that uses the opcode 
field of the instruction to lookup the values for 18 control signals might look like: 

Xctl vdd 0 0 id[31:26]  // one read port

+ pcsel[2:0] wasel asel ra2sel bsel alufn[5:0] wdsel[1:0] werf moe xwr

+ $memory width=18 nlocations=64 contents=(

+ 0b000000000000000000  // opcode=0b000000

+ 0b000000000000000000  // opcode=0b000001

+ …

+ )


Most of the signals can connected directly to the appropriate logic, e.g., ALUFN[5:0] can connect 
directly to the ALUFN inputs of your ALU. During this step, we won’t be using PCSEL[2:0], 
WASEL or ASEL, so you can set the corresponding bits in each ROM location to zero. 

We do need to be careful with the write enable signal for main memory (WR) which needs to be 
valid even before the first instruction is fetched from memory. So you should include some 
additional logic that forces WR to 0 when RESET=1 – the signal XWR from the ROM needs 
to combined appropriately with RESET to form WR. MOE is another memory control signal; see 
the next section for more information. 

We’ll be adding more bits to the control ROM when the branch logic is added in the next lab. 
For this lab, your design should implement the following instructions: 

LD, ST,
    ADD, SUB, CMPEQ, CMPLT, CMPLE, 

AND, OR, XOR, SHL, SHR, SRA, 
ADDC, SUBC, CMPEQC, CMPLTC, CMPLEC, 
ANDC, ORC, XORC, SHLC, SHRC, SRAC 

Eventually unimplemented instructions will cause an exception, but for now turn them into NOPs 
by making sure WERF is set to 0 (preventing any value from being written into a destination 
register). 
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If you’ve followed the scheme outlined above, we’ve created a test jig to test your control 
circuitry. Your netlist should incorporate the following three .include statements 

.include "/mit/6.004/jsim/nominal.jsim"


.include "/mit/6.004/jsim/stdcell.jsim"


.include "/mit/6.004/jsim/lab6ctl.jsim"


and the following subcircuit definition (you can of course define other subcircuits as well) 

.subckt ctl reset id[31:26] ra2sel bsel alufn[5:0] wdsel[1:0] werf moe wr

… your control circuit here …

.ends


Memories: The instruction and data memories will be supplied by lab6checkoff.jsim; you just 
need to supply the necessary address, data and control signals: 

instruction address (ia[31:0], output). Address of next instruction to be executed. 

instruction data (id[31:0], input). After the appropriate propagation delay, the memory will 
drive these signals with the contents of the memory location specified by ia[31:0]. 

data memory address (ma[31:0], output). Address of data memory location to be read or 
written. 

memory output enable (moe, output). Set to 1 when the Beta wants the memory to read the 
memory location specified by ma[31:0]. 

memory read data (mrd[31:0], input). If moe is 1, the memory will drive these signals with 
the contents of the memory location specified by ma[31:0]. 

memory write enable (wr, output). Set to 1 when the Beta wants to store into the memory 
location specified by ma[31:0] at the end of the current cycle. NOTE: this signal should 
always have a valid logic value at the rising edge of CLK otherwise the contents of the 
memory will be erased. You’ll need to take care in designing the logic that generates 
this signal – see above for details. 

memory write data (mwd[31:0], output). If wr is 1, this is the data that will be written into 
memory at the end of the current cycle. 

Your Beta design should include circuitry to generate all the signals labeled as “output”. Signals 
labeled as “input” will be driven by memory. 

BSEL mux: The low-order 16 bits of the instruction need to be sign-extended to 32 bits. Sign-
extension is easy in hardware! Just connect inst[15:0] to the low-order sixteen D1 inputs of the 
mux and inst15 to each of the high-order sixteen D1 inputs. 

