
Discrete-time Signals and Systems
 



ii
 



Discrete-time Signals and Systems 

An Operator Approach 

Sanjoy Mahajan and Dennis Freeman 

Massachusetts Institute of Technology 



Typeset in Palatino and Euler by the authors using ConTEXt and PDFTEX
 

© Copyright 2009 Sanjoy Mahajan and Dennis Freeman 

Source revision: 66261db0f9ed+ (2009-10-18 13:33:48 UTC) 

Discrete-time Signals and Systems by Sanjoy Mahajan and Dennis Freeman 
(authors) and ?? (publisher) is licensed under the . . .  license. 

C 



Brief contents
 

Preface ix
 

1 Difference equations 1
 

2 Difference equations and modularity 17
 

3 Block diagrams and operators: Two new representations 33
 

4 Modes 51
 

5 Repeated roots 63
 

6 The perfect (sine) wave 71
 

7 Control 83
 

8 Proportional and derivative control 95
 

Bibliography 105
 

Index 107
 



vi
 



Contents
 

Preface ix
 

1 Difference equations 1
 

1.1 Rabbits 2
 
1.2 Leaky tank 7
 
1.3 Fall of a fog droplet 11
 
1.4 Springs 14
 

2 Difference equations and modularity 17
 

2.1 Modularity: Making the input like the output 17
 
2.2 Endowment gift 21
 
2.3 Rabbits 25
 

3 Block diagrams and operators: Two new representations 33
 

3.1 Disadvantages of difference equations 34
 
3.2 Block diagrams to the rescue 35
 
3.3 The power of abstraction 40
 
3.4 Operations on whole signals 41
 
3.5 Feedback connections 45
 
3.6 Summary 49
 

4 Modes 51
 

4.1 Growth of the Fibonacci series 52
 
4.2 Taking out the big part from Fibonacci 55
 
4.3 Operator interpretation 57
 
4.4 General method: Partial fractions 59
 

5 Repeated roots 63
 

5.1 Leaky-tank background 64
 
5.2 Numerical computation 65
 
5.3 Analyzing the output signal 67
 



viii 

5.4 Deforming the system: The continuity argument 68
 
5.5 Higher-order cascades 70
 

6 The perfect (sine) wave 71
 

6.1 Forward Euler 72
 
6.2 Backward Euler 76
 
6.3 Leapfrog 79
 
6.4 Summary 82
 

7 Control 83
 

7.1 Motor model with feedforward control 83
 
7.2 Simple feedback control 85
 
7.3 Sensor delays 87
 
7.4 Inertia 90
 

8 Proportional and derivative control 95
 

8.1 Why derivative control 95
 
8.2 Mixing the two methods of control 96
 
8.3 Optimizing the combination 98
 
8.4 Handling inertia 99
 
8.5 Summary 103
 

Bibliography 105
 

Index 107
 



Preface
 

This book aims to introduce you to a powerful tool for analyzing and de­
signing systems – whether electronic, mechanical, or thermal. 

This book grew out of the ‘Signals and Systems’ course (numbered 6.003) 
that we have taught on and off to MIT’s Electrical Engineering and Com­
puter Science students. 

The traditional signals-and-systems course – for example [17] – empha­
sizes the analysis of continuous-time systems, in particular analog circuits. 
However, most engineers will not specialize in analog circuits. Rather, dig­
ital technology offers such vast computing power that analogy circuits are 
often designed through digital simulation. 

Digital simulation is an inherently discrete-time operation. Furthermore, 
almost all fundamental ideas of signals and systems can be taught using 
discrete-time systems. Modularity and multiple representations , for ex­
ample, aid the design of discrete-time (or continuous-time) systems. Simi­
larly, the ideas for modes, poles, control, and feedback. 

Furthermore, by teaching the material in a context not limited to circuits, 
we emphasize the generality of these tools. Feedback and simulation abound 
in the natural and engineered world, and we would like our students to be 
flexible and creative in understanding and designing these systems. 

Therefore, we begin our ‘Signals and Systems’ course with discrete-time 
systems, and give our students this book. A fundamental difference from 
most discussions of discrete-time systems is the approach using operators. 
Operators make it possible to avoid the confusing notion of ‘transform’. In­
stead, the operator expression for a discrete-time system, and the system’s 
impulse response are two representations for the same system; they are 
the coordinates of a point as seen from two different coordinate systems. 
Then a transformation of a system has an active meaning: for example, 
composing two systems to build a new system. 
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How to use this book 

Aristotle was tutor to the young Alexander of Macedon (later, the Great). 
As ancient royalty knew, a skilled and knowledgeable tutor is the most 
effective teacher [3]. A skilled tutor makes few statements and asks many 
questions, for she knows that questioning, wondering, and discussing pro­
mote long-lasting learning. Therefore, questions of two types are inter­
spersed through the book: 

questions marked with a in the margin: These questions are what a tutor 
might ask you during a tutorial, and ask you to work out the next steps 
in an analysis. They are answered in the subsequent text, where you can 
check your solutions and my analysis. 

numbered questions: These problems, marked with a shaded background, 
are what a tutor might ask you to take home after a tutorial. They give 
further practice with the tool or ask you to extend an example, use several 
tools together, or resolve paradoxes. 

Try lots of questions of both types! 

Copyright license 

This book is licensed under the . . .  license. 
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Difference equations
 

1.1 Rabbits 2 
1.2 Leaky tank 7 
1.3 Fall of a fog droplet 11 
1.4 Springs 14 

The world is too rich and complex for our minds to grasp it whole, for 
our minds are but a small part of the richness of the world. To cope with 
the complexity, we reason hierarchically. We divide the world into small, 
comprehensible pieces: systems. Systems are ubiquitous: a CPU, a memory 
chips, a motor, a web server, a jumbo jet, the solar system, the telephone 
system, or a circulatory system. Systems are a useful abstraction, chosen 
because their external interactions are weaker than their internal interac­
tions. That properties makes independent analysis meaningful. 

Systems interact with other systems via forces, messages, or in general via 
information or signals. ‘Signals and systems’ is the study of systems and 
their interaction. 

This book studies only discrete-time systems, where time jumps rather 
than changes continuously. This restriction is not as severe as its seems. 
First, digital computers are, by design, discrete-time devices, so discrete-
time signals and systems includes digital computers. Second, almost all 
the important ideas in discrete-time systems apply equally to continuous-
time systems. 

Alas, even discrete-time systems are too diverse for one method of analy­
sis. Therefore even the abstraction of systems needs subdivision. The par­
ticular class of so-called linear and time-invariant systems admits power­
ful tools of analysis and design. The benefit of restricting ourselves to such 
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systems, and the meaning of the restrictions, will become clear in subse­
quent chapters. 

1.1 Rabbits 

Here is Fibonacci’s problem [6, 10], a famous discrete-time, linear, time-
invariant system and signal: 

A certain man put a pair of rabbits in a place surrounded on all sides by a wall. 
How many pairs of rabbits can be produced from that pair in a year if it is 
supposed that every month each pair begets a new pair which from the second 
month on becomes productive? 

1.1.1 Mathematical representation 

This system consists of the rabbit pairs and the rules of rabbit reproduction. 
The signal is the sequence f where f[n] is the number of rabbit pairs at 
month n (the problem asks about n = 12). 

What is f in the first few months? 

In month 0, one rabbit pair immigrates into the system: f[0] =  1. Let’s 
assume that the immigrants are children. Then they cannot have their own 
children in month 1 – they are too young – so f[1] = 1. But this pair is an 
adult pair, so in month 2 the pair has children, making f[2] = 2. 

Finding f[3] requires considering the adult and child pairs separately (hier­
archical reasoning), because each type behaves according to its own repro­
duction rule. The child pair from month 2 grows into adulthood in month 
3, and the adult pair from month 2 begets a child pair. So in f[3] = 3: two 
adult and one child pair. 

The two adult pairs contribute two child pairs in month 4, and the one 
child pair grows up, contributing an adult pair. So month 4 has five pairs: 
two child and three adult pairs. To formalize this reasoning process, define 
two intermediate signals c and a: 

c[n] = number of child pairs at month n; 

a[n] = number of adult pairs at month n. 

The total number of pairs at month n is f[n] = c[n] + a[n]. Here is a table 
showing the three signals c, a, and f: 
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n 0 1 2 3 

c 1 0 1 1 

a 0 1 1 2 

f 1 1 2 3 

The arrows in the table show how new entries are constructed. An upward 
diagonal arrow represents the only means to make new children, namely 
from last month’s adults: 

a[n − 1] → c[n] or c[n] = a[n − 1]. 

A horizontal arrow represents one contribution to this month’s adults, that 
adults last month remain adults: a[n − 1] → a[n]. A downward diagonal 
arrow represents the other contribution to this month’s adults, that last 
month’s children grow up into adults: c[n−1] → a[n]. The sum of the two 
contributions is 

a[n] = a[n − 1] + c[n − 1]. 

What is the difference equation for f itself? 

To find the equation for f, one has at least two methods: logical deduction 
(Problem 1.1) or trial and error. Trial and error is better suited for finding 
results, and logical deduction is better suited for verifying them. Therefore, 
using trial and error, look for a pattern among addition samples of f: 

n 0 1 2 3 4 5 6 

c 1 0 1 1 2 3 5 

a 0 1 1 2 3 5 8 

f 1 1 2 3 5 8 13 

What useful patterns live in these data? 

One prominent pattern is that the signals c, a, and f look like shifted ver­
sions of each other: 

a[n] = f[n − 1];
 

c[n] = a[n − 1] = f[n − 2].
 

Since f[n] = a[n] + c[n], 
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f[n] = f[n − 1] + f[n − 2]. 

with initial conditions f[0] = f[1] = 1. 

This mathematical description, or representation, clarifies a point that is 
not obvious in the verbal description: that the number of rabbit pairs in 
any month depends on the number in the two preceding months. This 
difference equation is said to be a second-order difference equation. Since 
its coefficients are all unity, and the signs are positive, it is the simplest 
second-order difference equation. Yet its behavior is rich and complex. 

Problem 1.1 Verifying the conjecture 

Use the two intermediate equations 

c[n] = a[n − 1], 

a[n] = a[n − 1] + c[n − 1]; 

and the definition f[n] = a[n] + c[n] to confirm the conjecture 

f[n] = f[n − 1] + f[n − 2]. 

1.1.2 Closed-form solution 

The rabbit difference equation is an implicit recipe that computes new val­
ues from old values. But does it have a closed form: an explicit formula 
for f[n] that depends on n but not on preceding samples? As a step to­
ward finding a closed form, let’s investigate how f[n] behaves as n be­
comes large. 

Does f[n] grow like a polynomial in n, like a logarithmic function of n, or like an 
exponential function of n? 

Deciding among these options requires more data. Here are many values 
of f[n] (starting with month 0): 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .  
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The samples grow quickly. Their growth 
is too rapid to be logarithmic, unless f[n] 
is an unusual function like (log n)20. Their 
growth is probably also too rapid for f[n] 
to be a polynomial in n, unless f[n] is n 
a high-degree polynomial. A likely al­
ternative is exponential growth. To test 
that hypothesis, use pictorial reasoning by plotting ln f[n] versus n. The 
plotted points oscillate above and below a best-fit straight line. Therefore 
ln f[n] grows almost exactly linearly with n, and f[n] is approximately an 
exponential function of n: 

f[n] ≈ Azn, 

where z and A are constants. 

ln
 f

 [n
] 

How can z be estimated from f[n] data? 
n f[n]/f[n − 1] 

10 1.6181818181818 

best-fit line as n grows, the exponential approx-
Because the plotted points fall ever closer to the 

20 1.6180339985218 

imation f[n] ≈ Azn becomes more exact as n 30 1.6180339887505 

40 1.6180339887499grows. If the approximation were exact, then f[n]/f[n− 
1] would always equal z, so  f[n]/f[n−1] becomes 50 1.6180339887499 

an ever closer approximation to z as n increases.
 
These ratios seem to converge to z = 1.6180339887499.
 
Its first few digits 1.618 might be familiar. For a memory amplifier, feed
 
the ratio to the online Inverse Symbolic Calculator (ISC). Given a number,
 
it guesses its mathematical source. When given the Fibonacci z, the In­
 
verse Symbolic Calculator suggests two equivalent forms: that z is a root
√ 
of 1 − x − x2 or that it is φ ≡ (1 + 5)/2. The constant φ is the famous 
golden ratio [5]. 

Therefore, f[n] ≈ Aφn . To find the constant of 
n f[n]/f[n − 1]

proportionality A, take out the big part by di­
viding f[n] by φn . These ratios hover around 
0.723 . . ., so perhaps A is 

√ 
3 − 1. Alas, exper­

10 

20 

0.72362506926472 

0.72360679895785 

iments with larger values of n strongly suggest 
that the digits continue 0.723606 . . .  whereas 

√ 
3− 

30 

40 

0.72360679775006 

0.72360679774998 

1 = 0.73205 . . .. A bit of experimentation or 50 0.72360679774998 

the Inverse Symbolic Calculator suggests that√ 
0.72360679774998 probably originates from φ/ 5. 
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√ 
This conjecture has the merit of reusing the 5 already contained in the de­
finition of φ, so it does not introduce a new arbitrary number. With that 
conjecture for A, the approximation for f[n] becomes 

φn+1 

f[n] ≈ √ . 
5 

How accurate is this approximation? 

To test the approximation, take out the big 
n r[n]/r[n − 1]

part by computing the residual: 
√ 2 −0.61803398874989601 

r[n] = f[n] − φn+1/ 5. 3 −0.61803398874989812 

4 −0.61803398874988624 
The residual decays rapidly, perhaps expo­ 5 −0.61803398874993953 
nentially. Then r has the general form 6 −0.61803398874974236 

r[n] ≈ Byn , 
7 −0.61803398875029414 

8 −0.61803398874847626 

where y and B are constants. To find y, 9 −0.61803398875421256 

compute the ratios r[n]/r[n − 1]. They con­ 10 −0.61803398873859083 

verge to −0.61803 . . ., which is almost ex-
nactly 1 − φ or −1/φ. Therefore r[n] ≈ B(−1/φ) . 

What is the constant of proportionality B? 

nTo compute B, divide r[n] by (−1/φ) . These values, if n is not too large 
(Problem 1.2), almost instantly settles on 0.27639320225. With luck, this √ 
number can be explained using φ and 5. A few numerical experiments 
suggest the conjecture 

1 1 
B = √ × . 

5 φ 

The residual becomes � �n+1
1 1 

r[n] = −√ × − . 
5 φ 

The number of rabbit pairs is the sum of the approximation Azn and the 
residual Byn: 

f[n] =  √ 
1 

φn+1 − (−φ)−(n+1) . 
5 
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How bizarre! The Fibonacci signal f splits into two signals in at least two 
ways. First, it is the sum of the adult-pairs signal a and the child-pairs 
signal c. Second, it is the sum f1 + f2 where f1 and f2 are defined by 

1 
f1[n] ≡ √ φn+1; 

5 
1 

f2[n] ≡ −√ (−1/φ)n+1. 
5 

The equivalence of these decompositions would have been difficult to pre­
dict. Instead, many experiments and guesses were needed to establish 
the equivalence. Another kind of question, also hard to answer, arises by 
changing merely the plus sign in the Fibonacci difference equation into a 
minus sign: 

g[n] = g[n − 1] − g[n − 2]. 

With corresponding initial conditions, namely g[0] = g[1] = 1, the signal g 
runs as follows (staring with n = 0): 

1, 1, 0, −1, −1, 0, 1, 1, 0, −1, −1,  0, . . . .  
one period 

Rather than growing approximately exponentially, this sequence is exactly 
periodic. Why? Furthermore, it has period 6. Why? How can this period 
be predicted without simulation? 

A representation suited for such questions is introduced in ??. For now, 
let’s continue investigating difference equations to represent systems. 

Problem 1.2 Actual residual 

ln
 r

[n
] 

n 

Here is a semilog graph of the absolute resid­
ual |r[n]| computed numerically up to n = 
80. (The absolute residual is used because 
the residual is often negative and would 
have a complex logarithm.) It follows the 
predicted exponential decay for a while, but 
then misbehaves. Why? 

1.2 Leaky tank 

In the Fibonacci system, the rabbits changed their behavior – grew up or 
had children – only once a month. The Fibonacci system is a discrete-time 
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system. These systems are directly suitable for computational simulation 
and analysis because digital computers themselves act like discrete-time 
systems. However, many systems in the world – such as piano strings, 
earthquakes, microphones, or eardrums – are naturally described as continuous-
time systems. 

To analyze continuous-time systems using discrete-time 
tools requires approximations. These approximations are 
illustrated in the simplest interesting continuous-time sys­
tem: a leaky tank. Imagine a bathtub or sink filled to a 
height h with water. At time t = 0, the drain is opened 
and water flows out. What is the subsequent height of 
the water? 

At t = 0, the water level and therefore the pressure is at its highest, so the 
water drains most rapidly at t = 0. As the water drains and the level falls, 
the pressure and the rate of drainage also fall. This behavior is captured by 
the following differential equation: 

h 

leak 

dh 
= −f(h),

dt 

where f(h) is an as-yet-unknown function of the height. 

Finding f(h) requires knowing the geometry of the tub and piping and 
then calculating the flow resistance in the drain and piping. The simplest 
model for resistance is a so-called linear leak: that f(h) is proportional to 
h. Then the differential equation simplifies to 

dh ∝ −h. 
dt 

What are the dimensions of the missing constant of proportionality? 

The derivative on the left side has dimensions of speed (height per time), 
so the missing constant has dimensions of inverse time. Call the constant 
1/τ, where τ is the time constant of the system. Then 

dh h 
= −  . 

dt τ 
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An almost-identical differential equation describes the

voltage V on a capacitor discharging across a resistor:


dV 1 
= −  V. 

dt RC 

R 

C 

V 

It is the leaky-tank differential equation with time con­
stant τ = RC. 

