
Discrete-time Signals and Systems

ii

Discrete-time Signals and Systems

An Operator Approach

Sanjoy Mahajan and Dennis Freeman

Massachusetts Institute of Technology

Typeset in Palatino and Euler by the authors using ConTEXt and PDFTEX

© Copyright 2009 Sanjoy Mahajan and Dennis Freeman

Source revision: 66261db0f9ed+ (2009-10-18 13:33:48 UTC)

Discrete-time Signals and Systems by Sanjoy Mahajan and Dennis Freeman
(authors) and ?? (publisher) is licensed under the . . . license.

C

Brief contents

Preface ix

1 Difference equations 1

2 Difference equations and modularity 17

3 Block diagrams and operators: Two new representations 33

4 Modes 51

5 Repeated roots 63

6 The perfect (sine) wave 71

7 Control 83

8 Proportional and derivative control 95

Bibliography 105

Index 107

vi

Contents

Preface ix

1 Difference equations 1

1.1 Rabbits 2

1.2 Leaky tank 7

1.3 Fall of a fog droplet 11

1.4 Springs 14

2 Difference equations and modularity 17

2.1 Modularity: Making the input like the output 17

2.2 Endowment gift 21

2.3 Rabbits 25

3 Block diagrams and operators: Two new representations 33

3.1 Disadvantages of difference equations 34

3.2 Block diagrams to the rescue 35

3.3 The power of abstraction 40

3.4 Operations on whole signals 41

3.5 Feedback connections 45

3.6 Summary 49

4 Modes 51

4.1 Growth of the Fibonacci series 52

4.2 Taking out the big part from Fibonacci 55

4.3 Operator interpretation 57

4.4 General method: Partial fractions 59

5 Repeated roots 63

5.1 Leaky-tank background 64

5.2 Numerical computation 65

5.3 Analyzing the output signal 67

viii

5.4 Deforming the system: The continuity argument 68

5.5 Higher-order cascades 70

6 The perfect (sine) wave 71

6.1 Forward Euler 72

6.2 Backward Euler 76

6.3 Leapfrog 79

6.4 Summary 82

7 Control 83

7.1 Motor model with feedforward control 83

7.2 Simple feedback control 85

7.3 Sensor delays 87

7.4 Inertia 90

8 Proportional and derivative control 95

8.1 Why derivative control 95

8.2 Mixing the two methods of control 96

8.3 Optimizing the combination 98

8.4 Handling inertia 99

8.5 Summary 103

Bibliography 105

Index 107

Preface

This book aims to introduce you to a powerful tool for analyzing and de­
signing systems – whether electronic, mechanical, or thermal.

This book grew out of the ‘Signals and Systems’ course (numbered 6.003)
that we have taught on and off to MIT’s Electrical Engineering and Com­
puter Science students.

The traditional signals-and-systems course – for example [17] – empha­
sizes the analysis of continuous-time systems, in particular analog circuits.
However, most engineers will not specialize in analog circuits. Rather, dig­
ital technology offers such vast computing power that analogy circuits are
often designed through digital simulation.

Digital simulation is an inherently discrete-time operation. Furthermore,
almost all fundamental ideas of signals and systems can be taught using
discrete-time systems. Modularity and multiple representations , for ex­
ample, aid the design of discrete-time (or continuous-time) systems. Simi­
larly, the ideas for modes, poles, control, and feedback.

Furthermore, by teaching the material in a context not limited to circuits,
we emphasize the generality of these tools. Feedback and simulation abound
in the natural and engineered world, and we would like our students to be
flexible and creative in understanding and designing these systems.