WDSEL mux: In the final design the 32-bit WDSEL mutiplexer will select the data to be written 
into the register file from one of three possible sources. For this lab, there are only two choices: 
the output of the ALU (WDSEL = 0b01) and read data from main memory (i.e., the data on 
mrd[31:0], WDSEL = 0b10). 
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When you’ve completed this step, you can use lab6basicblock.jsim to test your circuit. Your 
netlist should incorporate the following three .include statements 

.include "/mit/6.004/jsim/nominal.jsim"


.include "/mit/6.004/jsim/stdcell.jsim"


.include "/mit/6.004/jsim/lab6basicblock.jsim"


and the following subcircuit definition (you can of course define other subcircuits as well) 

.subckt beta clk reset ia[31:0] id[31:0] ma[31:0]

+ moe mrd[31:0] wr mwd[31:0]

… your circuit here …

.ends


Your design will be tested at a cycle time of 100ns. The reset signal is asserted for the first clock 
edge and then deasserted to start the program running. This implementation of the Beta 
subcircuit has the following terminals: 

clk input clock (from test circuitry) 
reset input reset (from test circuitry) 
ia[31:0] outputs instruction address (from PC register) 
id[31:0] inputs instruction data (from test circuitry) 
ma[31:0] outputs memory data address (from ALU) 
moe output memory read data output enable (from control logic) 
mrd[31:0] inputs memory read data (from test circuitry) 
wr output memory write enable (from control logic) 
mwd[31:0] outputs memory write data (from register file) 

Lab6basicblock.jsim uses the following netlist to create the test circuitry: 

// create an instance of the Beta to be tested

Xbeta clk reset ia[31:0] id[31:0] ma[31:0]

+ moe mrd[31:0] wr mwd[31:0] beta


// memory is word-addressed and has 1024 locations

// so only use address bits [11:2].

Xmem

+ vdd 0 0 ia[11:2] id[31:0] // port 1: instructions (read)

+ moe 0 0 ma[11:2] mrd[31:0] // port 2: memory data (read)

+ 0 clk wr ma[11:2] mwd[31:0] // port 3: memory data (write)

+ $memory width=32 nlocations=1024 contents=(

+ … binary representation of /mit/6.004/bsim/lab6basicblock.uasm …

+ )


// clock has 100ns cycle time, starts as 1 so first clock

// edge happens 100ns into the simulation

Vclk clk 0 pulse(3.3,0,49.9ns,.1ns,.1ns,49.9ns,100ns)


// reset starts as 1, set to 0 just after first clock edge

Vreset reset 0 pwl(0ns 3.3v, 101ns 3.3v, 101.1ns 0v)


Lab6basicblock.jsim checks out your design by attempting to run a test program and verifying 
that your Beta outputs the correct values on its outputs every cycle. The source for the test 
program can be found at /mit/6.004/bsim/lab6basicblock.uasm 
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The test program computes a “magic number” using a sequence of operations that tests the 
various pieces of your design. The program writes out a series of results into memory location 
0x3FC; look at lab6basicblock.uasm to see what values are written on which cycles. 

Lab6basicblock.jsim will verify that the instruction address (ia[31:0]), memory address 
(ma[31:0]), memory write data (mwd[31:0]) and the memory control signals (moe, wr) have the 
correct values each cycle. The check is made just before the rising clock edge, i.e., after the 
current instruction has been fetched and executed, but just before the result is written into the 
register file. Note that ma[31:0] is the output of the ALU, so these checks can verify that all 
instructions are working correctly. If you get a verification error, check the instruction that has 
just finished executing at the time reported in the error message – your Beta has executed that 
instruction incorrectly for some reason. 

Step 2. Adding support for transfers of control 

In this step you’ll complete the implementation of your Beta. We’ll take the block diagram from 
Step 1 and add the remaining logic. It’s probably best to tackle the work in stages. Here are 
some design notes keyed to the block diagram shown above: 

(A)	 Since the parts library doesn’t have any 5-input multiplexers, you’ll have to construct the 
logic that selects the next PC using other components and adjust the control logic 
accordingly. Remember to add a way to set the PC to zero on reset (see part F). “XAdr” 
and “ILL OP” in the block diagram represent constant addresses used when the Beta 
services an interrupt (triggered by IRQ) or executes an instruction with an illegal or 
unimplemented opcode. For this assignment assume that XAdr=8 and ILLOP=4 and 
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we’ll make sure the first three locations of main memory contain BR instructions that 
branch to code which handle reset, illegal instruction traps and interrupts respectively. In 
other words, the first three locations of main memory contain: 

Mem[0x00000000] = BR(reset_handler)

Mem[0x00000004] = BR(illop_handler)

Mem[0x00000008] = BR(interrupt_handler)