Problem 1.3 Kirchoff’s laws 

Use Kirchoff’s laws to verify this differential equation. 

Approximating the continuous-time differential equation as a discrete-time 
system enables the system to be simulated by hand and computer. In a 
discrete-time system, time advances in lumps. 

If the lump size, also known as the timestep, is T , then h[n] is the discrete-
time approximation of h(nT). Imagine that the system starts with h[0] =  
h0. What is h[1]? In other words, what is the discrete-time approximation 
for h(T)? The leaky-tank equation says that 

dh h 
= −  . 

dt τ 

At t = 0 this derivative is −h0/τ. If  dh/dt stays fixed for a whole timestep 
– a slightly dubious but simple assumption – then the height falls by ap­
proximately h0T/τ in one timestep. Therefore 

T T 
h[1] = h0 − h0 = 1 − h[0]. 

τ τ 

Using the same assumptions, what is h[2] and, in general, h[n]? 

The reasoning to compute h[1] from h[0] applies when computing h[2] 
from h[1]. The derivative at n = 1 – equivalently, at t = T – is  −h[1]/τ. 
Therefore between n = 1 and n = 2 – equivalently, between t = T and 
t = 2T – the height falls by approximately −h[1]T/tau, 

T T 
h[2] = h1 − h1 = 1 − h[1]. 

τ τ 

This pattern generalizes to a rule for finding every h[n]: 

T 
h[n] =  1 − h[n − 1]. 

τ 
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This implicit equation has the closed-form solution 
n

T 
h[n] = h0 1 − . 

τ 

How closely does this solution reproduce the behavior of the original, continuous-
time system? 

The original, continuous-time differential equation dh/dt = −htau is 
solved by 

h(t) = h0e −t/τ. 

At the discrete times t = nT , this solution becomes � �n
 
h(t) = h0e −nT/τ = h0 e −T/τ .
 

The discrete-time approximation replaces e−T/τ with 1 − T/τ. That differ­
ence is the first two terms in the Taylor series for e−T/τ: � �2 � �3 

e −T/τ = 1 − 
T 

+ 
1 T 

− 
1 T 

+ . . . .  
τ 2 τ 6 τ 

Therefore the discrete-time approximation is accurate when the higher-
order terms in the Taylor series are small – namely, when T/τ � 1. 

This method of solving differential equations by replacing them with discrete-
time analogs is known as the Euler approximation, and it can be used to 
solve equations that are very difficult or even impossible to solve analyti­
cally. 

Problem 1.4 Which is the approximate solution? 

n 

Here are unlabeled graphs showing the discrete-time sam­
ples h[n] and the continuous-time samples h(nT), for n = 
0 . . . 6. Which graph shows the discrete-time signal? 

Problem 1.5 Large timesteps 

Sketch the discrete-time samples h[n] in three cases: (a.) T = 
τ/2 (b.) T = τ (c.) T = 2τ (d.) T = 3τ 

Problem 1.6 Tiny timesteps 

Show that as T → 0, the discrete-time solution 
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T n 

h[n] = h0 1 − . 
τ 

approaches the continuous-time solution 

h(t) = h0e −nT/τ. 

How small does T have to be, as a function of n, in order that the two solutions 
approximately match? 

1.3 Fall of a fog droplet 

The leaky tank (Section 1.2) is a first-order system, and its differential equa­
tion and difference equation are first-order equations. However, the phys­
ical world is often second order because Newton’s second law of motion, 
F = ma, contains a second derivative. 

For such systems, how applicable is the Euler approximation? To illustrate 
the issues that arise in applying the Euler approximation to second-order 
systems, let’s simulate the fall of a fog droplet acted on by gravity (F = mg) 
and air resistance. A fog droplet is small enough that its air resistance is 
proportional to velocity rather than to the more usual velocity squared. 
Then the net downward force on the droplet is mg − bv, where v is its 
velocity and b is a constant that measures the strength of the drag. In terms 
of position x, with the positive direction as downward, Newton’s second 
law becomes 

d2x dx 
m = mg − b . 

dt2 dt


Dividing both sides by m gives


d2x b dx 
= g − . 

dt2 m dt 

What are the dimensions of b/m? 

The constant b/m turns the velocity dx/dt into an acceleration, so b/m has 
dimensions of inverse time. Therefore rewrite it as 1/τ, where τ ≡ m/b is 
a time constant. Then 

d2x 1 dx 
= g − . 

dt2 τ dt 
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What is a discrete-time approximation for the second derivative? 

In the leaky-tank equation, 

dh h 
= −  ,

dt τ 

the first derivative at t = nT had the Euler approximation (h[n + 1] −  
h[n])/T and h(t = nT) became h[n]. The second derivative d2x/dt2 is the 
limit of a difference of two first derivatives. Using the Euler approximation 
procedure, approximate the first derivatives at t = nT and t = (n + 1)T : 

dx � x[n + 1] − x[n] � ≈ ;
dt t=nT T 

dx � x[n + 2] − x[n + 1] � ≈ . 
dt t=(n+1)T T 

Then 

d2x � 1 
� 

x[n + 2] − x[n + 1] x[n + 1] − x[n] 
� � ≈ − . 

dt2 t=nT T T T 

This approximation simplifies to 

d2x � 1 � ≈ (x[n + 2] − 2x[n + 1] + x[n]) . 
dt2 t=nT T2 

The Euler approximation for the continuous-time equation of motion is 
then 

1 1 x[n + 1] − x[n]
(x[n + 2] − 2x[n + 1] + x[n]) = g − 

T2 τ T 

or 

T 
x[n + 2] − 2x[n + 1] + x[n] = gT2 − (x[n + 1] − x[n]). 

τ 

Our old friend from the leaky tank, the ratio T/τ, has reappeared in this 
problem. To simplify the subsequent equations, define α ≡ T/τ. Then 
after collecting the like terms, the difference equation for the falling fog 
droplet is 

x[n + 2] = (2 − α)x[n + 1] − (1 − α)x[n] + gT2. 
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As expected, this difference equation is second order. Like the previous 
second-order equation, the Fibonacci equation, it needs two initial values. 
Let’s try x[−1] = x[0] = 0. Physically, the fog droplet starts from rest at the 
reference height 0, and at t = 0 starts feeling the gravitational force mg. 

For a typical fog droplet with radius 10 μm, the physical parameters are: 

m ∼ 4.2 · 10−12 kg;
 

b ∼ 2.8 · 10−9 kg s−1;
 

τ ∼ 1.5 · 10−3 s−1.
 

Relative to τ, the timestep T should be small, oth­
 
erwise the simulation error will large. A timestep
 
such as 0.1 ms is a reasonable compromise be-
 x

[n
](

μ
m

)

20 

10 

tween keeping reducing the error and speeding 0 
up the simulation. Then the dimensionless ratio 0  10  20  

n 

α is 0.0675. A simulation using these parameters 
shows x initially rising faster than linearly, probably quadratically, then 
rising linearly at a rate of roughly 1.5 μm per timestep or 1.5 cm s−1 . 

This simulation result explains the longevity of fog. Fog is, roughly speak­
ing, a cloud that has sunk to the ground. Imagine that this cloud reaches 
up to 500 m (a typical cloud thickness). Then, to settle to the ground, the 
cloud requires 

500 m 
tfall ∼ ∼ 9 hours. 

1.5 cm s−1 

In other words, fog should last overnight – in agreement with experience! 

Counting timesteps How many timesteps would the fog-droplet simulation re­
quire (with T = 0.1 ms) in order for the droplet to fall 500 m in the simulation? 
How long would your computer, or another easily available computer, require to 
simulate that many timesteps? 

Problem 1.7 Terminal velocity 

By simulating the fog equation 

x[n + 2] = (2 − α)x[n + 1] − (1 − α)x[n] + gT2 . 

with several values of T and therefore α, guess a relation between g, T , α, and the 
terminal velocity of the particle. 
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1.4 Springs 

Now let’s extend our simulations to the most important second-order sys­
tem: the spring. Springs are a model for a vast number of systems in the 
natural and engineered worlds: planetary orbits, chemical bonds, solids, 
electromagnetic radiation, and even electron–proton bonds. Since color re­
sults from electromagnetic radiation meeting electron–proton bonds, grass 
is green and the sky is blue because of how springs interact with springs. 

The simplest spring system is a mass connected to a spring 
and free to oscillate in just one dimension. Its differential 
equation is 

d2x 
m + kx = 0,

dt2 

where x is the block’s displacement from the equilibrium position, m is the 
block’s mass, and k is the spring constant. Dividing by m gives 

d2x k 
+ x = 0. 

dt2 m 

Defining the angular frequency ω ≡ k/m gives the clean equation: 

d2x 
+ ω2x = 0. 

dt2 

Now divide time into uniform steps of duration T , and replace the second 
derivative d2x/dt2 with a discrete-time approximation: 

d2x � x[n + 2] − 2x[n + 1] + x[n] � ≈ ,
dt2 t=nT T2 

where as usual the sample x[n] corresponds to the continuous-time signal 
x(t) at t = nT . Then 

x[n + 2] − 2x[n + 1] + x[n]
+ ω2x[n] = 0 

T2 

or after collecting like terms, 

x[n + 2] = 2x[n + 1] −  1 + (ωT)2 x[n]. 

Defining α ≡ ωT , 

x[n + 2] = 2x[n + 1] −  1 + α2 x[n]. 

k 
m 

x 
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This second-order difference equation needs two initial values. A simple 
pair is x[0] = x[1] = x0. This choice corresponds to pulling the mass right-
wards by x0, then releasing it at t = T . What happens afterward? 

To simulate the system numerically, one should 
choose T to make α small. As a reasonable small 
α, try 100 samples per oscillation period: α = 

name: dummy 

file: shm-forward 
2π/100 or roughly 0.06. Alas, the simulation pre-

state: unknown
dicts that the oscillations grow to infinity. 

What went wrong? 

Perhaps α, even  0.06, is too large. Here are two simulations with smallerat  
values of α: 

x x 

t t 

α ≈ 0.031 α ≈ 0.016 

These oscillations also explode. The only difference seems to be the rate of 
growth (Problem 1.8). 

Problem 1.8 Tiny values of α 


Simulate 
 � � 
x[n + 2] = 2x[n + 1] −  1 + α2 x[n] 

using very small values for α. What happens? 

An alternative explanation is that the discrete-time approximation of the 
derivative caused the problem. If so, it would be surprising, because the 
same approximation worked when simulating the fall of a fog droplet. But 
let’s try an alternative definition: Instead of defining �

dx � x[n + 1] − x[n] � ≈ ,
dt t=nT T 

try the simple change to 

dx x[n] − x[n − 1]≈ . 
dt T 



� 
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Using the same procedure for the second derivative, 

d2x � x[n] − 2x[n − 1] + x[n − 2] � ≈ . 
dt2 t=nT T2 

The discrete-time spring equation is then x 

(1 + α2)x[n] = 2x[n − 1] − x[n − 2], 

or 

t 

2x[n − 1] − x[n − 2] 
x[n] =  . 

1 + α2 

Using the same initial conditions x[0] = x[1] = 1, what is the subsequent 
time course? The bad news is that these oscillations decay to zero! 

However, the good news is that changing the de- x 

rivative approximation can significantly affect the 
behavior of the discrete-time system. Let’s try a 
symmetric second derivative: 

t 

d2x � x[n + 1] − 2x[n] + x[n − 1] � ≈ . 
dt2 t=nT T2 

Then the difference equation becomes 

x[n + 2] = (2 − α2)x[n + 1] − x[n]. 

Now the system oscillates stably, just as a spring without energy loss or 
input should behave. 

Why did the simple change to a symmetric second derivative solve the 
problem of decaying or growing oscillations? The representation of the 
alternative discrete-time systems as difference equations does not help an­
swer that question. Its answer requires the two most important ideas in 
signals and systems: operators (??) and modes (??). 

Problem 1.9 Different initial conditions 
x 

t 

Here are the subsequent samples using the symmet­
ric second derivative and initial conditions x[0] =  0, 
x[1] =  x0. The amplitude is, however, much larger 
than x0. Is that behavior physically reasonable? If 
yes, explain why. If not, explain what should happen. 
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The goals of this chapter are: 

•	 to illustrate modularity and to describe systems in a modular way; 

•	 to translate problems from their representation as a verbal descrip­
tion into their representation as discrete-time mathematics (differ­
ence equations); and 

•	 to start investigating the simplest second-order system, the second-
simplest module for analyzing and designing systems. 

The themes of this chapter are modularity and the representation of ver­
bal descriptions as discrete-time mathematics. We illustrate these themes 
with two examples, money in a hypothetical MIT endowment fund and 
rabbits reproducing in a pen, setting up difference equations to represent 
them. The rabbit example, which introduces a new module for building 
and analyzing systems, is a frequent visitor to these chapters. In this chap­
ter we begin to study how that module behaves. Before introducing the 
examples, we illustrate what modularity is and why it is useful. 

2.1 Modularity: Making the input like the output 

A common but alas non-modular way to formulate difference and differ­
ential equations uses boundary conditions. An example from population 
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growth illustrates this formulation and how to improve it by making it 
modular. The example is the population of the United States. The US pop­
ulation grows at an annual rate of roughly 1%, according to the World Fact-
Book [2], and the US population is roughly 300 million in 2007. What will 
be the US population be in 2077 if the growth rate remains constant at 1%? 

Pause to try 1. What is the population equation and boundary con­
dition representing this information? 

The difference equation for the population in year n is 

p[n] = (1 + r)p[n − 1] (population equation), 

where r = 0.01 is the annual growth rate. The boundary condition is 

p[2007] = 3 × 108 (boundary condition). 

To find the population in 2077, solve this difference equation with bound­
ary condition to find p[2077]. 

Exercise 1. What is p[2077]? How could you have quickly ap­
proximated the answer? 

You might wonder why, since no terms are subtracted, the population 
equation is called a difference equation. The reason is by analogy with 
differential equations, which tell you how to find f(t) from f(t − Δt), with 
Δt going to 0. Since the discrete-time population equation tells us how to 
find f[n] from f[n − 1], it is called a difference equation and its solution is 
the subject of the calculus of finite differences. When the goal – here, the 
population – appears on the input side, the difference equation is also a 
recurrence relation. What recurrence has to do with it is the topic of an 
upcoming chapter; for now take it as pervasive jargon. 

The mathematical formulation as a recurrence relation with boundary con­
dition, while sufficient for finding p[2077], is messy: The boundary condi­
tion is a different kind of object from the solution to a recurrence. This 
objection to clashing categories may seem philosophical – in the colloquial 
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meaning of philosophical as irrelevant – but answering it helps us to un­
derstand and design systems. Here the system is the United States. The 
input to the system is one number, the initial population p[2007]; however, 
the output is a sequence of populations p[2008], p[2009], . . .. In this for­
mulation, the system’s output cannot become the input to another system. 
Therefore we cannot design large systems by combining small, easy-to­
understand systems. Nor we can we analyze large, hard-to-understand 
systems by breaking them into small systems. 

Instead, we would like a modular formulation in which the input is the 
same kind of object as the output. Here is the US-population question 
reformulated along those lines: If x[n] people immigrate into the United states 
in year n, and the US population grows at 1% annually, what is the population in 
year n? The input signal is the number of immigrants versus time, so it is 
a sequence like the output signal. Including the effect of immigration, the 
recurrence is 

p[n] = (1 + r)p[n − 1] + x[n] . ���� � �� � ���� 
output reproduction immigration 

The boundary condition is no longer separate from the equation! Instead 
it is part of the input signal. This modular formulation is not only elegant; 
it is also more general than is the formulation with boundary conditions, 
for we can recast the original question into this framework. The recasting 
involves finding an input signal – here the immigration versus time – that 
reproduces the effect of the boundary condition p[2007] = 3 × 108 . 

Pause to try 2. What input signal reproduces the effect of the 
boundary condition? 

The boundary condition can be reproduced with this immigration sched­
ule (the input signal): 

3 × 108 if n = 2007;x[n] =  
0 otherwise. 

This model imagines an empty United States into which 300 million people 
arrive in the year 2007. The people grow (in numbers!) at an annual rate 
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of 1%, and we want to know p[2077], the output signal (the population) in 
the year 2077. 

The general formulation with an arbitrary input signal is harder to solve 
directly than is the familiar formulation using boundary conditions, which 
can be solved by tricks and guesses. For our input signal, the output signal 
is 

3 · 108 × 1.01n−2007 for n � 2007;p[n] =  
0 otherwise. 

Exercise 2. Check that this output signal satisfies the boundary 
condition and the population equation. 

In later chapters you learn how to solve the formulation with an arbi­
trary input signal. Here we emphasize not the method of solution but the 
modular formulation where a system turns one signal into another signal. 
This modular description using signals and systems helps analyze com­
plex problems and build complex systems. 

To see how it helps, first imagine a world with two countries: Ireland and 
the United States. Suppose that people emigrate from Ireland to the United 
States, a reasonable model in the 1850’s. Suppose also that the Irish pop­
ulation has an intrinsic 10 annual decline due to famines and that another 
10% of the population emigrate annually to the United States. Ireland and 
the United States are two systems, with one system’s output (Irish emigra­
tion) feeding into the other system’s input (the United States’s immigra­
tion). The modular description helps when programming simulations. In­
deed, giant population-growth simulations are programmed in this object-
oriented way. Each system is an object that knows how it behaves – what 
it outputs – when fed input signals. The user selects systems and spec­
ifies connections among them. Fluid-dynamics simulations use a similar 
approach by dividing the fluid into zillions of volume elements. Each ele­
ment is a system, and energy, entropy, and momentum emigrate between 
neighboring elements. 