Therefore, we begin our ‘Signals and Systems’ course with discrete-time
systems, and give our students this book. A fundamental difference from
most discussions of discrete-time systems is the approach using operators.
Operators make it possible to avoid the confusing notion of ‘transform’. In­
stead, the operator expression for a discrete-time system, and the system’s
impulse response are two representations for the same system; they are
the coordinates of a point as seen from two different coordinate systems.
Then a transformation of a system has an active meaning: for example,
composing two systems to build a new system.

x Preface

How to use this book

Aristotle was tutor to the young Alexander of Macedon (later, the Great).
As ancient royalty knew, a skilled and knowledgeable tutor is the most
effective teacher [3]. A skilled tutor makes few statements and asks many
questions, for she knows that questioning, wondering, and discussing pro­
mote long-lasting learning. Therefore, questions of two types are inter­
spersed through the book:

questions marked with a in the margin: These questions are what a tutor
might ask you during a tutorial, and ask you to work out the next steps
in an analysis. They are answered in the subsequent text, where you can
check your solutions and my analysis.

numbered questions: These problems, marked with a shaded background,
are what a tutor might ask you to take home after a tutorial. They give
further practice with the tool or ask you to extend an example, use several
tools together, or resolve paradoxes.

Try lots of questions of both types!

Copyright license

This book is licensed under the . . . license.

Acknowledgments

We gratefully thank the following individuals and organizations:

For suggestions and discussions: . . .

For the free software for typesetting: Donald Knuth (TEX); Han The Thanh
(PDFTEX); Hans Hagen and Taco Hoekwater (ConTEXt); John Hobby (Meta-
Post); Andy Hammerlindl, John Bowman, and Tom Prince (asymptote);
Richard Stallman (emacs); the Linux and Debian projects.

1
Difference equations

1.1 Rabbits 2
1.2 Leaky tank 7
1.3 Fall of a fog droplet 11
1.4 Springs 14

The world is too rich and complex for our minds to grasp it whole, for
our minds are but a small part of the richness of the world. To cope with
the complexity, we reason hierarchically. We divide the world into small,
comprehensible pieces: systems. Systems are ubiquitous: a CPU, a memory
chips, a motor, a web server, a jumbo jet, the solar system, the telephone
system, or a circulatory system. Systems are a useful abstraction, chosen
because their external interactions are weaker than their internal interac­
tions. That properties makes independent analysis meaningful.

Systems interact with other systems via forces, messages, or in general via
information or signals. ‘Signals and systems’ is the study of systems and
their interaction.

This book studies only discrete-time systems, where time jumps rather
than changes continuously. This restriction is not as severe as its seems.
First, digital computers are, by design, discrete-time devices, so discrete-
time signals and systems includes digital computers. Second, almost all
the important ideas in discrete-time systems apply equally to continuous-
time systems.

Alas, even discrete-time systems are too diverse for one method of analy­
sis. Therefore even the abstraction of systems needs subdivision. The par­
ticular class of so-called linear and time-invariant systems admits power­
ful tools of analysis and design. The benefit of restricting ourselves to such

2 1.1 Rabbits

systems, and the meaning of the restrictions, will become clear in subse­
quent chapters.

1.1 Rabbits

Here is Fibonacci’s problem [6, 10], a famous discrete-time, linear, time-
invariant system and signal:

A certain man put a pair of rabbits in a place surrounded on all sides by a wall.
How many pairs of rabbits can be produced from that pair in a year if it is
supposed that every month each pair begets a new pair which from the second
month on becomes productive?

1.1.1 Mathematical representation

This system consists of the rabbit pairs and the rules of rabbit reproduction.
The signal is the sequence f where f[n] is the number of rabbit pairs at
month n (the problem asks about n = 12).

What is f in the first few months?

In month 0, one rabbit pair immigrates into the system: f[0] = 1. Let’s
assume that the immigrants are children. Then they cannot have their own
children in month 1 – they are too young – so f[1] = 1. But this pair is an
adult pair, so in month 2 the pair has children, making f[2] = 2.