Note on supervisor bit: The high-order bit of the PC is dedicated as the “Supervisor” bit 
(see section 6.3 of the Beta Documentation). Instruction fetch and the LDR instruction 
ignore this bit, treating it as if it were zero. The JMP instruction is allowed to clear the 
Supervisor bit or leave it unchanged, but cannot set it, and no other instructions may have 
any effect on it. Only reset, exceptions and interrupts cause the Supervisor bit to become 
set. This has the following implications for your Beta design: 

1.	 0x80000000, 0x80000004 and 0x80000008 are loaded into the PC during reset, 
exceptions and interrupts respectively. This is the only way that the supervisor 
bit gets set. Note that after reset the Beta starts execution in supervisor mode. 

2.	 Bit 31 of the PC+4 and branch-offset inputs to the PCSEL mux should be 
connected to PC31, i.e., the value of the supervisor bit doesn’t change when 
executing most instructions. 

3.	 You’ll have to add logic to bit 31 of the JT input to the PCSEL mux to ensure that 
JMP instruction can only clear or leave the supervisor bit unchanged. Here’s a 
table showing the new value of the supervisor bit after a JMP as function of JT31 
and the current value of the supervisor bit (PC31): 

old PC31 JT31 new PC31
 0 -- 0
 1  0  0
 1  1 1 

4.	 Bit 31 of the branch-offset input to the ASEL mux should be set to 0 – the 
supervisor bit is ignored when doing address arithmetic for the LDR instruction. 

5.	 Bit 31 of the PC+4 input to the WDSEL mux should connect to PC31, saving the 
current value of the supervisor whenever the value of the PC is saved by a branch 
instruction or trap. 

(B)	 The 5-bit 2-to-1 WASEL multiplexer determines the write address for the register file. 

(C)	 The branch-offset adder adds PC+4 to the 16-bit offset encoded in the instruction. The 
offset is sign-extended to 32-bits and multiplied by 4 in preparation for the addition. 
Both the sign extension and shift operations can be done with appropriate wiring—no 
gates required! 

(D)	 The ASEL multiplexer and the Z logic are added to the output of RA1/RD1 port of the 
register file. This port is also wired directly to the JT inputs of the PCSEL multiplexer 
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(remember to force the low-order two bits to zero and to add supervisor bit logic to bit 
31!). 

(E)	 The WDSEL multiplexer is expanded to 3 inputs so that PC+4 can be stored in the 
register file during execution of BEQ, BNE, JMP and exceptions. Note that the 
supervisor bit (PC31) is saved away along with the rest of the PC. 

(F)	 The control logic should be tailored to generate the control signals your logic requires, 
which may differ from what’s shown in the diagram above. The new logic we’ve added 
requires the generation of several new control signals: 

PCSEL[2:0] – determines the next value of PC 
ASEL – control signal for ASEL mux on A input of ALU (for LDR instruction) 
WDSEL[1:0] – expanded to include the third (PC+4) input 
WASEL – selects XP as the destination register during exceptions 

This version of the Beta should add the LDR, JMP, BNE, and BEQ instructions; 
when implementing the latter two instructions the PCSEL signals are determined using 
the “Z” signal (Z = 1 when the value of Reg[Ra] is zero). If you are using a ROM-based 
implementation, you can make Z an additional address input to the ROM (doubling its 
size). A more economical implementation might use external logic to modify the value 
of the PCSEL signals. 

An interrupt-request (IRQ) input has been added to the Beta. When this signal is 1 and 
the Beta is in “user mode” (PC31 is zero), an interrupt should occur. Asserting IRQ 
should have no effect when in “supervisor mode” (PC31 is one).  You should add 
logic that causes the Beta to abort the current instruction and save the current PC+4 in 
register XP and to set the PC to 0x80000008. In other words, an interrupt forces the 
following: 

1.	 PCSEL to 4 (select 0x80000008 as the next PC) 
2.	 WASEL to 1 (select XP as the register file write address) 
3.	 WERF to 1 (write into the register file) 
4.	 WDSEL to 0 (select PC+4 as the data to be written into the register file) 
5.	 WR to 0 (this ensures that if the interrupted instruction was a ST that it doesn’t 

get to write into main memory). 