Our one- or two-component population systems are simpler than fluid-
dynamics simulations, the better to illustrate modularity. Using two ex­
amples, we next practice modular description and how to represent verbal 
descriptions as mathematics. 
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2.2 Endowment gift 

The first example for representing descriptions as mathematics involves a 
hypothetical endowment gift to MIT. A donor gives �107 dollars to MIT 
to support projects proposed and chosen by MIT undergraduates! MIT 
would like to use this fund for a long time and draw �0.5 × 106 every 
year for a so-called 5% drawdown. Assume that the money is placed in a 
reliable account earning 4% interest compounded annually. How long can 
MIT and its undergraduates draw on the fund before it dwindles to zero? 

Never make a calculation until you know roughly what the answer will be! This 
maxim is recommended by John Wheeler, a brilliant physicist whose most 
famous student was MIT alum Richard Feynman [9]. We highly recom­
mend Wheeler’s maxim as a way to build intuition. So here are a few esti­
mation questions to get the mental juices flowing. Start with the broadest 
distinction, whether a number is finite or infinite. This distinction suggests 
the following question: 

Pause to try 3. Will the fund last forever? 

Alas, the fund will not last forever. In the first year, the drawdown is 
slightly greater than the interest, so the endowment capital will dwindle 
slightly. As a result, the next year’s interest will be smaller than the first 
year’s interest. Since the drawdown stays the same at $500,000 annually 
(which is 5% of the initial amount), the capital will dwindle still more in 
later years, reducing the interest, leading to a greater reduction in interest, 
leading to a greater reduction in capital. . .  Eventually the fund evaporates. 
Given that the lifetime is finite, roughly how long is it? Can your great-
grandchildren use it? 

Pause to try 4. Will the fund last longer than or shorter than 100 
years? 

The figure of 100 years comes from the difference between the outflow 
– the annual drawdown of 5% of the gift – and the inflow produced by 
the interest rate of 4%. The difference between 5% and 4% annually is 
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δ = 0.01/year. The dimensions of δ are inverse time, suggesting an en­
dowment lifetime of 1/δ, which is 100 years. Indeed, if every year were 
like the first, the fund would last for 100 years. However, the inflow from 
interest decreases as the capital decreases, so the gap between outflow and 
inflow increases. Thus this 1/δ method, based on extrapolating the first 
year’s change to every year, overestimates the lifetime. 

Having warmed up with two estimates, let’s describe the system mathe­
matically and solve for the true lifetime. In doing so, we have to decide 
what is the input signal, what is the output signal, and what is the system. 
The system is the least tricky part: It is the bank account paying 4 interest. 
The gift of $10 million is most likely part of the input signal. 

Pause to try 5. Is the $500,000 annual drawdown part of the output 
or the input signal? 

The drawdown flows out of the account, and the account is the system, 
so perhaps the drawdown is part of the output signal. No!! The output 
signal is what the system does, which is to produce or at least to compute 
a balance. The input signal is what you do to the system. Here, you move 
money in or out of the system: 

bank 
account 

money 
in or out balance 

The initial endowment is a one-time positive input signal, and the annual 
drawdown is a recurring negative input signal. To find how long the en­
dowment lasts, find when the output signal crosses below zero. These 
issues of representation are helpful to figure out before setting up mathe­
matics. Otherwise with great effort you create irrelevant equations, where­
upon no amount of computing power can help you. 

Now let’s represent the description mathematically. First represent the 
input signal. To minimize the large numbers and dollar signs, measure 
money in units of $500,000. This choice makes the input signal dimension­
less: 

X = 20, −1, −1, −1, −1, . . . 
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We use the notation that a capital letter represents the entire signal, while a 
lowercase letter with an index represents one sample from the signal. For 
example, P is the sequence of populations and p[n] is the population in 
year n. 

The output signal is 

Y = 20, ?, ?, ?, . . .  

Pause to try 6. Explain why y[0] = 20. 

The problem is to fill in the question marks in the output signal and find 
when it falls below zero. The difference equation describing the system is 

y[n] = (1 + r)y[n − 1] + x[n], 

where r is the annual interest rate (here, r = 0.04). This difference equation 
is a first-order equation because any output sample y[n] depends on the 
one preceding sample y[n − 1]. The system that the equation represents is 
said to be a first-order system. It is the simplest module for building and 
analyzing complex systems. 

Exercise 3. Compare this equation to the one for estimating the 
US population in 2077. 

Now we have formulated the endowment problem as a signal processed 
by a system to produce another signal – all hail modularity! – and rep­
resented this description mathematically. However, we do not yet know 
how to solve the mathematics for an arbitrary input signal X. But here we 
need to solve it only for the particular input signal 

X = 20, −1, −1, −1, −1,  . . . .  

With that input signal, the recurrence becomes 

y[n] = 	  1.04 · y[n − 1] − 1 n > 0;
 
20 n = 0.
 

The y[0] =  20 reflects that the donor seeds the account with 20 units of 
money, which is the $10,000,000 endowment. The −1 in the recurrence 
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reflects that we draw 1 unit every year. Without the −1 term, the solution 
to the recurrence would be y[n] ∼ 1.04n, where the ∼ symbol means ‘except 
for a constant’. The −1 means that simple exponential growth is not a 
solution. However, −1 is a constant so it may contribute only a constant to 
the solution. That reasoning is dubious but simple, so try it first. Using a 
bit of courage, here is a guess for the form of the solution: 

y[n] = A · 1.04n + B (guess), 

where A and B are constants to be determined. Before finding A and B, 
figure out the most important characteristic, their signs. So: 

Pause to try 7. Assume that this form is correct. What are the signs 
of A and B? 

Since the endowment eventually vanishes, the variable term A ·1.04n must 
make a negative contribution; so A < 0. Since the initial output y[0] is 
positive, B must overcome the negative contribution from A; so  B > 0. 

Pause to try 8. Find A and B. 

Solving for two unknowns A and B requires two equations. Each equation 
will probably come from one condition. So match the guess to the known 
balances at two times. The times (values of n) that involve the least calcu­
lation are the extreme cases n = 0 and n = 1. Matching the guess to the 
behavior at n = 0 gives the first equation: 

20 = A + B (n = 0 condition). 

To match the guess to the behavior at n = 1, first find y[1]. At  n = 1, 
which is one year after the gift, 0.8 units of interest arrive from 4% of 20, 
and 1 unit leaves as the first drawdown. So 

y[1] = 20 + 0.8 − 1 = 19.8. 

Matching this value to the guess gives the second equation: 

19.8 = 1.04A + B (n = 1 condition). 
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Both conditions are satisfied when A = −5 and B = 25. As predicted, 
A < 0 and B > 0. With that solution the guess becomes 

y[n] = 25 − 5 × 1.04n. 

This solution has a strange behavior. After the balance drops below zero, 
the 1.04n grows ever more rapidly so the balance becomes negative ever 
faster. 

Exercise 4.	 Does that behavior of becoming negative more and 
more rapidly indicate an incorrect solution to the 
recurrence relation, or an incomplete mathematical 
translation of what happens in reality? 

Exercise 5. The guess, with the given values for A and B, works 
for n = 0 and n = 1. (How do you know?) Show 
that it is also correct for n > 1. 

Now we can answer the original question: When does y[n] fall to zero? 
nAnswer: When 1.04 > 5, which happens at n = 41.035 . . .. So MIT can 

draw on the fund in years 1, 2, 3, . . . , 41, leaving loose change in the ac­
count for a large graduation party. The exact calculation is consistent with 
the argument that the lifetime be less than 100 years. 

Exercise 6. How much loose change remains after MIT draws 
its last payment? Convert to real money! 

2.3 Rabbits 

The second system to represent mathematically is the fecundity of rabbits. 
The Encyclopedia Britannica (1981 edition) states this population-growth 
problem as follows [6]: 
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A certain man put a pair of rabbits in a place surrounded on all sides by a wall. 
How many pairs of rabbits can be produced from that pair in a year if it is sup­
posed that every month each pair begs a new pair which from the second month 
on becomes productive? 

That description is an English representation of the original Latin. We first 
represent the verbal description mathematically and then play with the 
equations to understand how the system behaves. It is the simplest system 
beyond the first-order systems like the endowment, so it is an important 
module for building and analyzing complex systems. 

2.3.1 From words to recurrence 

Before representing the system mathematically, we describe it modularly 
using signals and systems by finding a system, an input signal, and an 
output signal. It is usually easiest to begin by looking for the system since 
it is the active element. The phrase ‘surrounding on all sides by a wall’ 
indicates a candidate for a system. The system is the inside of the wall, 
which is where the rabbits reproduce, together with the rules under which 
rabbits reproduce. 

Pause to try 9. What is the input signal? 

An input to the system is placing rabbits into it or taking them from it. 
The input signal is the number of pairs that enter the system at month n, 
where the signal would be negative if rabbits emigrate from the system to 
seek out tastier grass or other rabbit friends. 

Pause to try 10. What is the output signal? 

Some pairs are placed into the system as children (the immigrants); other 
pairs are born in the system (the native born). The sum of these kinds of 
pairs is the output signal. 

To describe the system mathematically, decompose it by type of rabbit: 

1. children, who cannot reproduce but become adults in one month; and 

2. adults, who reproduce that month and thereafter. 
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Let c[n] be the number of child pairs at month n and a[n] be the number 
of adult pairs at month n. These intermediate signals combine to make the 
output signal: 

f[n] = a[n] + c[n] (output signal). 

Pause to try 11. What equation contains the rule that children be­
come adults in one month? 

Because children become adults in one month, and adults do not die, the 
pool of adults grows by the number of child pairs in the previous month: 

a[n] = a[n − 1] + c[n − 1] (growing-up equation). 

The two terms on the right-hand side represent the two ways to be an 
adult: 

1. You were an adult last month (a[n − 1]), or 

2. you were a child last month (c[n − 1]) and grew up. 

The next equation says that all adults, and only adults, reproduce to make 
new children: 

c[n] = a[n − 1]. 

However, this equation is not complete because immigration also con­
tributes child pairs. The number of immigrant pairs at month n is the 
input signal x[n]. So the full story is: 

c[n] = a[n − 1] + x[n] (child equation) 

Our goal is a recurrence for f[n], the total number of pairs. So we eliminate 
the number of adult pairs a[n] and the number of child pairs c[n] in favor 
of f[n]. Do it in two steps. First, use the growing-up equation to replace 
a[n − 1] in the child equation with a[n − 2] + c[n − 2]. That substitution 
gives 

c[n] = a[n − 2] + c[n − 2] + x[n]. 
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Since f[n] = c[n] + a[n], we can turn the left side into f[n] by adding a[n]. 
The growing-up equation says that a[n] is also a[n − 1] + c[n − 1], so add 
those terms to the right side and pray for simplification. The result is 

c[n] + a[n] = a[n − 2] + c[n − 2] +x[n] + a[n − 1] + c[n − 1] . � �� � � �� � � �� � 
f[n] f[n−2] f[n−1] 

The left side is f[n]. The right side contains a[n − 2] + c[n − 2], which is 
f[n − 2]; and a[n − 1] + c[n − 1], which is f[n − 1]. So the sum of equations 
simplifies to 

f[n] = f[n − 1] + f[n − 2] + x[n]. 

The Latin problem description is from Fibonacci’s Liber Abaci [10], pub­
lished in 1202, and this equation is the famous Fibonacci recurrence but 
with an input signal x[n] instead of boundary conditions. 

This mathematical representation clarifies one point that is not obvious in 
the verbal representation: The number of pairs of rabbits at month n de­
pends on the number in months n−1 and n−2. Because of this dependence 
on two preceding samples, this difference equation is a second-order dif­
ference equation. Since all the coefficients are unity, it is the simplest equa­
tion of that category, and ideal as a second-order system to understand 
thoroughly. To build that understanding, we play with the system and see 
how it responds. 

2.3.2 Trying the recurrence 

To play with the system described by Fibonacci, we need to represent Fi­
bonacci’s boundary condition that one pair of child rabbits enter the walls 
only in month 0. The corresponding input signal is X = 1, 0, 0, 0, . . .. Us­
ing that X, known as an impulse or a unit sample, the recurrence produces 
(leaving out terms that are zero): 

f[0] = x[0] = 1,
 

f[1] = f[0] = 1,
 

f[2] = f[0] + f[1] = 2,
 

f[3] = f[1] + f[2] = 3,
 

. . .  
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When you try a few more lines, you get the sequence: F = 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .. 
When you tire of hand calculation, ask a computer to continue. Here is 
slow Python code to print f[0], f[1],. . .,f[19]: 

def f(n): 
if n < 2:  return 1 
return f(n-1) + f(n-2) 

print [f(i) for i in range(20)] 

Exercise 7. Write the corresponding Matlab or Octave code, 
then rewrite the code in one of the languages – 
Python, Matlab, or Octave – to be efficient. 

Exercise 8. Write Matlab, Octave, or Python code to find f[n] 
when the input signal is 1, 1, 1, . . .. What is f[17]? 

2.3.3 Rate of growth 

To solve the recurrence in closed form – meaning an explicit formula for 
f[n] that does not depend on preceding samples – it is helpful to investigate 
its approximate growth. Even without sophisticated techniques to find the 
output signal, we can understand the growth in this case when the input 
signal is the impulse. 

Pause to try 12. When the input signal is the impulse, how fast does 
f[n] grow? Is it polynomial, logarithmic, or expo­
nential? 

From looking at the first few dozen values, it looks like the sequence grows 
quickly. The growth is almost certainly too rapid to be logarithmic and, 
almost as certain, too fast to be polynomial unless it is a high-degree poly­
nomial. Exponential growth is the most likely candidate, meaning that an 
approximation for f[n] is 
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f[n] ∼ zn 

where z is a constant. To estimate z, play with the recurrence when n > 0, 
which is when the input signal is zero. The f[n] are all positive and, since 
f[n] = f[n − 1] + f[n − 2] when n > 0, the samples are increasing: f[n] > 
f[n − 1]. This bound turns f[n] = f[n − 1] + f[n − 2] into the inequality 

f[n] < f[n − 1] + f[n − 1]. 

So f[n] < 2f[n − 1] or f[n]/f[n − 1] < 2; therefore the upper bound on z 
is z < 2. This bound has a counterpart lower bound obtained by replacing 
f[n − 1] by f[n − 2] in the Fibonacci recurrence. That substitution turns 
f[n] = f[n − 1] + f[n − 2] into 

f[n] > f[n − 2] + f[n − 2]. 

The right side is 2f[n − 2] so f[n] > 2f[n − 2]. This bound leads to a lower √ 
bound: z2 > 2 or z >  2. The range of possible z is then 

√ 
2 < z < 2.  

Let’s check the bounds by experiment. Here is the sequence of ratios f[n]/f[n− 
1] for n = 1, 2, 3, . . .: 

1.0, 2.0, 1.5, 1.666 . . . , 1.6, 1.625, 1.615 . . . , 1.619 . . . , 1.617 . . .  

The ratios seem to oscillate around 1.618, which lies between the predicted √ 
bounds 2 and 2. In later chapters, using new mathematical representa­
tions, you learn how to find the closed from for f[n]. We have walked two 
steps in that direction by representing the system mathematically and by 
investigating how f[n] grows. 

Exercise 9. Use a more refined argument to improve the upper 

bound to z <  
√ 

3. 

Exercise 10. Does the number 1.618 look familiar?
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Exercise 11. [Hard!] Consider the same system but with one rab­
bit pair emigrating into the system every month, 
not only in month 0. Compare the growth with 
Fibonacci’s problem, where one pair emigrated in 
month 0 only. Is it now faster than exponential? If 
yes, how fast is it? If no, does the order of growth 
change from z ≈ 1.618? 
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The goals of this chapter are: 

•	 to introduce two representations for discrete-time systems: block 
diagrams and operators; 

•	 to introduce the whole-signal abstraction and to exhort you to use 
abstraction; 

•	 to start manipulating operator expressions; 

•	 to compare operator with difference-equation and block-diagram 
manipulations. 

The preceding chapters explained the verbal-description and difference-
equation representations. This chapter continues the theme of multiple 
representations by introducing two new representations: block diagrams 
and operators. New representations are valuable because they suggest 
new thoughts and often provide new insight; an expert engineer values her 
representations the way an expert carpenter values her tools. This chapter 
first introduces block diagrams, discusses the whole-signal abstraction and 
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the general value of abstraction, then introduces the operator representa­
tion. 

3.1 Disadvantages of difference equations 

Chapter 2 illustrated the virtues of difference equations. When compared 
to the verbal description from which they originate, difference equations 
are compact, easy to analyze, and suited to computer implementation. Yet 
analyzing difference equations often involves chains of micro-manipulations 
from which insight is hard to find. As an example, show that the difference 
equation 

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3] 

is equivalent to this set of equations: 

d[n] = c[n] − c[n − 1]
 

c[n] = b[n] − b[n − 1]
 

b[n] = a[n] − a[n − 1].
 

As the first step, use the last equation to eliminate b[n] and b[n − 1] from 
the c[n] equation: 

c[n] = (a[n] − a[n − 1]) − (a[n − 1] − a[n − 2]) = a[n]−2a[n−1]+a[n−2]. � �� � � �� � 
b[n] b[n−1] 

Use that result to eliminate c[n] and c[n − 1] from the d[n] equation: 

d[n] = (a[n] − 2a[n − 1] + a[n − 2]) − (a[n − 1] − 2a[n − 2] + a[n − 3]) � �� � � �� � 
c[n] c[n−1] 

= a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3]. 

Voilà: The three-equation system is equivalent to the single difference equa­
tion. But what a mess. Each step is plausible yet the chain of steps seems 
random. If the last step had produced 

d[n] = a[n] − 2a[n − 1] + 2a[n − 2] − a[n − 3], 

it would not immediately look wrong. We would like a representation 
where it would look wrong, perhaps not immediately but at least quickly. 
Block diagrams are one such representation. 
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Exercise 12. Although this section pointed out a disadvantage of 
difference equations, it is also important to appreci­
ate their virtues. Therefore, invent a verbal descrip­
tion (a story) to represent the single equation 

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3] 

and then a verbal description to represent the 
equivalent set of three equations. Now have fun 
showing, without converting to difference equa­
tions, that these descriptions are equivalent! 