Note that you’ll also want to add logic to reset the Beta; at the very least when reset is 
asserted you’ll need to force the PC to 0x80000000 and ensure that WR is 0 (to prevent 
your initialized main memory from being overwritten). 

Your design should implement all the instructions listed in the Beta Documentation, 
except for MUL, MULC, DIV and DIVC, which are optional. Unimplemented 
instructions should cause an exception as outlined in part (A) above. 

When you’ve completed your design, you can use lab6checkoff.jsim to test your circuit and 
complete the checkoff. Your netlist should incorporate the following three .include statements 

.include "/mit/6.004/jsim/nominal.jsim"


.include "/mit/6.004/jsim/stdcell.jsim"
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.include "/mit/6.004/jsim/lab6checkoff.jsim"


and the following subcircuit definition (you can of course define other subcircuits as well) 

.subckt beta clk reset irq ia[31:0] id[31:0] ma[31:0]

+ moe mrd[31:0] wr mwd[31:0]

… your circuit here …

.ends


Note the addition of the IRQ (interrupt request) input. Your design will be tested at a cycle time 
of 100ns. The reset signal is asserted for the first clock edge and then deasserted to start the 
program running. This implementation of the Beta subcircuit has the following terminals: 

clk input clock (from test circuitry) 
reset input reset (from test circuitry) 
irq input interrupt request (from test circuitry) 
ia[31:0] outputs instruction address (from PC register) 
id[31:0] inputs instruction data (from test circuitry) 
ma[31:0] outputs memory data address (from ALU) 
moe output memory read data output enable (from control logic) 
mrd[31:0] inputs memory read data (from test circuitry) 
wr output memory write enable (from control logic) 
mwd[31:0] outputs memory write data (from register file) 

Lab6checkoff.jsim uses the following netlist to create the test circuitry: 

// create an instance of the Beta to be tested

Xbeta clk reset irq ia[31:0] id[31:0] ma[31:0]

+ moe mrd[31:0] wr mwd[31:0] beta


// memory is word-addressed and has 1024 locations

// so only use address bits [11:2]. moe


Xmem

+ vdd 0 0 ia[11:2] id[31:0] // port 1: instructions (read)

+ moe 0 0 ma[11:2] mrd[31:0] // port 2: memory data (read)

+ 0 clk wr ma[11:2] mwd[31:0] // port 3: memory data (write)

+ $memory width=32 nlocations=1024 contents=(

+ … binary representation of /mit/6.004/bsim/lab6.uasm …

+ )


// clock has 100ns cycle time, starts as 1 so first clock

// edge happens 100ns into the simulation

Vclk clk 0 pulse(3.3,0,49.9ns,.1ns,.1ns,49.9ns,100ns)


// reset starts as 1, set to 0 just after first clock edge

Vreset reset 0 pwl(0ns 3.3v, 101ns 3.3v, 101.1ns 0v)


// interrupt request is asserted twice. The first time (during

// cycle 10) should be ignored because the Beta is in supervisor

// mode, the second time (during cycle 273) should cause an

// interrupt.

Virq irq 0 pwl(0ns 0v, 1001ns 0v,

+ 1001.1ns 3.3v,

+ 1101ns 3.3v,

+ 1101.1ns 0v,
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+ 27301ns 0v,

+ 27301.1ns 3.3v,

+ 27401ns 3.3v,

+ 27401.1ns 0v

+)


Lab6checkoff.jsim checks out your design by attempting to run a test program and verifying that 
your Beta outputs the correct value on its outputs every cycle. The source for the test program 
can be found at /mit/6.004/bsim/lab6.uasm 

The checkoff program attempts to exercise all the features of the Beta architecture. If this 
program completes successfully, it enters a two-instruction loop at locations 0x3C4 and 0x3C8. 
It reaches 0x3C4 for the first time on cycle 277. 

Lab6checkoff.jsim will verify that the instruction address (ia[31:0]), memory address (ma[31:0]), 
memory write data (mwd[31:0]) and the memory control signals (moe, wr) have the correct 
values each cycle. The check is made just before the rising clock edge, i.e., after the current 
instruction has been fetched and executed, but just before the result is written into the register file. 
Note that ma[31:0] is the output of the ALU, so these checks can verify that all instructions are 
working correctly. If you get a verification error, check the instruction that has just finished 
executing at the time reported in the error message – the Beta has executed that instruction 
incorrectly for some reason. 