3.2 Block diagrams to the rescue 

Block diagrams visually represent a system. To show how they work, here 
are a few difference equations with corresponding block diagrams: 

Delay 

1/2+ y[n] = (x[n] + x[n − 1])/2 
averaging filter 

+ 

Delay 

y[n] = y[n − 1] + x[n] 
account with 0% interest 

Pause to try 13. Draw the block diagram for the endowment ac­
count from Section 2.2. 

The endowment account is a bank account that pays 4% interest, so it needs 
a gain element in the loop, with gain equal to 1.04. The diagram is not 
unique. You can place the gain element before or after the delay. Here is 
one choice: 
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+ 

1.04Delay 

y[n] = 1.04 y[n − 1] + x[n] 
endowment account from Section 2.2 

Amazingly, all systems in this course can be built from only two actions 
and one combinator: 

A action 1: multiply by α 

Delay 

+ 

action 2: delay one tick
 

combinator: add inputs
 

3.2.1 Block diagram for the Fibonacci system 

To practice block diagrams, we translate (represent) the Fibonacci system 
into a block diagram. 

Pause to try 14. Represent the Fibonacci system of Section 1.1 using 
a block diagram. 

We could translate Fibonacci’s description (Section 1.1) directly into a block 
diagram, but we worked so hard translating the description into a differ­
ence equation that we start there. Its difference equation is 

f[n] = f[n − 1] + f[n − 2] + x[n], 

where the input signal x[n] is how many pairs of child rabbits enter the 
system at month n, and the output signal f[n] is how many pairs of rabbits 
are in the system at month n. In the block diagram, it is convenient to let 
input signals flow in from the left and to let output signals exit at the right 
– following the left-to-right reading common to many languages. 
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Exercise 13. Do signals-and-systems textbooks in Hebrew or 
Arabic, which are written right to left, put input sig­
nals on the right and output signals on the left? 

The Fibonacci system combines the input sample, the previous output sam­
ple, and the second-previous output sample. These three signals are there­
fore inputs to the plus element. The previous output sample is produced 
using a delay element to store samples for one time tick (one month) before 
sending them onward. The second-previous output sample is produced by 
using two delay elements in series. So the block diagram of the Fibonacci 
system is 

+ 

Delay 

DelayDelay 

f[n]x[n] 

3.2.2 Showing equivalence using block diagrams 

We introduced block diagrams in the hope of finding insight not easily 
visible from difference equations. So use block diagrams to redo the proof 
that 

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3] 

is equivalent to 

d[n] = c[n] − c[n − 1],
 

c[n] = b[n] − b[n − 1],
 

b[n] = a[n] − a[n − 1].
 

The system of equations is a cascade of three equations with the structure 

output = this input − previous input. 

The block diagram for that structure is 

-1 Delay 

+ 
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where the gain of −1 produces the subtraction. 

The cascade of three such structures has the block diagram 

Delay 

+ 

-1 Delay 

+ 

-1 Delay 

+ 

-1 

This diagram has advantages compared to the set of difference equations. 
First, the diagram helps us describe the system compactly. Each stage in 
the cascade is structurally identical, and the structural identity is appar­
ent by looking at it. Whereas in the difference-equation representation, the 
common structure of the three equations is hidden by the varying signal 
names. Each stage, it turns out, is a discrete-time differentiator, the sim­
plest discrete-time analog of a continuous-time differentiator. So the block 
diagram makes apparent that the cascade is a discrete-time triple differen­
tiator. 

Second, the block diagram helps rewrite the system, which we need to do 
to show that it is identical to the single difference equation. So follow a 
signal through the cascade. The signal reaches a fork three times (marked 
with a dot), and each fork offers a choice of the bottom or top branch. Three 
two-way branches means 23 or 8 paths through the system. Let’s examine 
a few of them. Three paths accumulate two delays: 

1. low road, low road, high road: 

Delay 

+ 

-1 Delay 

+ 

-1 Delay 

+ 

-1 

2. low road, high road, low road:
 

-1 Delay 

+ 

-1 Delay 

+ 

-1 Delay 

+ 

3. high road, low road, low road:
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-1 Delay 

+ 

-1 Delay 

+ 

-1 Delay 

+ 

Besides the two delays, each path accumulates two gains of −1, making a 
gain of 1. So the sum of the three paths is a gain of 3 and a double delay. 

Exercise 14.	 Show the other five paths are: three paths with a 
single delay and a gain of −1, one path with three 
delays and a gain of −1, and one path that goes 
straight through (no gain, no delay). 

A block diagram representing those four groups of paths is


−3 Delay 

3 Delay Delay 

−1 Delay Delay Delay 

+ 

The single difference equation 

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3]. 

also has this block diagram. 

The pictorial approach is an advantage of block diagrams because humans 
are sensory beings and vision is an important sense. Brains, over hun­
dreds of millions of years of evolution, have developed extensive hard­
ware to process sensory information. However, analytical reasoning and 
symbol manipulation originate with language, skill perhaps 100,000 years 
old, so our brains have much less powerful hardware in those domains. 
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Not surprisingly, computers are far more skilled than are humans at an­
alytical tasks like symbolic algebra and integration, and humans are far 
more skilled than are computers at perceptual tasks like recognizing faces 
or speech. When you solve problems, amplify your intelligence with a vi­
sual representation such as block diagrams. 

On the other side, except by tracing and counting paths, we do not know to 
manipulate block diagrams; whereas analytic representations lend them­
selves to transformation, an important property when redesigning sys­
tems. So we need a grammar for block diagrams. To find the rules of 
this grammar, we introduce a new representation for systems, the operator 
representation. This representation requires the whole-signal abstraction 
in which all samples of a signal combine into one signal. It is a subtle 
change of perspective, so we first discuss the value of abstraction in gen­
eral, then return to the abstraction. 

3.3 The power of abstraction 

Abstraction is a great tools of human thought. All language is built on 
it: When you use a word, you invoke an abstraction. The word, even an 
ordinary noun, stands for a rich, subtle, complex idea. Take cow and try 
to program a computer to distinguish cows from non-cows; then you find 
how difficult abstraction is. Or watch a child’s ability with language de­
velop until she learns that ‘red’ is not a property of a particular object but 
is an abstract property of objects. No one knows how the mind manages 
these amazing feats, nor – in what amounts to the same ignorance – can 
anyone teach them to a computer. 

Abstraction is so subtle that even Einstein once missed its value. Ein­
stein formulated the theory of special relativity [7] with space and time 
as separate concepts that mingle in the Lorentz transformation. Two years 
later, the mathematician Hermann Minkowski joined the two ideas into 
the spacetime abstraction: 

The views of space and time which I wish to lay before you have sprung from 
the soil of experimental physics, and therein lies their strength. They are radical. 
Henceforth space by itself, and time by itself, are doomed to fade away into 
mere shadows, and only a kind of union of the two will preserve an independent 
reality. 
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See the English translation in [11] or the wonderful textbook Spacetime 
Physics [1], whose first author recently retired from the MIT physics de­
partment. Einstein thought that spacetime was a preposterous invention 
of mathematicians with time to kill. Einstein made a mistake. It is per­
haps the fundamental abstraction of modern physics. The moral is that 
abstraction is powerful but subtle. 

Exercise 15. Find a few abstractions in chemistry, biology, physics, 
and programming. 

If we lack Einstein’s physical insight, we ought not to compound the ab­
sence with his mistake. So look for and create abstractions. For example, 
in a program, factor out common code into a procedure and encapsulate 
common operations into a class. In general, organize knowledge into ab­
stractions or chunks [15]. 

3.4 Operations on whole signals 

For signals and systems, the whole-signal abstraction increases our ability 
to analyze and build systems. The abstraction is take all samples of a sig­
nal and lump them together, operating on the entire signal at once and as 
one object. We have not been thinking that way because most of our repre­
sentations hinder this view. Verbal descriptions and difference equations 
usually imply a sample-by-sample analysis. For example, for the Fibonacci 
recurrence in Section 2.3.2, we found the zeroth sample f[0], used f[0] to 
find f[1], used f[0] and f[1] to find f[2], found a few more samples, then got 
tired and asked a computer to carry on. 

Block diagrams, the third representation, seem to imply a sample-by-sample 
analysis because the delay element holds on to samples, spitting out the 
sample after one time tick. But block diagrams live in both worlds and can 
also represent operations on whole signals. Just reinterpret the elements in 
the whole-signal view, as follows: 
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A action 1: multiply whole signal by α 

Delay 

+ 

action 2: shift whole signal right one tick
 

combinator: add whole signals
 

To benefit from the abstraction, compactly represent the preceding three 
elements. When a signal is a single object, the gain element acts like ordi­
nary multiplication, and the plus element acts like addition of numbers. If 
the delay element could also act like an arithmetic operation, then all three 
elements would act in a familiar way, and block diagrams could be ma­
nipulated using the ordinary rules of algebra. In order to bring the delay 
element into this familiar framework, we introduce the operator represen­
tation. 

3.4.1 Operator representation 

In operator notation, the symbol R stands for the right-shift operator. It 
takes a signal and shifts it one step to the right. Here is the notation for a 
system that delays a signal X by one tick to produce a signal Y: 

Y = R{X}. 

Now forget the curly braces, to simplify the notation and to strengthen the 
parallel with ordinary multiplication. The clean notation is 

Y = RX. 

Pause to try 15. Convince yourself that right-shift operator R, rather 
than the left-shift operator L, is equivalent to a de­
lay. 

Let’s test the effect of applying R to the fundamental signal, the impulse. 
The impulse is 

I = 1, 0, 0, 0, . . .  

Applying R to it gives 
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RI = 0,  1,  0,  0, . . .  

which is also the result of delaying the signal by one time tick. So R rather 
than L represents the delay operation. In operator notation, the block-
diagram elements are: 

α action 1 (gain) multiply whole signal by α 
R action 2 (delay) shift whole signal right one tick 
+ combinator add whole signals 

3.4.2 Using operators to rewrite difference equations 

Let’s try operator notation on the first example of the chapter: rewriting 
the single difference equation 

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3] 

into the system of three difference equations 

d[n] = c[n] − c[n − 1],
 

c[n] = b[n] − b[n − 1],
 

b[n] = a[n] − a[n − 1].
 

To turn the sample-by-sample notation into whole-signal notation, turn 
the left side of the long equation into the whole signal D, composed of the 
samples d[0], d[1], d[2], . . .. Turn the samples on the right side into whole 
signals as follows: 

a[n] → A,
 

a[n − 1] → RA,
 

a[n − 2] → RRA,
 

a[n − 3] → RRRA.
 

Now import compact notation from algebra: If R acts like a variable or 
number then RR can be written R2. Using exponent notation, the transla­
tions are: 

a[n] → A,
 

a[n − 1] → RA,
 

a[n − 2] → R2A,
 

a[n − 3] → R3A.
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With these mappings, the difference equation turns into the compact form 

D = (1 − 3R + 3R2 − R3)A. 

To show that this form is equivalent to the system of three difference equa­
tions, translate them into an operator expression connecting the input sig­
nal A and the output signal D. 

Pause to try 16. What are the operator versions of the three differ­
ence equations? 

The system of equations turns into these operator expressions 

d[n] = c[n] − c[n − 1] → D = (1 − R)C, 

c[n] = b[n] − b[n − 1] → C = (1 − R)B, 

b[n] = a[n] − a[n − 1] → B = (1 − R)A. 

Eliminate B and C to get 

D = (1 − R)(1 − R)(1 − R)A = (1 − R)3A. 

Expanding the product gives 

D = (1 − 3R + 3R2 − R3)A, 

which matches the operator expression corresponding to the single dif­
ference equation. The operator derivation of the equivalence is simpler 
than the block-diagram rewriting, and much simpler than the difference-
equation manipulation. 

Now extend the abstraction by dividing out the input signal: 

D 
= 1 − 3R + 3R2 − R3. 

A 

The operator expression on the right, being independent of the input and 
output signals, is a characteristic of the system alone and is called the sys­
tem functional. 

The moral of the example is that operators help you efficiently analyze 
systems. They provide a grammar for combining, for subdividing, and in 
general for rewriting systems. It is a familiar grammar, the grammar of 
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algebraic expressions. Let’s see how extensively operators follow these. In 
the next section we stretch the analogy and find that it does not break. 

Exercise 16. What is the result of applying 1 − R to the signal 
1, 2, 3, 4, 5, . . .? 

Exercise 17. What is the result of applying (1 − R)2 to the signal 
1, 4, 9, 16, 25, 36, . . .? 

3.5 Feedback connections 

The system with (1 − R)3 as its system functional used only feedforward 
connections: The output could be computed directly from a fixed number 
of inputs. However, many systems – such as Fibonacci or bank accounts 
– contain feedback, where the output depends on previous values of the 
output. Feedback produces new kinds of system functionals. Let’s test 
whether they also obey the rules of algebra. 

3.5.1 Accumulator 

Here is the difference equation for the simplest feedback system, an accu­
mulator: 

y[n] = y[n − 1] + x[n]. 

It is a bank account that pays no interest. The output signal (the balance) 
is the sum of the inputs (the deposits, whether positive or negative) up to 
and including that time. The system has this block diagram: 

+ 

Delay 

Now combine the visual virtues of block diagrams with the compactness 
and symbolic virtues of operators by using R instead of ‘Delay’. The oper­
ator block diagram is 
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X + 

R 

Y 

Pause to try 17. What is its system functional? 

Either from this diagram or from the difference equation, translate into 
operator notation: 

Y = RY + X. 

Collect the Y terms on one side, and you find end up with the system func­
tional: 

Y 1 
= . 

X 1 − R 

It is the reciprocal of the differentiator. 

This operator expression is the first to include R in the denominator. One 
way to interpret division is to compare the output signal produced by the 
difference equation with the output signal produced by the system func­
tional 1/(1 − R). For simplicity, test the equivalence using the impulse 

I = 1, 0, 0, 0, . . .  

as the input signal. So x[n] is 1 for n = 0 and is 0 otherwise. Then the 
difference equation 

y[n] = y[n − 1] + x[n] 

produces the output signal 

Y = 1, 1, 1, 1, . . . .  

Exercise 18. Check this claim. 

The output signal is the discrete-time step function θ. Now apply 1/(1−R)
 
to the impulse I by importing techniques from algebra or calculus. Use
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synthetic division, Taylor series, or the binomial theorem to rewrite 1/(1 − 
R) as 

= 1 + R + R2 + R3 + · · · . 
1 − R 

To apply 1/(1 − R) to the impulse, apply the each of terms 1, R, R2 , . . . to 
the impulse I: 

1I = 1, 0, 0, 0, 0, 0, 0, . . . ,  

RI = 0, 1, 0, 0, 0, 0, 0, . . . , 
  

R2I = 0, 0, 1, 0, 0, 0, 0, . . . , 
  

R3I = 0, 0, 0, 1, 0, 0, 0, . . . , 
  

R4I = 0, 0, 0, 0, 1, 0, 0, . . . , 
  

. . .  

Add these signals to get the output signal Y. 

Pause to try 18. What is Y? 

For n � 0, the y[n] sample gets a 1 from the RnI term, and from no other 
term. So the output signal is all 1’s from n = 0 onwards. The signal with 
those samples is the step function: 

Y = 1, 1, 1, 1, . . . .  

Fortunately, this output signal matches the output signal from running the 
difference equation. So, for an impulse input signal, these operator expres­
sions are equivalent: 

1 
and 1 + R + R2 + R3 + · · · . 

1 − R 

Exercise 19. If you are mathematically inclined, convince your­
self that verifying the equivalence for the impulse 
is sufficient. In other words, we do not need to try 
all other input signals. 
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The moral is that the R operator follows the rules of algebra and calculus. 
So have courage: Use operators to find results, and do not worry. 

3.5.2 Fibonacci 

Taking our own advice, we now analyze the Fibonacci system using oper­
ators. The recurrence is: 

output = delayed output + twice-delayed output + input. 

Pause to try 19. Turn this expression into a system functional. 

The output signal is F, and the input signal is X. The delayed output is RX, 
and the twice-delayed output is RRX or R2X. So  

F = RF + R2F + X. 

Collect all F terms on one side: 

F − RF − R2F = X. 

Then factor the F: 

(1 − R − R2)F = X. 

Then divide both sides by the R expression: 

1 
F = X. 

1 − R − R2 

So the system functional is 

1 
. 

1 − R − R2 
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Exercise 20.	 Using maxima or otherwise, find the Taylor se­
ries for 1/(1 − R − R2). What do you notice 
about the coefficients? Coincidence? maxima (max­
ima.sourceforge.net) is a powerful symbolic algebra 
and calculus system. It descends from Macsyma, 
which was created at MIT in the 1960’s. maxima is 
free software (GPL license) and is available for most 
platforms. 

3.6 Summary 

Including the two system representations discussed in this chapter, you 
have four representation for discrete-time systems: 

1. verbal descriptions, 

2. difference equations, 

3. block diagrams, and 

4. operator expressions. 

In the next chapter, we use the operator representation to decompose, and 
design systems. 
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The goals of this chapter are: 

•	 to illustrate the experimental way that an engineer studies sys­
tems, even abstract, mathematical systems; 

•	 to illustrate what modes are by finding them for the Fibonacci sys­
tem; and 

•	 to decompose second-order systems into modes, explaining the 
decomposition using operators and block diagrams. 

The first question is what a mode is. That question will be answered as we 
decompose the Fibonacci sequence into simpler sequences. Each simple 
sequence can be generated by a first-order system like the leaky tank and is 
called a mode of the system. By decomposing the Fibonacci sequence into 
modes, we decompose the system into simpler, first-order subsystems. 