Almost nobody’s design executes the checkoff program correctly the first time! To understand 
what went wrong, you’ll need to retrieve the error code and compare it with the table given at the 
beginning of lab6.uasm. The table will indicate at what label the program detected an error; for 
example if the error code is 0x288, then the checkoff program detected an error in the code just 
before label “bool1” in the program. Looking through lab6.uasm, you can locate the “bool1” 
label and see what results the program expected. Now look at the waveforms of your Beta 
executing the same code and you can usually track down the error in your design. 

It will take some effort to debug your design, but stick with it! If you’re stuck, get help from your 
fellow students or the course staff. When it works, congratulate yourself: the design of a 
complete CPU at the gate-level is a significant accomplishment. Of course, now the fun is just 
beginning—there are undoubtedly many ways you can make improvements, both large and small. 
Good luck! 

Appendix 1: What’s the cycle time of your Beta? 

If your design contains any registers or memories, JSim will report the “minimum observed setup 
time” at the end of each simulation run. At each rising clock edge, JSim determines the setup 
time for each data input to a register or memory (i.e., how long the data inputs were valid before 
the rising clock edge). JSim remembers the smallest setup time it finds, along with the 
simulated time it made the observation and the device involved. So, for example, JSim might 
report 

min observed setup = 85.235ns @ time=5.2us (device = xbeta.xregfile) 

For a Beta design, the reported device is almost always the register file—this makes sense since 
the last signals to settle should be WDATA[31:0], the data inputs to the register file. 
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Since the tests are run with a clock period of 100ns, this tells us that we could have reduced the 
clock period to (100 – 85.235 + tMEM SETUP)ns and still expect the test program to run correctly. 
We can look at the waveform plots to determine what instruction had just finished executing at 
time 5.2us – that’s the instruction whose execution we’d have to speed up in order to reduce the 
cycle time of our Beta. Typically the worst-case execution time comes from either CMPxx or LD 
instructions (why?). 

Using this technique, investigate where the critical path(s) are in your Beta design and work to 
make them as short as possible. To get the fastest possible cycle time you’ll probably need to 
implement some of your control signals (e.g., RA2SEL) using logic gates rather than a ROM. 
Given that we might have to make three memory accesses in a single cycle (instruction fetch + 
register file access + data memory access = 10ns total assuming a 1024-location main memory), 
we won’t be able to do better than 100Mhz clock rates unless we pipeline our implementation. 

Appendix 2: Using the JSim memory component 

We’ll be using a new component in this lab: a multi-port memory. JSim has a built-in memory 
device that can be used to model memories with a specified width and number of locations, and 
with one or more ports. Each port has 3 control signals and the specified number of address and 
data wires. You can instantiate a memory device in your circuit with a statement of the form 

Xid ports… $memory width=w nlocations=nloc options…


The width and nlocations properties must be supplied: w specifies the width of each memory 
location in bits and must be between 1 and 32. nloc specifies the number of memory locations 
and must be between 1 and 220. All the ports of a memory access the same internal storage, but 
each port operates independently. Each port specification is a list of nodes: 

oe clk wen a … a d … d

naddr-1 0 w-1 0


where 

oe is the output enable input for a read port. When 1, data is driven onto the data pins; 
when 0, the output pins are not driven by this memory port. If this port is only a write port, 
connect this terminal to the ground node “0”. If the port is only a read port and should 
always be enabled, connect this terminal to the power supply node “vdd”. 

clk is the clock input for write ports. When wen=1, data from the data terminals is written 
into the memory on the rising edge of clk. If this port is only a read port, connect this 
terminal to the ground node “0”. 

wen is the write enable input for write ports. See the description of “clk” for details about 
the write operation. If this port is only a read port, connect this terminal to the ground node 
“0”. 

a … a are the address inputs, listed most significant bit first. The values of these 
naddr-1 0


terminals are used to compute the address of the memory location to be read or written. The 
number of address terminals is determined from the number of locations in the memory: 
naddr = ceiling(log2(nloc)). When the number of locations in a memory isn’t exactly a 
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power of 2, reads that refer to non-existent locations return “X” and writes to non-existent 
locations have no effect. 