The plan of the chapter is to treat the Fibonacci system first as a black 
box producing an output signal F and to develop computational probes 
to examine signals. This experimental approach is how an engineer stud­
ies even abstract, mathematical systems. The results from the probes will 
show us how to decompose the signal into its modes. These modes are 
then reconciled with what the operator method predicts for decomposing 
the system. 
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Why describe the experimental, and perhaps harder, method for finding 
the modes before giving the shortcuts using operators? We know the op­
erator expression for the Fibonacci system, and could just rewrite it using 
algebra. The answer is that the operator method has meaning only after 
you feel modes in your fingertips, a feeling developed only as you play 
with signals. Without first playing, we would be teaching you amazing 
feats of calculation on meaningless objects. 

Furthermore, the experimental approach works even when no difference 
equation is available to generate the sequence. Engineers often character­
ize such unknown or partially known systems. The system might be: 

•	 computational: Imagine debugging someone else’s program. You send 
in test inputs to find out how it works and what makes it fail. 

•	 electronic: Imagine debugging a CPU that just returned from the fabri­
cation run, perhaps in quantities of millions, but that does not correctly 
divide floating-point numbers [12]. You might give it numbers to di­
vide until you find the simplest examples that give wrong answers. 
From that data you can often deduce the flaw in the wiring. 

•	 mathematical: Imagine computing primes to investigate the twin-prime 
conjecture [16], one of the outstanding unsolved problems of number 
theory. [The conjecture states that there are an infinite number of prime 
pairs p, p + 2, such as (3, 5), (5, 7), etc.] The new field of experimental 
mathematics, which uses computational tools to investigate mathemat­
ics problems, is lively, growing, and a fertile field for skilled engineers 
[4, 14, 8]. 

So we hope that, through experimental probes of the Fibonacci sequence, 
you learn a general approach to solving problems. 

4.1 Growth of the Fibonacci series 

Section 1.1.2 estimated how fast the sequence f[n√] grew. It seemed to grow 
geometrically with an order of growth between 2 and 2. Our first project 
is to experimentally narrow this range and thereby to guess a closed form 
for the order of growth. 

One probe to find the order of growth is to compute the successive ratios 
f[n]/f[n − 1]. The ratios oscillated around 1.618, but this estimate is not 
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accurate enough to guess a closed form. Since the oscillations in the ratio 
die out as n grows, let’s estimate the ratio accurately by computing it for 
large n. Our tool for these experiments – our probe – is a computer that we 
program in Python, a clean, widely available language. Use any tool that 
fits you, perhaps another language, a graphing calculator, or a spreadsheet. 

Section 2.3.2 offered this Python code to compute f[n]: 

def f(n): 
if n < 2:  return 1 
return f(n-1) + f(n-2) 

But the code is slow when n is large. Here are the running times to evaluate 
f[n] on a Pentium CoreDuo 1.8GHz processor: 

n  10  15  20  25  30  
time (ms) 0.17 1.5 21 162 1164 

The times grow rapidly! 

Exercise 21. What is the running time of this implementation? 

The times might seem low enough to be usable, but imagine being on a 
desert island with only a graphing calculator; then the times might be a 
factor of 10 or of 100 longer. We would like to build an efficient computa­
tional probe so that it is widely usable. 

An efficient function would store previously computed answers, returning 
the stored answer when possible rather than recomputing old values. In 
Python, one can store the values in a dictionary, which is analogous to a 
hash in Perl or an associative array in awk. The memoized version of the 
Fibonacci function is: 

memo = {} 
def f(n): 

if n < 2  : return 1 
if n in memo : return memo[n] 
memo[n] = f(n-1) + f(n-2) 
return memo[n] 
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Pause to try 20. What is the running time of the memoized function, 
in big-Oh notation? 

The new function runs in linear time – a faster probe! – so we can inexpen­
sively compute f[n] for large n. Here are the ratios f[n]/f[n − 1]: 

n f[n]/f[n − 1] 

5 1.60000000000000009 
10 1.61818181818181817 
15 1.61803278688524599 
20 1.61803399852180330 
25 1.61803398867044312 
30 1.61803398875054083 
35 1.61803398874988957 
40 1.61803398874989490 
45 1.61803398874989490 

These values are very stable by n = 45, perhaps limited in stability only 
by the precision of the floating-point numbers. 

Let’s see what closed form would produce the ratio 1.61803398874989490 
at n = 45. One source for closed forms is your intuition and experience. 
Another wonderful source is the Inverse Symbolic Calculator  
By using the Inverse Symbolic Calculator, you increase your repertoire of 
closed form and thereby enhance your intuition. 

Pause to try 21. Ask the Inverse Symbolic Calculator about 1.61803398874989490. 

The Inverse Symbolic Calculator thinks that 1.61803398874989490 is most 
likely the positive root of x2 − x − 1 or, equivalently, is the golden ratio φ: 

√ 
1 + 5 

φ ≡ 
2 

Let’s use that hypothesis. Then 

f[n] ∼ φn. 

But we do not know the constant hidden by the ∼ symbol. Find that con­
stant by using the Inverse Symbolic Calculator one more time. Here is a 

. 

http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html
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table of the ratio f[n]/φn . With luck it converges to a constant. And it 
does: 

n f[n]/φn 

0 1.00000000000000000 
10 0.72362506926471781 
20 0.72360679895785285 
30 0.72360679775005809 
40 0.72360679774997805 
50 0.72360679774997783 
60 0.72360679774997749 
70 0.72360679774997727 
80 0.72360679774997705 
90 0.72360679774997672 

100 0.72360679774997649 
√ 

Around n = 10, the ratios look like 3 −1 ≈ 0.732 but later ratios stabilize 
around a value inconsistent with that guess. 

Pause to try 22. Ask the Inverse Symbolic Calculator about 0.72360679774997649. 
Which of the alternatives seem most reasonable? 

The Inverse Symbolic Calculator provides many closed forms for 0.72360679774997649.√ √ 
A choice that contains 5 is reasonable since φ contains 5. The closed √ √ 
form nearest to 0.72360679774997649 and containing 5 is (1 + 1/ 5)/2,√ 
which is also φ/ 5. So the Fibonacci sequence is roughly 

φ 
f[n] ≈ √ φn.
 

5
 

4.2 Taking out the big part from Fibonacci 

Now let’s take out the big part by peeling away the √φ φn contribution to 
5
 

see what remains. Define the signal F1 by
 

φ 
f1[n] = √ φn.
 

5
 

This signal is one mode of the Fibonacci sequence. The shape of a mode is
 
its order of growth, which here is φ. The amplitude of a mode is the prefac­
√ 
tor, which here is φ/ 5. The mode shape is a characteristic of the system, 
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whereas the amplitude depends on the input signal (for this example, the 
input signal was the impulse). So we often have more interest in the shape 
than in the amplitude. However, here we need shape and amplitude in 
order to determine the signal and peel it away. 

So tabulate the residual signal F2 = F − F1: 

n f2[n] = f[n] − f1[n] 

0 +0.27639320225002106 
1 −0.17082039324993681 
2 +0.10557280900008426 
3 −0.06524758424985277 
4 +0.04032522475023104 
5 −0.02492235949962307 
6 +0.01540286525060708 
7 −0.00951949424901599 
8 +0.00588337100158753 
9 −0.00363612324743201 

10 +0.00224724775415552 

The residual signal starts small and gets smaller, so the main mode F1 is an 
excellent approximation to the Fibonacci sequence F. To find a closed form 
for the residual signal F2, retry the successive-ratios probe: 

n f2[n]/f2[n − 1] 

1 −0.61803398874989446 
2 −0.61803398874989601 
3 −0.61803398874989390 
4 −0.61803398874989046 
5 −0.61803398874993953 
6 −0.61803398874974236 
7 −0.61803398875029414 
8 −0.61803398874847626 
9 −0.61803398875421256 

10 −0.61803398873859083 

The successive ratios are almost constant and look suspiciously like 1 − φ, 
which is also −1/φ. 

Exercise 22. Show that 1 − φ = −1/φ.
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So f2[n] ∼ (−φ)−n . To evaluate the amplitude, divide f2[n] by the mode 
shape (−φ)−n. Here is a table of those results: 

n f2[n]/(−φ)−n 

1 0.27639320225002090 
2 0.27639320225002140 
3 0.27639320225002101 
4 0.27639320225001901 
5 0.27639320225003899 
6 0.27639320224997083 
7 0.27639320225014941 
8 0.27639320224951497 
9 0.27639320225144598 

10 0.27639320224639063 

Those values stabilize quickly and look like one minus the amplitude of the√ 
φn mode. So the amplitude of the (−φ)n mode is 1 − φ/ 5, which is also √ 
1/(φ 5). Thus the residual signal, combining its shape and amplitude, is
 

1 
f2[n] =  √ (−φ)−n. 

φ 5 

Now combine the F1 and F2 signals to get the Fibonacci signal: 

f[n] =  f1[n] +  f2[n] 
φ 1 

= √ φn + √ (−φ)−n. 
5 φ 5 

This closed form, deduced using experiment, is the famous Binet formula 
for the nth Fibonacci number. 

Exercise 23.	 Use peeling away and educated guessing to find a 
closed form for the output signal when the impulse 
is fed into the following difference equation: 

y[n] =  7y[n − 1] −  12y[n − 2] +  x[n]. 

4.3 Operator interpretation 

Next we interpret this experimental result using operators and block di­
agrams. Modes are the simplest persistent responses that a system can 
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make, and are the building blocks of all systems, so we would like to find 
the operator or block-diagram representations for a mode. 

The Fibonacci signal decomposed into two simpler signals F1 and F2 – 
which are also the modes – and each mode grows geometrically. Geomet­
ric growth results from one feedback loop. So the φn mode is produced by 
this system 

+ 

φR 

with the system functional (1 − φR)−1 . 

The (−φ)−n mode is produced by this system 

+ 

−φ−1R 

with the system functional (1 + R/φ)−1 . 

The Fibonacci system is the sum of these signals scaled by the respective 
amplitudes, so its block diagram is a weighted sum of the preceding block 
diagrams. The system functional for the Fibonacci system is a weighted 
sum of the pure-mode system functionals. 

So let’s add the individual system functionals and see what turns up: 

F(R) = F1(R) + F2(R) 
φ 1 1 1 

= √ + √ 
5 1 − φR φ 5 1 + R/φ 

1 
= . 

1 − R − R2 

That functional is the system functional for the Fibonacci system derived 
directly from the block diagram (Section 3.5.2)! So the experimental and 
operator approaches agree that these operator block diagrams are equiva­
lent: 
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1 

φ 
√ 

5 

1 
1 + R/φ 

1 
1 − R − R2 

φ √ 
5 

1 
1 − φR 

+= 

where, to make the diagram easier to parse, system functionals stand for 
the first- and second-order systems that they represent. 

Exercise 24. Write the system of difference equations that cor­
responds to the parallel-decomposition block dia­
gram. Show that the system is equivalent to the 
usual difference equation 

f[n] = f[n − 1] + f[n − 2] + x[n]. 

The equivalence is obvious neither from the block diagrams nor from the 
difference equations directly. Making the equivalence obvious needs either 
experiment or the operator representation. Having experimented, you are 
ready to use the operator representation generally to find modes. 

4.4 General method: Partial fractions 

So we would like a way to decompose a system without peeling away and 
guessing. And we have one: the method of partial fractions, which shows 
the value of the operator representation and system functional. Because 
the system functional behaves like an algebraic expression – or one might 
say, because it is an algebraic expression – it is often easier to manipulate 
than is the block diagram or the difference equation. 

Having gone from the decomposed first-order systems to the original second-
order system functional, let’s now go the other way: from the original sys­
tem functional to the decomposed systems. To do so, first factor the R 
expression: 

1 1 1 
= . 

1 − R − R2 1 − φR 1 + R/φ 
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This factoring, a series decomposition, will help us study poles and zeros 
in a later chapter. Here we use it to find the parallel decomposition by 
using the technique of partial fractions. 

The partial fractions should use the two factors in denominator, so guess 
this form: 

1 a b 
= + ,

1 − R − R2 1 − φR 1 + R/φ 

where a and b are unknown constants. After adding the fractions, the 
denominator will be the product (1 − φR)(1 + R/φ) and the numerator 
will be the result of cross multiplying: 

a(1 + R/φ) + b(1 − φR) = a + (a/φ)R + b − bφR. 

We want the numerator to be 1. If  we  set  a = φ and b = 1/φ, then at least 
the R terms cancel, leaving only the constant a +√b. So we chose a and b 
too large by the sum a + b, which is φ + 1/φ or 5. So instead choose 

√ 
a = φ/ 5, √ 
b = 1/(φ 5). 

If you prefer solving linear equations to the guess-and-check method, here 
are the linear equations: 

a + b = 1,
 

a/φ − bφ = 0,
 

whose solutions are the ones deduced using the guess-and-check method. 

The moral: To find how a system behaves, factor its system functional and 
use partial fractions to decompose that factored form into a sum of first-
order systems. With that decomposition, you can predict the output signal 
because you know how first-order systems behave. 

You can practice the new skill of decomposition with the following ques­
tion: 
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Exercise 25. Look again at the system 

y[n] = 7y[n − 1] − 12y[n − 2] + x[n]. 

Decompose the operator representation into a sum 
of two modes and draw the corresponding block 
diagram (using block diagram elements). When 
the input signal X is the impulse, do the opera­
tor and block-diagram decompositions produce the 
same closed form that you find by peeling away 
and guessing? 
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After reading this chapter you should be able 

• to use a continuity argument 

• to explain the non-geometric output of a mode with a double root. 

Modes generate persistent outputs. So far our examples generate persis­
tent geometric sequences. But a mode from a repeated root, such as from 
the system functional (1 − R/2)−3, produces outputs that are not geomet­
ric sequences. How does root repetition produce this seemingly strange 
behavior? 

The analysis depends on the idea that repeated roots are an unlikely, spe­
cial situation. If roots scatter randomly on the complex plane, the prob­
ability is zero that two roots land exactly on the same place. A generic, 
decent system does not have repeated roots, and only through special con­
trivance does a physical system acquire repeated roots. This fact suggests 
deforming a repeated-root system into a generic system by slightly moving 
one root so that the modes of the deformed system produce geometric se­
quences. This new system is therefore qualitatively easier to analyze than 
is the original system, and it can approximate the original system as closely 
as desired. This continuity argument depends on the idea that the world 
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changes smoothly: that a small change to a system, such as by moving a 
root a tiny amount, produces only a small change to the system’s output. 

To generate a double root, we use the RC circuit (??) or the leaky tank 
(Section 1.2). Either system alone has one mode. To make a double root, 
cascade two identical tanks or RC circuits, where the output of the first 
system is the input to the second system. 

Exercise 26. When making an RC cascade system analogous to 
a cascade of two leaky tanks, does the RC cascade 
need a unity-gain buffer between the two RC cir­
cuits? 

5.1 Leaky-tank background 

Let the leaky tank or RC circuit have time constant τ. Let Vin be the input 
signal, which is the flow rate into the tank system or the input voltage 
in the RC circuit, and let Vout be the output signal. Then the differential 
equation of either system is 

τV̇ 
out = Vin − Vout. 

Convert this equation into a discrete-time system using the forward-Euler 
approximation (??). Using a time step T , the difference equation becomes 

Vout[n] − Vout[n − 1]
τ = Vin[n − 1] − Vout[n − 1]. 

T 

To promote equation hygiene, define the dimensionless ratio ε ≡ T/τ and 
collect like terms. The clean difference equation is 

Vout[n] − (1 − ε)Vout[n − 1] = εVin[n − 1]. 

Pause to try 23. What system functional corresponds to this differ­
ence equation? 

The corresponding system functional is
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Vout εR 
= . 

Vin 1 − (1 − ε)R 

Exercise 27. What block diagram corresponds to this system 
functional? 

A double root arises from cascading two identical systems. Here is its high-
 
level block diagram showing the input, intermediate, and output signals:
 

leaky tank 
or RC circuit 

leaky tank 
or RC circuit 

V0 
V1 

V2 

Its system functional is the square of the functional for one system: � �2
V2 εR 

= . 
V0 1 − (1 − ε)R 

The numerator (εR)2 does not add interesting features to the analysis, so 
simplify life by ignoring it. To simplify the algebra further, define β = 1−ε. 
With that definition and without the boring εR factor, the purified system 
is 

V2 1 
= . 

V0 (1 − βR)2 

5.2 Numerical computation 

By design, this cascade system has a double root at β = 1 − ε. Let’s simu­
late its impulse response and find patterns in the data. Simulation requires 
choosing numerical values for the parameters, and here the only parameter 
is ε = T/τ. An accurate discretization uses a time step T much shorter than 
the system time constant τ; otherwise the system changes significantly be­
tween samples, obviating the discrete-time approximation. So use ε � 1. 

Pause to try 24. Write a program to simulate the impulse response, 
choosing a reasonable ε or β. 
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The following simulation uses ε = 0.05 or β = 0.95 in computing the 
impulse response: 

from scipy import *
 

N = 100
 
impulse = zeros(N)
 
impulse[0] = 1
 
beta = 0.95
 

# return the output signal from feeding INPUT signal through
 
a system
 
# with a feedback loop containing a delay and the given GAIN.
 
def onestage(input, gain):
 

output = input * 0 
output[0] = input[0] 
for i in range(1,len(output)): # 1..n-1 

output[i] = input[i] + gain*output[i-1] 
return output 

signal = impulse # start with the impulse 
for gain in [beta, beta]: # run it through each system 

signal = onestage(signal, gain) 
print signal 

The impulse response is: 

n y[n] 

0 1.000000 
1 1.900000 
2 2.707500 
3 3.429500 
4 4.072531 
5 4.642686 
6 5.145643 
7 5.586698 
8 5.970784 
9 6.302494 

10 6.586106 
. . .  
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5.3 Analyzing the output signal 

The impulse response contains a pattern. To find it, play with the data 
and make conjectures. The first few samples look like n + 1. However, by 
n = 10 that conjecture looks dubious. So look for another pattern. A single 
system (1 −βR)−1 would have a geometric-sequence output where the nth 

sample is βn . Maybe that geometric decay appears in the double system 
and swamps the conjectured n +1 growth. Therefore, take out the big part 
from the impulse response by tabulating the signal y[n]/0.95n . To do so, 
add one line of code to the previous program: 

print signal/0.95**arange(N) 

The data are 

n y[n]/0.95n
 

0 1.000000
 
1 2.000000
 
2 3.000000
 
3 4.000000
 
4 5.000000
 
5 6.000000
 
6 7.000000
 
7 8.000000
 
8 9.000000
 
9 10.000000
 

10 11.000000
 

Now y[n] = n + 1 is exact! The impulse response of the double cascade is 
the signal 

y[n] = (n + 1) · 0.95n for n � 0. 

The factor of 0.95n makes sense because a single system (1 − 0.95R)−1 

would have 0.95n as its impulse response. But how does the factor of n +1 
arise? To understand its origin, one method is convolution, which was 
discussed in the lecture. Here we show an alternative method using a con­
tinuity argument. 
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5.4 Deforming the system: The continuity argument 

The cascade is hard to analyze because its roots are replicated. So de­
form the cascade by making the second root be 0.951 instead of 0.95. That 
slightly deformed system has the functional 

1 1 · . 
1 − 0.951R 1 − 0.95R 

Since the root hardly moved, the impulse response should be almost the 
same as the impulse response of the original system. This assumption is 
the essence of the continuity argument. We could find the response by 
slightly modifying the preceding program. However, reaching for a pro­
gram too often does not add insight. 

Alternatively, now that the system’s roots are unequal, we can easily use 
partial fractions. The first step in partial fractions is to find the modes: 

1 1 
M1 = and M2 = . 

1 − 0.951R 1 − 0.95R 

The system functional is a linear combination of these modes:
 

1 1 C1 C2 · = − . 
1 − 0.951R 1 − 0.95R 1 − 0.951R 1 − 0.95R 

Exercise 28. Show that C1 = 951 and C2 = 950. 

The partial-fractions decomposition is
 � � 
1 1 1 0.951 0.95 · = − . 

1 − 0.95R 1 − 0.951R 0.001 1 − 0.951R 1 − 0.95R 

The 0.951/(1 − 0.951R) system contributes the impulse response 0.951n+1 , 
and the 0.95/(1 − 0.95R) system contributes the impulse response 0.95n+1 . 

Exercise 29. Check these impulse responses. 

So the impulse response of the deformed system is 

y[n] = 1000 · (0.951n+1 − 0.95n+1). 
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Since 0.951 ≈ 0.95, the difference in parentheses is tiny. However, the 
difference is magnified by the factor of 1000 outside the parentheses. The 
resulting signal is not tiny, and might contain the non-geometric factor of 
n + 1 in the impulse response of a true double root. 

To approximate the difference 0.951n+1 − 0.95n+1, use the binomial theo­
rem, keeping only the two largest terms: 

0.951n+1 = (0.95 + 0.001)n+1
 

≈ 0.95n+1 + (n + 1)0.95n · 0.001 + · · · .
 
Thus the approximate impulse response is 

y[n] ≈ 1000 · (n + 1) · 0.95n · 0.001. 

The factor of 1000 cancels the factor of 0.001 to leave 

y[n] ≈ (n + 1) · 0.95n, 

which is what we conjectured numerically!
 

Thus the linear prefactor n +1 comes from subtracting two garden-variety,
 
geometric-sequence modes that are almost identical. The ≈ sign reflects
 
that we kept only the first two terms in the binomial expansion of 0.951n+1 .
 
However, as the deformation shrinks, the shifted root at 0.951 becomes
 
instead 0.9501 or 0.95001, etc. As the root approaches 0.95, the binomial
 
approximation becomes exact, as does the impulse response (n +1) ·0.95n .
 

The response (n + 1) · 0.95n is the product of an increasing function with
 
a decreasing function, with each function fighting for victory. In such sit­
 
uations, one function usually wins at the n → 0 extreme, and the other
 
function wins at the n → ∞ extreme, with a maximum product where the
 
two functions arrange a draw.
 

Exercise 30. Sketch n + 1, 0.95n, and their product. 

Pause to try 25. Where is the maximum of (n + 1) · 0.95n? 

This product reaches a maximum when two successive samples are equal. 
The ratio of successive samples is 
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y[n] 0.95n · (n + 1) 
= = 0.95 · 1 + . 

y[n − 1] 0.95n−1 · n n 

That ratio is one when n = 19. So  y[19] and y[18] are the maximums of the 
impulse response. The signal rises till then, plateaus, and then decays to 
zero. 

5.5 Higher-order cascades 

The propagation of an impulse in a neuronal dendrite – which has active 
amplification and regeneration – is a continuous-space RC cascade. It can 
be simulated approximately as a giant cascade of discrete-space RC filters. 

Rather than try a 1000-element cascade, try the impulse response of a triple 
cascade. Guess before calculating, whether calculating numerically or an­
alytically. The single system (1 − βR)−1 produces plain geometric decay 
βn with no prefactor. The double system (1 − βR)−2 produces geometric 
decay with a linear prefactor n + 1. So a triple cascade should produce 
geometric decay with a quadratic prefactor. And it does. 

Exercise 31. Guess the quadratic prefactor of the impulse re­
sponse of the triple cascade. How can you confirm 
your guess? 

Exercise 32. Compute and sketch the output signal of the triple 
cascade. 

Exercise 33. Where is the maximum of the impulse response? 
How does it compare to the maximum for the dou­
ble cascade? 
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The goals of this chapter are: 

•	 to analyze several methods for discretizing a continuous-time sys­
tem; and 

•	 to illustrate complex poles and the significance of the unit circle. 

How can you compute a sine wave if your programming language did not 
have a built-in sine function? You can use the coupled oscillator from the 
first problem set: 

ẏ 1 = y2, 

ẏ 2 = −y1. 

Let’s rewrite the equations to have physical meaning. Imagine y1 as the 
oscillator’s position x. Then y2 is ẋ, which is the oscillator’s velocity. So 
replace y1 with x, and replace y2 with v. Then ẏ 2 is the acceleration a, 
making the equations 

ẋ = v, 

a = −x. 

The first equation is a purely mathematical definition, so it has no physi­
cal content. But the second equation describes the acceleration of an ideal 
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spring with unit spring constant and unit mass. So the position x(t) is a 
linear combination of sin t and cos t. An accurate discrete-time simula­
tion, if we can make one, would reproduce these sinusoidal oscillations, 
and this chapter shows you how. 

To turn the system into a discrete-time system, let T be the time step, x[n] be 
the discrete-time estimate for the position x(nT), and v[n] be the discrete-
time estimate for the velocity v(nT). Those changes take care of all the 
terms except for the derivatives. How do you translate the derivatives? 
Three methods are easy to use, and we try each, finding its poles and ana­
lyzing its fidelity to the original, continuous-time system. 

6.1 Forward Euler 

The first method for translating the derivatives is the forward-Euler ap­
proximation. It estimates the continuous-time derivatives ẋ(nT) and v̇(nT) 
using the forward differences 

ẋ (nT ) → 
x[n + 1] − x[n] 

,
 
T
 

v̇ (nT) → 
v[n + 1] − v[n] 

.
 
T
 

Then the continuous-time system becomes 

x[n + 1] − x[n] = Tv[n], 

v[n + 1] − v[n] = −Tx[n]. 

The new samples x[n + 1] and v[n + 1] depend only on the old samples 
x[n] and v[n]. So this system provides an explicit recipe for computing 
later samples. 

6.1.1 Simulation 

Here is Python code to implement these equations. It starts the system 
with the initial conditions x[0] = 1 and v[0] = 0 and plots v vs x. 

from scipy import *
 
import pylab as p
 

T = 0.1 
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N = int(T**-2) 
x = zeros(N) 
x[0] = 1 
v = zeros(N) 

for	 n in range(N-1): 
x[n+1] = x[n] + T*v[n] 
v[n+1] = v[n] - T*x[n] 

p.plot(x,v,’r.’) 
p.show() 

Here is the plot (generated with MetaPost rather than Python, but from the 
same data): 

v 

x 

where the n = 0 sample is marked with the prominent dot.
 

Pause to try 26. What would the plot look like for an exact solution 
of the continuous-time differential equations? 

When the solution generates a true sine wave, which the continuous-time 
equations do, then the plot is of v(t) = − sin t versus x(t) = cos t, which 
is a circle. 

Since the discrete-time response is a growing spiral, it does not accurately 
represent the continuous-time system. Indeed after 50 or so time steps, the 
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points have spiraled outward significantly. The spiraling signifies that x[n] 
and v[n] individually are not only oscillating, they are also growing. 

6.1.2 Analysis using poles 

To explain why the system oscillates and grows, find its poles. First, turn 
the two first-order equations into one second-order equation. Then find 
the poles of the second-order system. This method avoids having to un­
derstand what poles mean in a coupled system of equations. 

To convert to a second-order system, use the first equation to eliminate v 
from the second equation. First multiply the second equation by T to get 

Tv[n + 1] − Tv[n] = −T2x[n]. 

Now express Tv[n + 1] using x[n] and v[n]; and Tv[n] using x[n − 1] and 
v[n − 1]. The forward-Euler replacements are 

Tv[n + 1] = x[n + 2] − x[n + 1],
 

Tv[n] = x[n + 1] − x[n].
 

Making these replacements in Tv[n + 1] − Tv[n] = −T2x[n] gives 

(x[n + 2] − x[n + 1]) − (x[n + 1] − x[n]) = −T2x[n]. � �� � � �� � 
Tv[n+1] Tv[n] 

Collect like terms to get: 

x[n + 2] − 2x[n + 1] + (1 + T2)x[n] = 0. 

To get a system functional, we should have included an input signal or 
forcing function F. Physically, the forcing function represents the force dri­
ving the spring. Here is one way to add it: 

x[n + 2] − 2x[n + 1] + (1 + T2)x[n] = f[n + 2], 

The system functional is: 

X 1 
= . 

F 1 − 2R + (1 + T2)R2 

To find the poles, factor the denominator 1− 2R +(1+ T2)R2 into the form 
(1 − p1R)(1 − p2R). 
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Pause to try 27. Where are poles p1 and p2? 

The quadratic formula is useful in finding p1 and p2, but too often it substi­
tutes for, and does not augment understanding. So here is an alternative, 
intuitive analysis to find the poles. First expand the generic factored form: 

(1 − p1R)(1 − p2R) = 1 − (p1 + p2)R + p1p2R
2. 

Now match this form to the particular denominator 1 − 2R + (1 + T2)R2 . 
The result is 

p1 + p2 = 2,
 

p1p2 = 1 + T2.
 

The sum of the roots is 2 while the product is greater than 1. 

Pause to try 28. Show that these conditions are impossible to meet 
if p1 and p2 are real. 

Let p1 = 1 + a and p2 = 1 − a, which ensures that Im z 

p1 + p2 = 2. Then p1p2 = 1 − a2, which cannot be 
greater than 1 if a is real. So a must be imaginary. 
The resulting poles are: 

p1,2 = 1 ± jT 

and are marked on the z-plane. 

The poles are not on the positive real axis, which 
means that they produce oscillating outputs. Oscillation is desirable in a 
simulation of an oscillating continuous-time system. However, both poles 
lie outside the unit circle! Poles in that region of the z-plane produce grow­
ing outputs. So the poles of our system, which lie off the positive real axis 
and outside the unit circle, produce outputs that oscillate and grow, as 
shown in the X–V plot. 

The forward-Euler method does not produce an accurate approximation to 
the continuous-time oscillating system. 

Re z 
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Exercise 34. To place the poles on the unit circle, why not simu­
late with T = 0? 

Exercise 35. On the z-plane, sketch how the poles move as T in­
creases from 0 to 1. 

6.2 Backward Euler 

Let’s find another method. Being lazy, we invent it using symmetry. If for­
ward Euler is inaccurate, try backward Euler by estimating the derivatives 
using backward differences: 

ẋ (nT) → 
x[n] − x[n − 1] 

,
 
T
 

v̇ (nT) → 
v[n] − v[n − 1] 

.
 
T
 

These estimates are left-shifted versions of the forward-Euler estimates. 

Then the system of continuous-time equations becomes 

x[n] − x[n − 1] = Tv[n], 

v[n] − v[n − 1] = −Tx[n]. 

The new values x[n] and v[n] depend on the new values themselves! This 
discrete-time system is an implicit recipe for computing the next samples, 
wherefore the backward Euler method is often called implicit Euler. 

6.2.1 Finding an explicit recipe 

Being a set of implicit equations, they require massaging to become an 
explicit recipe that we can program. You can do so with a matrix inversion, 
but let’s do it step by step. The system of equations is 

x[n] − Tv[n] =  x[n − 1],
 
Tx[n] + v[n] = v[n − 1].
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Eliminate v[n] to get an equation for x[n] in terms of only the preceding 
samples x[n−1] and v[n−1]. To eliminate v[n], multiply the second equa­
tion by T then add. The result is 

(1 + T2)x[n] = x[n − 1] + Tv[n − 1]. 

Similarly, eliminate x[n] to get an equation for v[n] in terms of only the 
preceding values v[n− 1] and x[n− 1]. To eliminate x[n], multiply the first 
equation by T then subtract. The result is 

(1 + T2)v[n] = v[n − 1] − Tx[n − 1]. 

These equations are similar to the forward-Euler equations except for the 
factors of 1 + T2. Those factors shrink x[n] and v[n], so they might control 
the runaway oscillations. 

Pause to try 29. Modify the Python program for forward Euler to 
implement backward Euler, and plot the results. 

To implement backward Euler, only two lines of the program need to be 
changed, the lines that compute the new samples. The code is 

for	 n in range(N-1): 
x[n+1] = (x[n] + T*v[n])/(1+T**2) 
v[n+1] = (v[n] - T*x[n])/(1+T**2) 

and the X–V plot is 

v 

x 

Now the points spiral inward! The factor of 1 + T2 is overkill. 
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6.2.2 Poles of backward Euler 

Let’s explain the inward spiral by finding the poles of the system. The first 
step is to convert the two first-order difference equations into one second-
order equation. 

Pause to try 30. Find the second-order difference equation. 

To convert to a second-order difference equation, eliminate v[n] and v[n−1] 
by using 

Tv[n] = x[n] − x[n − 1] 
and by using its counterpart shifted one sample, which is Tv[n − 1] =  
x[n − 1] − x[n − 2]. Make these substitutions into Tx[n] + v[n] = v[n − 1] 
after multiplying both sides by −T . Then 

−T2x[n] = (x[n] − x[n − 1]) − (x[n − 1] − x[n − 2]) � �� � � �� � 
Tv[n] Tv[n−1] 

= x[n] − 2x[n − 1] + x[n − 2]. 

Combining the x[n] terms and adding a forcing function F produces this 
difference equation 

(1 + T2)x[n] − 2x[n − 1] + x[n − 2] = f[n] 

and this system functional 

F 1 
= . 

X (1 + T2) − 2R + R2 

Pause to try 31. Find the poles. 
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Now find its poles by factoring the denominator. Im z 

Avoid the quadratic formula! The denominator looks 
similar to the denominator in forward Euler where 
it was 1 −2R +(1 +T2)R2, but the end coefficients 1 
and 1 +T2 are interchanged. This interchange turns 
roots into their reciprocals, so the poles are 

1	 1 
p1 = p2 = . 

1 + jT 1 − jT 

These poles lie inside the unit circle, so the oscillations die out and the X–V 
plot spirals into the origin. 

Re z 

Pause to try 32. Do a cheap hack to the program make the points 
stay on the unit circle. Hint: Add just eight charac­
ters to the code. 

A cheap hack is to fix the problem manually. If dividing x[n + 1] and 
v[n + 1] by 1 + T2 overcorrected, and dividing by 1 undercorrected, then√ 
try dividing by a compromise value 1 + T2: 

for	 n in range(N-1):
 
x[n+1] = (x[n] + T*v[n])/sqrt(1+T**2)
 
v[n+1] = (v[n] - T*x[n])/sqrt(1+T**2)
 

However, this hack does not generalize, which is why it is a cheap hack 
rather than a method. In this problem we can solve the continuous-time 
system, so we can construct a hack to reproduce its behavior with a discrete-
time system. However, for many systems we do not know the continuous-
time solution, which is why we simulate. So we would like a principled 
method to get accurate simulations. 

6.3	 Leapfrog 

Leapfrog, also known as the trapezoidal approximation, is a mixture of 
forward and backward Euler. Use forward Euler for the x derivative: 

ẋ (nT) → 
x[n + 1] − x[n]
 

T
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The discrete-time equation is, as in forward Euler, 

x[n + 1] − x[n] = Tv[n]. 

Then use backward Euler for the v derivative. So
 

v̇ (nT) → 
v[n] − v[n − 1]
 

T
 

and 

v[n] − v[n − 1] = −Tx[n] 

or 

v[n + 1] − v[n] = −Tx[n + 1]. 

In this mixed method, the x computation is an explicit recipe, whereas the 
v computation is an implicit recipe. 

6.3.1 Simulation 

Fortunately, this implicit recipe, unlike the full backward Euler, has a clean 
implementation. The system of equations is 

x[n + 1] = x[n] + Tv[n], 

v[n + 1] = v[n] − Tx[n + 1]. 

Pause to try 33. Implement leapfrog by modifying the magic two 
lines in the Python program. 

The only change from forward Euler is in the computation of v[n + 1]. 
Leapfrog uses x[n + 1], which is the just-computed value of x. So the code 
is 

for n in range(N-1): 
x[n+1] = x[n] + T*v[n] 
v[n+1] = v[n] - T*x[n+1] 

and the plot is 
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x 

v 

√ 
A beautiful circle without 1 + T2 hacks! 