d … d are the data inputs/tristate outputs, listed most significant bit first. 
w-1 0


By specifying one of the following options it is possible to specify the initial contents of a 
memory (if not specified, the memory is initialized to all X’s): 

file="filename"

The memory is initialized, location-by-location, from bytes in the file. Data is assumed 
to be in a binary little-endian format, using ceiling(w/8) bytes of file data per memory 
location. Bits 0 through 7 of the first file byte are used to initialize bits 0 through 7 of 
memory location 0, bits 0 through 7 of the second file byte are used to initialize bits 8 
through 15 of memory location 0, and so on. When all the bits in a memory location 
have been filled, any bits remaining in the current file byte are discarded and then the 
process continues with the next memory location. In particular, the “.bin” files produced 
by BSim can be used to initialize JSim memories. For example, the following statement 
would create a 1024-location 32-bit memory with three ports: 2 read ports and 1 one 
write port. The memory is initialized from the BSim output file “foo.bin”. 

Xmem

+ vdd 0 0 ia[11:2] id[31:0] // (read) instruction data

+ vdd 0 0 ma[11:2] mrd[31:0] // (read) program data (LDs)

+ 0 clk wr ma[11:2] mwd[31:0] // (write) program data (STs)

+ $memory width=32 nlocations=1024

+ file="foo.bin"


contents=( data… )

The memory is initialized, location-by-location, from the data values given in the list. 
The least significant bit (bit 0) of a value is used to initialize bit 0 of a memory location, 
bit 1 of a value is used to initialize bit 1 of a memory location, etc. For example, to enter 
the short test program ADDC(R31,1,R0); ADDC(R31,2,R1); ADD(R0,R1,R2) one might 
specify: 

Xmem

+ vdd 0 0 ia[11:2] id[31:0] // (read) instruction data

+ vdd 0 0 ma[11:2] mrd[31:0] // (read) program data (LDs)

+ 0 clk wr ma[11:2] mwd[31:0]  // (write) program data (STs)

+ $memory width=32 nlocations=1024

+ contents=(0xC01F0001 0xC03F0002 0x80400800)


Initialized memories are useful for modeling ROMs (e.g., for control logic) or simply for loading 
programs into the main memory of your Beta. One caveat: if the memory has a write port and 
sees a rising clock edge with its write enable not equal to 0 and with one or more of the address 
bits undefined (i.e., with a value of “X”), the entire contents of the memory will also become 
undefined. So you should make sure that the write enable for a write port is set to 0 by your 
reset logic before the first clock edge, or else your initialization will be for naught. 

The following options can be used to specify the electrical and timing parameters for the memory. 
For this lab, these should not be specified and the default values used. 
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tcd=seconds

the contamination delay in seconds. Default value = 20ps. 

tpd=seconds 
the propagation delay in seconds. This is how long it takes for changes in the address or 
output enable terminals to be reflected in the values driven by the data terminals. Default 
value is determined from the number of locations: 

Number of locations tPD Inferred type 
nlocations ≤ 128 2ns Register file 
128 < nlocations ≤ 1024 4ns Static ram 
nlocations > 1024 40ns Dynamic ram 

tr=seconds_per_farad

the output rise time in seconds per farad of output load. Default value is 1000, i.e., 1 
ns/pf. 

tf=seconds_per_farad

the output fall time in seconds per farad of output load. Default value is 500, i.e., 0.5 
ns/pf. 

cin=farads

input terminal capacitance in farads. Default value = 0.05pf. 

cout=farads

output terminal capacitance in farads. Default value = 0pf (additional tPD due to output 
terminal loading is already included in default tPD). 

The size of a memory is determined by the sum of the sizes of the various memory building 
blocks shown in the following table: 

Component Size (µ 2) Notes 
Storage cells nbits * cellsize nbits = nlocs * width 

cellsize = nports (for ROMs and DRAMS) 
cellsize = nports + 5 (for SRAMS) 

Address buffers nports * naddr * 20 nports = total number of memory ports 
Address decoders nports * (naddr+3)/4 * 4 Assuming 4-input ANDs 
Tristate drivers nreads * width * 30 nreads = number of read ports 
write-data drivers nwrites * width * 20 nwrites = number of write ports 
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