6.3.2 Analysis using poles 

Let’s explain that behavior by finding the poles of this system. As usual, 
convert the two first-order equations into one second-order equation for 
the position. To eliminate v, use the first equation, that Tv[n] = x[n + 1] −  
x[n]. Then v[n + 1] = v[n] − Tx[n + 1] becomes after multiplying by T : 

(x[n + 2] − x[n + 1]) − (x[n + 1] − x[n]) = −T2x[n + 1]. � �� � � �� � 
Tv[n+1] Tv[n] 

After rearranging and including a forcing function, the result is 

x[n + 2] − (2 − T2)x[n + 1] + x[n] = f[n + 2]. 

The system functional is 

1 
. 

1 − (2 − T2)R + R2 

Again factor into the form (1 − p1R)(1 − p2R). The Im z


product p1p2 is 1 because it is the coefficient of R2 .

The sum p1 + p2 is 2 − T2, which is less than 2.

So the roots must be complex. A pair of complex-

conjugate roots whose product is 1 lie on the unit

circle. Poles on the unit circle produce oscillations

that do not grow or shrink, wherefore leapfrog pro­

duces such a fine sine wave.


Re z 
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Exercise 36. Find the poles of the second-
order equation and confirm 
that they lie on the unit cir­
cle. 

6.4 Summary 

The forward-Euler method is too aggressive. The backward-Euler method 
is too passive. But, at least for second-order systems, the mixed, forward– 
backward Euler method (leapfrog) is just right [13]. 
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The goals of this chapter are to study: 

• how to use feedback to control a system; 

• how slow sensors destabilize a feedback system; and 

• how to model inertia and how it destabilizes a feedback system. 

A common engineering design problem is to control a system that inte­
grates. For example, position a rod attached to a motor that turns input 
(control) voltage into angular velocity. The goal is an angle whereas the 
control variable, angular velocity, is one derivative different from angle. 
We first make a discrete-time model of such a system and try to control 
it without feedback. To solve the problems of the feedforward setup, we 
then introduce feedback and analyze its effects. 

7.1 Motor model with feedforward control 

We would like to design a controller that tells the motor how to place the 
arm at a given position. The simplest controller is entirely feedforward in 
that it does not use information about the actual angle. Then the high-level 
block diagram of the controller–motor system is 
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controller motorinput output 

where we have to figure out what the output and input signals represent. 

A useful input signal is the desired angle of the arm. This angle may vary 
with time, as it would for a robot arm being directed toward a teacup (for 
a robot that enjoys teatime). 

The output signal should be the variable that interests us: the position 
(angle) of the arm. That choice helps later when we analyze feedback con­
trollers, which use the output signal to decide what to tell the motor. With 
the output signal being the same kind of quantity as the input signal (both 
are angles), a feedback controller can easily compute the error signal by 
subtracting the output from the input. 

With this setup, the controller–motor system takes the desired angle as its 
input signal and produces the actual angle of the arm as its output. 

To design the controller, we need to model the motor. The motor turns 
a voltage into the arm’s angular velocity ω. The continuous-time system 
that turns ω into angle is θ ∝ ω dt. Its forward-Euler approximation is 
the difference equation 

y[n] = y[n − 1] + x[n − 1]. 

The corresponding system functional is R/(1 − R), which represents an 
accumulator with a delay. 

Exercise 37. Draw the corresponding block diagram. 

The ideal output signal would be a copy of the input signal, and the cor­
responding system functional would be 1. Since the motor’s system func­
tional is R/(1−R), the controller’s should be (1−R)/R. Sadly, time travel 
is not (yet?) available, so a bare R in a denominator, which represents a 
negative delay, is impossible. A realizable controller is 1 − R, which pro­
duces a single delay R for the combined system functional: 

R 
1 − R 

1 − R 

controller motor 

input output 
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Alas, the 1 − R controller is sensitive to the particulars of the motor and of 
our model of it. Suppose that the arm starts with a non-zero angle before 
the motor turns on (for example, the whole system gets rotated without the 
motor knowing about it). Then the output angle remains incorrect by this 
initial angle. This situation is dangerous if the arm belongs to a 1500-kg 
robot where an error of 10◦ means that its arm crashes through a brick wall 
rather than stopping to pick up the teacup near the wall. 

A problem in the same category is an error in the constant of proportional­
ity. Suppose that the motor model underestimates the conversion between 
voltage and angular velocity, say by a factor of 1.5. Then the system func­
tional of the controller–motor system is 1.5R rather than R. A 500-kg arm 
might again arrive at the far side of a brick wall. 

One remedy for these problems is feedback control, whose analysis is the 
subject of the next sections. 

7.2 Simple feedback control 

In feedback control, the controller uses the output signal to decide what 
to tell the motor. Knowing the input and output signals, an infinitely in­
telligent controller could deduce how the motor works. Such a controller 
would realize that the arm’s angle starts with an offset or that the mo­
tor’s conversion is incorrect by a factor of 1.5, and it would compensate for 
those and other problems. That mythical controller is beyond the scope of 
this course (and maybe of all courses). In this course, we use only linear-
systems theory rather than strong AI. But the essential and transferable 
idea in the mythical controller is feedback. 

So, sense the the angle of the arm, compare it to the desired angle, and use 
the difference (the error signal) to decide the motor’s speed: 

+ controller motor 

sensor−1 

controller motor 

sensor 

A real sensor cannot respond instantaneously, so assume the next-best sit­
 
uation, that the sensor includes one unit of delay. Then the sensor’s output
 
gets subtracted from the desired angle to get the error signal, which is used
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by the controller. The simplest controller, which uses so-called propor­
tional control, just multiplies the error signal by a constant β. This setup 
has the block diagram 

+ C(R) = β M(R) =  
R 

1 − R 

S(R) = R−1 

controller 
motor 

sensor 

It was analyzed in lecture and has the system functional 

C(R)M(R) βR/(1 − R) 
= 

1 + C(R)M(R)S(R) 1 + βR2/(1 − R). 

Multiply by (1 − R)/(1 − R) to clear the fractions. Then 

βR 
F(R) =  ,

1 − R + βR2 

where F(R) is the functional for the whole feedback system. 

Let’s analyze its behavior in the extreme cases of the gain β. As  β → ∞, 
the system functional limits to R/R2 = 1/R, which is a time machine. Since 
we cannot build a time machine just by choosing a huge gain in a feedback 
system, some effect should prevent us raising β → ∞. Indeed, instability 
will prevent it, as we will see by smoothly raising β from 0 to ∞. 

To study stability, look at the poles of the feedback system, which are given 
by the factors of the denominator 1 − R + βR2. The factored form is (1 − 
p1R)(1 − p2R). So the sum of the poles is 1 and their product is β. At the 
β → 0 extreme, which means no feedback, the poles are approximately 1− 
β and β. The pole near 1 means that the system is almost an accumulator; it 
approximately integrates the input signal. This behavior is what the motor 
does without feedback and is far from our goal that the controller–motor 
system copy the input to the output. 

Turning up the gain improves the control. However, at the β → ∞ ex­
treme, the poles are roughly at 

1 
p1,2 ≈ ± j β 

2 
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so that p1p2 = β. Those poles lie far outside the unit circle, making the 
system highly unstable. Too much gain destabilizes a feedback system. 

To find the best gain, study the poles. The pole farthest from the origin has 
the most rapidly growing, or most slowly decaying output. Therefore, to 
make the system as stable as possible, minimize the distance to the pole 
most distant from the origin. To do so, place poles at the same location. In 
this example, the location must be p1 = p2 = 1/2 since p1 + p2 = 1. Since 
β = p1p2, choose β = 1/4. Now the output position rapidly approaches 
the desired position. Equivalently, in response to an impulse input signal, 
the error signal decays rapidly to zero, roughly halving each time step. 

Exercise 38.	 Why does the error signal roughly halve, rather than 
exactly halve with every time step? 

7.3 Sensor delays 

The preceding model contained a rapid sensor. Suppose instead that the 
sensor is slow, say S(R) = R2 . 

Pause to try 34. With this sensor, what is the functional for the feed­
back system? 

The functional for the feedback system is 

βR 
1 − R + βR3

, 

which is the previous functional with the R2 in the denominator replaced 
by R3 because of the extra power of R in the sensor functional. There are 
many analyses that one can do on this system. For simplicity, we choose a 
particular gain β – the rapid-convergence gain with the fast sensor – and 
see how the extra sensor delay moves the poles. But before analyzing, 
predict the conclusion! 
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Pause to try 35. Will the extra sensor delay move the least stable 
pole inward, outward, or leave its magnitude un­
changed? 

The poles are at the roots of the corresponding z3 − z2 

equation z3 − z2 + β = 0 or 

z3 − z2 = −β. 

Here is a sketch of the curve z3 − z2 . Its mini­
mum is at M = (2/3, −4/27), so the horizontal 
line at −1/4 intersects the curve only once, in the 
left half of the plane. The equation therefore has one (negative) real root 
and two complex roots. So, for β = 1/4, the system has two complex poles 
and one real pole. The following Python code finds the poles. It first finds 
the real pole p1 using the Newton–Raphson [18] method of successive ap­
proximation. The Newton–Raphson code is available as part of the scipy 
package. The real pole constrains the real part of the complex poles be­
cause the sum of the poles p1 + p2 + p3 is 1, and the two complex poles 
have the same real part. So 

Re p2,3 = 
1 − p1 

. 
2 

To find the imaginary part of p2 or p3, use the product of the poles. The 
product p1p2p3 is −β. Since the magnitudes of the complex poles are equal 
because they are complex conjugates, we have 

−β 
|p2,3| = .
 

p1
 

Then find the imaginary part of one complex pole from the computed real 
part and magnitude. This algorithm is implemented below. 

from scipy import * 

def poly(beta): 
def f(z): # closure that knows the passed-in value of 

beta 

z 

MM
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return z**3-z**2+beta
 
return f
 

# return the three poles of 1-R+beta*R^3 by solving z^3-z^2+beta=0 
# method works for beta>4/27 (one real root, two complex roots) 
def solve(beta): 

# use Newton-Raphson to find the one real root (for beta>4/27)
 
realroot = optimize.newton(poly(beta), 1.0)
 
# use realroot to find complex roots
 
realpart = (1-realroot)/2 # sum of the roots
 

is 1 
magnitude = sqrt(-beta/realroot) # product of roots is 

-beta 
imaginarypart = sqrt(magnitude**2 - realpart**2) 
complexroot = realpart + 1j*imaginarypart 
return (realroot, complexroot, conjugate(complexroot)) 

The result is 

p1 ≈ −0.419,
 

p2 ≈ 0.710 + 0.303j,
 

p3 ≈ 0.710 − 0.303j.
 

With these locations, the complex poles are the least stable modes. These 
poles have a magnitude of approximately 0.772. In the previous system 
with the fast sensor and the same gain β = 1/4, both poles had magnitude 
0.5. So the sensor delay has made the system more unstable and, since the

poles are complex, has introduced oscillations.


To make the system more stable, one can reduce β. But this method has

problems. The β → ∞ limit makes the feedback system turn into the sys­

tem R−2, independent of the motor’s characteristics. The other direction,

reducing β, exposes more particulars of the motor, making a feedback sys­

tem sensitive to the parameters of the motor. Thus lower β means one

gives up some advantages of feedback. No choices are easy if the sensor

delay is long. When β is small, the system system is stable but benefits

hardly at all from feedback.


Pause to try 36. What happens when β is large? 
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When β is large, then the feedback system is less stable and eventually 
unstable. To prove this, look at how the denominator 1 − R + βR3 con­
strains the location of the poles. The product of the poles the negative of 
the coefficient of R3, so  p1p2p3 = −β. Using magnitudes, 

|p1| |p2| |p3| = β, 

so when β > 1, at least one pole must have magnitude greater than one, 
meaning that it lies outside the unit circle. 

From the analysis with S(R) = R and S(R) = R2, try to guess what happens 
with one more delay in the sensor, which makes S(R) =  R3 (again with 
β = 1/4). 

Exercise 39. What happens to the stability if the sensor has yet 
another delay, so S(R) = R3? First guess then check 
your guess by finding the poles numerically or oth­
erwise. 

7.4 Inertia 

Now return to the quick sensor with one delay, but improve the physical 
model of the motor. A physical motor cannot change its angular veloc­
ity arbitrarily quickly, especially with a heavy rod attached to it. Instant 
changes imply zero inertia. So we should add inertia to the model of the 
motor. 

A simple model of inertia is a new term in the difference equation: 

1 
y[n] = y[n − 1] + x[n − 1] +  (y[n − 1] − y[n − 2]) . 

2 
inertia 

The difference y[n − 1] − y[n − 2] estimates the motor’s angular velocity. 
The coefficient of 1/2 means that, with each time step, the motor gets rid of 
one-half of its previous angular velocity. Alternatively, it means that one-
half of its previous angular velocity remains to affect the new angle. This 
coefficient depends on the mass of the motor and the mass and length of 
the rod – more exactly, on the moment of inertia of the system – and on the 
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power of the motor. For illustrating the ideas, we picked the convenient 
coefficient of 1/2. 

The motor’s system functional, which was R/(1 − R), becomes 

R 
M(R) =  

1
. 

1 − 3 R + R2 
2 2 

Pause to try 37. Find the poles of this system and mark them on a 
pole–zero diagram. 

This functional factors into 

R 
M(R) =

(1 − 1
2 R)(1 − R) 

so the poles are p1 = 1/2 and p2 = 1. 

The functional for the feedback system of controller C(R), sensor S(R), and 
motor M(R) is 

C(R)M(R)
F(R) =  ,

1 + C(R)M(R)S(R) 

With the usual controller C(R) = β, fast sensor S(R) = R, and new motor 
model M(R) with inertia, the feedback system has the functional 

βR/(1 − 3 R + 1 R2)
2 2 . 

1 + βR2/(1 − 3
2 R + 1

2 R
2) 

Clear the fractions to get 

βR 
F(R) =

1 − 3 R + 
� 
β + 1 

� 
R2

.

2 2


This denominator is quadratic so we can find the poles for all β without 
needing numerical solutions. So let β increase from 0 to ∞. Their locations 
are determined by factoring the denominator When β = 0, it factors into 
(1−R/2)(1 −R), and the poles are at 1/2 and 1 – which are the poles of the 
motor itself. The pole at 1 indicates an accumulator, which means that the 
system is very different than one that copies the input signal to the output 
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signal. But we knew it would happen that way, because choosing β = 0 
turns off feedback. 

As β increases, the poles move. The sum p1 +p2 remains constant at 3/2, so  
the poles are at 3/4 ± α. For β = 0, the α is 1/4. As  β increases, α increases 
and the poles slide along the real axis until they collide at p1,2 = 3/4. When 
they collide, the product of the poles is p1p2 = 9/16. This product is the 
coefficient of R2, which is 1/2 + β. So  1/2 + β = 9/16, which means that 
the poles collide when β = 1/16. That controller gain results in the most 
stable system. It is also significantly smaller than the corresponding gain 
when the motor had no inertia. This simple controller that only has a gain 
has difficulty compensating for inertia. 

Pause to try 38. For what β do the poles cross the unit circle into 
instability? Compare that critical β with the corre­
sponding value in the model without inertia. 

As β increases farther, the poles move along a vertical line with real part 
3/4. The next interesting β is when the poles hit the unit circle. Their 
product is then 1, which is the coefficient of R2 in the denominator of the 
system functional. So 1/2 + β = 1 or β = 1/2. The resulting poles are 

√ 
3 7 

p1,2 = ± j . 
4 4 

In the model without inertia, β could increase to 1 before the feedback 
system became unstable, whereas now it can increase only till 1/2: Inertia 
destabilizes the feedback system. 

Exercise 40. Sketch how the poles move as β changes from 0 to 
∞. 
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Exercise 41. What if the system has more inertia, meaning that 
old angular velocities persist longer? For example: 

y[n] =  y[n−1]+x[n−1]+ 
4 
5
(y[n − 1] −  y[n − 2]) � �� � 

inertia 

. 

Sketch how the poles of the feedback system move 
as β changes from 0 to ∞, and compare with the 
case of no inertia and of inertia with a coefficient of 
1/2. 
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The goals of this chapter are: 

•	 to introduce derivative control; and 

•	 to study the combination of proportional and derivative control 
for taming systems with integration or inertia. 

The controllers in the previous chapter had the same form: The control 
signal was a multiple of the error signal. This method cannot easily control 
an integrating system, such as the motor positioning a rod even without 
inertia. If the system has inertia, the limits of proportional control become 
even more apparent. This chapter introduces an alternative: derivative 
control. 

8.1 Why derivative control 

An alternative to proportional control is derivative control. It is motivated 
by the integration inherent in the motor system. We would like the feed­
back system to make the actual position be the desired position. In other 
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words, it should copy the input signal to the output signal. We would even 
settle for a bit of delay on top of the copying. This arrangement is shown 
in the following block diagram: 

+ C(R) =?  M(R) =  
R 

1 − R 

S(R) = R−1 

controller 
motor 

sensor 

Since the motor has the functional R/(1 − R), let’s put a discrete-time de­
rivative 1 − R into the controller to remove the 1 − R in the motor’s de­
nominator. With this derivative control, the forward-path cascade of the 
controller and motor contains only powers of R. Although this method is 
too fragile to use alone, it is a useful idea. Pure derivative control is fragile 
because it uses pole–zero cancellation. This cancellation is mathematically 
plausible but, for the reasons explained in lecture, it produces unwanted 
offsets in the output. However, derivative control is still useful. As we 
will find, in combination with proportional control, it helps to stabilize in­
tegrating systems. 

8.2 Mixing the two methods of control 

Proportional control uses β as the controller. Derivative control uses γ(1 − 
R) as the controller. The linear mixture of the two methods is 

C(R) = β + γ(1 − R). 

+ C(R) = β + γ(1 − R) M(R) =  
R 

1 − R 

S(R) = R−1 

controller 
motor 

sensor 

Let F(R) be the functional for the entire feedback system. Its numerator is 
the forward path C(R)M(R). Its denominator is 1 − L(R), where L(R) is 
the loop functional or loop gain that results from going once around the 
feedback loop. Here the loop functional is 
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L(R) = −C(R)M(R)S(R). 

Don’t forget the contribution of the inverting (gain= −1) element! So the 
overall system functional is 

(β + γ(1 − R)) 
1− 
R
RF(R) =  . 

1 + (β + γ(1 − R)) 
1− 
R
R R 

Clear the fractions to get 

whatever 
F(R) =  . 

1 − R + (β + γ(1 − R))R2 

The whatever indicates that we don’t care what is in the numerator. It can 
contribute only zeros, whereas what we worry about are the poles. The 
poles arise from the denominator, so to avoid doing irrelevant algebra and 
to avoid cluttering up the expressions, we do not even compute the nu­
merator as long as we know that the fractions are cleared. 

The denominator is 

1 − R + (β + γ)R2 − γR3. 

This cubic polynomial produces three poles. Before studying their loca­
tions – a daunting task with a cubic – do an extreme-cases check: Take the 
limit γ → 0 to turn off derivative control. The system should turn into the 
pure proportional-control system from the previous chapter. It does: The 
denominator becomes 1 − R + βR2, which is the denominator from Sec­
tion 7.2. As the proportional gain β increases from 0 to ∞, the poles, which 
begin at 0 and 1, move inward; collide at 1/2 when β = 1/4; then split up­
ward and downward to infinity. Here is the root locus of this limiting case 
of γ → 0, with only proportional control: 
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8.3 Optimizing the combination 

We would like to make the whole system as stable as possible, in the sense

that the least stable pole is as close to the origin as possible. The root

locus for the general combination has three branches, one for each pole,

whereas the limiting case of proportional control has only two poles and

two branches. Worse, the root locus for the general combination is gener­

ated by two parameters – the gains of the proportional and the derivative

portions – whereas in the limiting case it is generated by only one parame­

ter. The general analysis seems difficult.


Surprisingly, the extra parameter rescues us from painful mathematics. To

see how, look at the coefficients in the cubic:


1 − R + (β + γ)R2 − γR3. 

The factored form is 

(1−p1R)(1−p2R)(1−p3R) =  1−(p1 + p2 + p3) R+(p1p2 + p1p3 + p2p3) R
2−p1p2p3 R � �� � � �� � � �� � 

1 β+γ γ 

So the first constraint is 

p1 + p2 + p3 = 1, 

showing that the center of gravity of the poles is 1/3. That condition is

independent of β and γ. So the most stable system has a triple pole at 1/3,

if that arrangement is possible. To see why that arrangement is the most

stable, imagine starting from it. Now move one pole inward along the real

axis to increase its stability. To preserve the invariant p1 + p2 + p3 = 1,

at least one of the other poles must move outward and become less stable.

Thus it is best not to move any pole away from the triple cluster, so it is the

most stable arrangement.


Exercise 42. Where does the preceding argument require that 
the center of gravity be independent of β and γ? 

If the triple-pole arrangement is impossible, then the preceding argument, 
which assumed its existence, does not work. And we need lots of work to 
find the best arrangement of poles. 
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Fortunately, the triple pole is possible thanks to the extra parameter γ. 
Having freedom to choose β and γ, we can set the R2 coefficient β + γ 
independently from the R3 coefficient, which is −γ. So, using β and γ as 
separate dials, we can make any cubic whose poles are centered on 1/3. 

Let’s set those dials by propagating constraints. With p1 = p2 = p3 = 1/3, 
the product p1p2p3 = 1/27. So the gain of the derivative controller is 

1 
γ = . 

27 

The last constraint is that p1p2 +p1p3 +p2p3 = 3/9 = 1/3. So  β +γ = 1/3. 
With γ = 1/27, this equation requires that the gain of the proportional 
controller be β = 8/27. The best controller is then 

8 1 1 R 
C(R) =  + (1 − R) =  1 − . 

27 27 3 9 

Exercise 43. What is the pole-zero plot of the forward path 
C(R)M(R)? 

This controller has a zero at z = 1/9. So the added zero has pulled the 
poles into the sweet spot of 1/3. In comparison with pure proportional 
control, where the worst pole could not get closer than z = 1/2, derivative 
control has dragged the poles all the way to z = 1/3. A judicious amount 
of derivative control has helped stabilize the system. 

8.4 Handling inertia 

The last example showed how to use derivative control and computed how 
much to use. However, derivative control was not essential to stabilizing 
the feedback system since proportional control alone can do so and can 
drag the least stable pole to z = 1/2. But derivative control becomes essen­
tial when the system has inertia. 

Without inertia, the motor accumulates angular velocity to produce angle, 
which is represented by the difference equation 

y[n] = y[n − 1] + x[n − 1] 
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and the system functional M(R) =  R/(1 − R). The model of inertia in 
Section 7.4 added a term to the motor’s difference equation: 

y[n] = y[n − 1] + x[n − 1] + m(y[n − 1] − y[n − 2]), 

inertia 

where m is a constant between 0 (no inertia) and 1 (maximum inertia). This 
term changes the motor’s system functional to 

1 
M(R) =  . 

1 − (1 + m)R + mR2 

It factors into poles at m and 1: 

1 
M(R) =  . 

(1 − mR)(1 − R) 

The analysis in Section 7.4 used m = 1/2, and 
then asked you to try m = 4/5. You should 
have found that the arm is hard to position when 
m is so close to 1. The figure shows the root 
locus for the motor with inertia m = 4/5 and 
controlled only using proportional control. The 
least stable pole can, with the right proportional 
gain, be dragged to the collision point z = 0.9. 
But the pole cannot be moved farther inward 
without moving the other pole outward. A pole 
at z = 0.9 means that the system’s response 
contains the mode 0.9n, which converges only 
slowly to zero. 

Pause to try 39. How many time steps before 0.9n has decayed 
roughly by a factor of e3 (commonly used as a mea­
sure of ‘has fallen very close to zero’)? 

The decay 0.9n takes roughly 10 steps to fall by a factor of e. Use the great­
est approximation in mathematics: 

0.910 = (1 − 0.1)10 ≈ e −0.1×10 = e −1. 
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So 30 time steps make the signal fall by a factor of e3. In some applications, 
this wait might be too long. 

Derivative control can pull the poles toward the origin, thereby hasten­
ing the convergence. Let’s analyze how much derivative control to use by 
finding the poles of the feedback system. The feedback system is 

+ C(R) = β + γ(1 − R) M(R) =  
R 

(1 − mR)(1 − R) 

S(R) = R−1 

controller 
motor 

sensor 

Its system functional has the form 

N(R)
F(R) =  ,

D(R) 

where the denominator is 

D(R) = 1 − (−C(R)M(R)S(R)) 

loop functional L(R) 

= 1 + C(R)M(R)S(R). 

In the product C(R)M(R)S(R), the only term with a denominator is M(R). 
To clear its denominator from D(R), the whole denominator will get mul­
tiplied by the denominator of M(R), which is (1 − mR)(1 − R). So the 
system functional will end up with a denominator of 

(1 − mR)(1 − R) + (β + γ(1 − R)) R2. 

controller 

After the controller come two powers of R, one from the sensor, the other 
from the numerator of the motor functional M(R). After expanding the 
products, the denominator is 

1 − (1 + m)R + (m + β + γ)R2 − γR3. 

This system has three parameters: the proportional gain β, the derivative 
gain γ, and the inertia pole m. Before spending the effort to analyze a cubic 
equation for its poles, check whether the equation is even reasonable! The 
fastest check is the extreme cases of taking parameters to zero. The limit 
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m → 0 wipes out the inertia and should reproduce the denominator in the 
preceding section. In that limit, the denominator becomes 

1 − R + (β + γ)R2 − γR3 (m → 0 limit), 

which matches the denominator in Section 8.2. Good! 

Adding the limit γ → 0 then wipes out derivative control, which should 
reproduce the analysis of the simple motor with only proportional control 
in Section 7.2. Adding the γ → 0 limit turns the denominator into 

1 − R + βR2 (m → 0, γ → 0 limit), 

which passes the test. Adding the β → 0 limit wipes out the remaining 
feedback, leaving the bare motor functional M(R), which indeed has a 
factor of 1 − R in the denominator. So the candidate denominator passes 
this third test too. 

Although passing three tests does not guarantee correctness, the tests in­
crease our confidence in the algebra, perhaps enough to make it worth­
while to analyze the cubic to find where and how to place the poles. For 
convenience, here is the cubic again: 

1 − (1 + m)R + (m + β + γ)R2 − γR3. 

We would like to choose β and γ so that the worst pole – the one farthest 
from the origin – is as close as possible to the origin. 

Maybe we can try the same trick (method?) that we used in the analysis 
without inertia: to place all three poles at the same spot. Let’s assume that 
this solution is possible, and propagate constraints again. The sum of the 
poles is 1 + m, so each pole is at p = (1 + m)/3. The product of the poles, 
p3, is  (1 + m)3/27, which tells us 

(1 + m)3 

γ = . 
27 

. The sum of pairwise products of poles is 3p2 and is therefore m + β + γ. 
Since 3p2 is (1 + m)2/3, the equation for β is 

(1 + m)2 

= m + β + γ. 
3 

So the proportional gain is: 
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(1 + m)2 m2 − m + 1 (1 + m)3 

β = − m − γ = − . 
3 3 27 

To summarize, 

(1 + m)3 

γ = ,
27
 

m2 − m + 1 (1 + m)3
 

β = − . 
3 27 

An interesting special case is maximum inertia, which is m = 1. Then 
γ = 8/27 and β = 1/27, so the controller is 

1 8 1 8 
+ (1 − R) =  − R 

27 27 3 27 
1 8 

= 1 − R . 
3 9 

So the controller contains a zero at 8/9, near the double pole at 1. This 
mixed proportional–derivative controller moves all the poles to z = (1 + 
m)/3 = 2/3, which is decently inside the unit circle. So this mixed con­
troller can stabilize even this hard case. This case is the hardest one to 
control because the motor-and-rod system now contains two integrations: 
one because the motor turns voltage into angular velocity rather than po­
sition, and the second because of the inertia pole at 1. This system has the 
same loop functional as the steering-a-car example in lecture (!), which was 
unstable for any amount of pure proportional gain. By mixing in deriva­
tive control, all the poles can be placed at 2/3, which means that the system 
is stable and settles reasonably quickly. Since � �2.5

2 ≈ e −1,
3 

the time constant for settling is about 2.5 time steps, and the system is well 
settled after three time constants, or about 7 time steps. 

8.5 Summary 

To control an integrating system, try derivative control. To control a sys­
tem with inertia, also try derivative control. In either situation, do not use 
pure derivative control, for it is too fragile. Instead, mix proportional and 
derivative control to maximize the stability, which often means putting all 
the poles on top of each other. 
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of moving bodies]. Annalen der Physik, 17:891–921, 1905. 

[8]	 David Epstein and Sylvio Levy. Experimentation and proof in mathematics. No­
tices of the American Mathematical Society, pages 670–674, June/July 1995. 

[9]	 Richard Feynman and Ralph Leighton (contributor). Surely You’re Joking, Mr. Feyn­
man! Adventures of a Curious Character. W. W. Norton, 1985. 

[10] Fibonacci. Liber Abaci., 1202. 

[11] Hermann Minkowski H. A. Lorentz Albert Einstein and Hermann Weyl. The Prin­
ciple of Relativity: A Collection of Original Memoirs. Dover, 1952. 

[12] Tom R. Halfhill. An error in a lookup table created the infamous bug in Intel’s lat­
est processor. BYTE, March 1995.  

[13] Jan Brett (illustrator). Goldilocks and the Three Bears. Dodd, 1987. 

[14] David Bailey Jonathan Borwein and Roland Girgensohn. Experimentation in Math­
ematics: Computational Paths to Discovery. A K Peters, 2004. 

[15] G. A. Miller. The magical number seven, plus or minus two: Some limits on our 
capacity for processing information. Psychological Review, 63:81–97, 1956. 

[16] P. Ribenboim. The New Book of Prime Number Records. Springer–Verlag, New York, 
1996. 

https://www.cia.gov/library/publications/the-world-factbook/


106 

[17] William McC. Siebert.	 Circuits, Signals, and Systems. MIT Press, Cambridge, MA, 
1986. 

[18] Tjalling J. Ypma. Historical development of the Newton–Raphson method. SIAM 
Review, 37(4):531-551,, 1995. 



Index
 

Note: An italic page number refers to a problem on that page.
 

∼ 24 calculus 
RC circuit 64 finite differences, of 18 

change 
abstraction 40 loose 25 
whole-signal 33, 41 chunks 41 

acceleration 71 clearing fractions 86 
accumulator 45 closed form 4, 29, 52 
aggressive 82 code 
analogy 45 Python 29 
analysis compounding 

sample by sample 41 annual 21 
angular velocity 84 conjectures 67 
approximation continuity argument 63, 67, 68 
discrete-space 70 controller 83 

Aristotle x control variable 83 
artificial intelligence 85 convolution 67 
associative array coupled oscillator 71 

awk 53 courage 24 
cross multiplying 60 

backward Euler 76 curly braces 42 
Binet formula 57 
binomial theorem 47, 69 danger 85 
black box 51 data 
block diagram playing with,play 67 
elements in operator notation 43 deforming systems 68 
operator 45 delay element 42 

block diagrams 33 dendrite 70 
boundary conditions 17 derivative 
brick wall 85 continuous time 72 
buffer 64 derivative control 96 

derivatives 72 
desert island 53 



108 

design 19 
dictionary 
Python 53
 

difference equation 17
 
differentiator
 
continuous time 38
 
discrete time 38, 46
 

dimensions 22
 
discretization 65
 
distinctions
 
finite or infinite 21
 

division
 
incorrect floating-point 52
 

donor 21
 
double root 64
 
drawdown 21
 

Einstein, Albert 40
 
elegance 19
 
endowment 21
 
engineering design 83
 
equation
 
first-order difference 23
 
second-order difference 4, 28
 

equation hygiene 64
 
equivalence
 
system 59
 

error signal 84, 85
 
experiment 30
 
experimental mathematics 52
 
explicit recipe 72
 
exponent notation 43
 
extreme-case
 
large n 69
 

extreme case
 
small n 69
 

extreme cases 24
 
gain 86
 

feedback 83
 
feedback control 85
 
feedforward 45, 83
 
Feynman, Richard 21
 
Fibonacci function
 
memoized 53
 

Fibonacci sequence 
decomposition 51
 

forcing function 74
 
forward-Euler approximation 84
 
forward Euler 64, 72
 
function
 
decreasing 69
 
increasing 69
 

fund 21
 

gain 
increasing 86
 

golden ratio 54
 
grammar 40
 
block diagrams 44
 

graphing calculator 53
 
growth
 
exponential 5, 24, 29
 
logarithmic 5, 29
 
polynomial 5, 29
 
rate 18
 

guess 
solution to a difference equation 24
 

guess and check 60
 
guessing 70
 

hash
 
Perl 53
 

implicit Euler 76
 
implicit recipe 76
 
impulse 28
 
input signal
 
arbitrary 23
 

insight 33
 
instability 86
 
intuition 21
 
Inverse Symbolic Calculator 54
 

language 40
 
leaky tank 64
 
leapfrog 79
 
left-shift operator 42
 
letter
 
capital 23
 
lowercase 23
 



109 

like terms 64
 
linear combination 72
 
linear equations 60
 
loop gain 96
 

mathematical definition 71
 
mathematical translation
 
incomplete 25
 

matrix inversion 76
 
maxim 21
 
meaningless objects 52
 
mind
 
amazing feats 40
 

Minkowski, Hermann 40
 
MIT 21
 
mode 51
 
amplitude 55
 
shape 55
 

model
 
population growth 19
 

modes 63
 
modular formulation 19
 
modularity 17, 23
 
multiple representations 33
 
mythical controller 85
 

negative contribution 24
 
negative delay 84
 
notation
 
entire signal 23
 
one sample 23
 

number theory 52
 

operator notation 42
 
operator representation 42
 
operators 33, 57
 
oscillations 30
 
output signal 22
 

parameter sensitivity 85
 
partial fractions 59, 68
 
party
 
graduation 25
 

passive 82
 
pattern 67
 
peeling away 55
 

philosophy 18
 
physical meaning 71
 
pole
 
farthest 87
 

poles 74
 
complex 71
 

population
 
growth 17
 
United States 18
 

probe 52
 
probes
 
computational 51
 

product
 
increasing with decreasing function
 
69
 

programming
 
object-oriented 20
 

proportional control 86
 
Python 53
 

quadratic formula 75
 

rabbits 25
 
system 26
 

ratio
 
dimensionless 64
 

recurrence relation 18
 
relativity
 
special 40
 

repeated root 63
 
representation 22
 
mathematical 17, 22
 
operator 34
 

residual signal 56
 
right-shift operator 42
 
robot 85
 

sensor
 
real 85
 

shift
 
left 76
 

signals and systems 20, 26
 
simulation 20, 65, 66
 
simulation data 67
 
sine wave 71
 
space 40
 



110 

spacetime 40 time 40 
spiral 73 time constant 8, 64 
spreadsheet 53 time machine 86 
spring time travel 84 

ideal 71 translate 
stability 86 derivatives 72 
step function 46, 47 trapezoidal 79 
successive ratios 52 tutorial teaching x 
symmetry 76 twin-prime conjecture 52 
synthetic division 47 
system unit circle 71, 87 
coupled 74 unit sample 28 
first-order 23 unknowns 
second-order 28 two 24 

system characterization 52 
system functional 44 variables 
with feedback 45 eliminating 27 

voltage 84 
taking out the big part 67 volume elements 20 
Taylor series 47 
tea 84 warmup 22 
techniques Wheeler, John 21 

take out the big part 55 



111
 



MIT OpenCourseWare
http://ocw.mit.edu

6.003 Signals and Systems
Fall 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