Finding f[3] requires considering the adult and child pairs separately (hier­
archical reasoning), because each type behaves according to its own repro­
duction rule. The child pair from month 2 grows into adulthood in month
3, and the adult pair from month 2 begets a child pair. So in f[3] = 3: two
adult and one child pair.

The two adult pairs contribute two child pairs in month 4, and the one
child pair grows up, contributing an adult pair. So month 4 has five pairs:
two child and three adult pairs. To formalize this reasoning process, define
two intermediate signals c and a:

c[n] = number of child pairs at month n;

a[n] = number of adult pairs at month n.

The total number of pairs at month n is f[n] = c[n] + a[n]. Here is a table
showing the three signals c, a, and f:

3 1 Difference equations

n 0 1 2 3

c 1 0 1 1

a 0 1 1 2

f 1 1 2 3

The arrows in the table show how new entries are constructed. An upward
diagonal arrow represents the only means to make new children, namely
from last month’s adults:

a[n − 1] → c[n] or c[n] = a[n − 1].

A horizontal arrow represents one contribution to this month’s adults, that
adults last month remain adults: a[n − 1] → a[n]. A downward diagonal
arrow represents the other contribution to this month’s adults, that last
month’s children grow up into adults: c[n−1] → a[n]. The sum of the two
contributions is

a[n] = a[n − 1] + c[n − 1].

What is the difference equation for f itself?

To find the equation for f, one has at least two methods: logical deduction
(Problem 1.1) or trial and error. Trial and error is better suited for finding
results, and logical deduction is better suited for verifying them. Therefore,
using trial and error, look for a pattern among addition samples of f:

n 0 1 2 3 4 5 6

c 1 0 1 1 2 3 5

a 0 1 1 2 3 5 8

f 1 1 2 3 5 8 13

What useful patterns live in these data?

One prominent pattern is that the signals c, a, and f look like shifted ver­
sions of each other:

a[n] = f[n − 1];

c[n] = a[n − 1] = f[n − 2].

Since f[n] = a[n] + c[n],

4 1.1 Rabbits

f[n] = f[n − 1] + f[n − 2].

with initial conditions f[0] = f[1] = 1.

This mathematical description, or representation, clarifies a point that is
not obvious in the verbal description: that the number of rabbit pairs in
any month depends on the number in the two preceding months. This
difference equation is said to be a second-order difference equation. Since
its coefficients are all unity, and the signs are positive, it is the simplest
second-order difference equation. Yet its behavior is rich and complex.

Problem 1.1 Verifying the conjecture

Use the two intermediate equations

c[n] = a[n − 1],

a[n] = a[n − 1] + c[n − 1];

and the definition f[n] = a[n] + c[n] to confirm the conjecture

f[n] = f[n − 1] + f[n − 2].

1.1.2 Closed-form solution

The rabbit difference equation is an implicit recipe that computes new val­
ues from old values. But does it have a closed form: an explicit formula
for f[n] that depends on n but not on preceding samples? As a step to­
ward finding a closed form, let’s investigate how f[n] behaves as n be­
comes large.

Does f[n] grow like a polynomial in n, like a logarithmic function of n, or like an
exponential function of n?

Deciding among these options requires more data. Here are many values
of f[n] (starting with month 0):

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .

5 1 Difference equations

The samples grow quickly. Their growth
is too rapid to be logarithmic, unless f[n]
is an unusual function like (log n)20. Their
growth is probably also too rapid for f[n]
to be a polynomial in n, unless f[n] is n
a high-degree polynomial. A likely al­
ternative is exponential growth. To test
that hypothesis, use pictorial reasoning by plotting ln f[n] versus n. The
plotted points oscillate above and below a best-fit straight line. Therefore
ln f[n] grows almost exactly linearly with n, and f[n] is approximately an
exponential function of n:

f[n] ≈ Azn,

where z and A are constants.

ln
 f

 [n
]

How can z be estimated from f[n] data?
n f[n]/f[n − 1]

10 1.6181818181818

best-fit line as n grows, the exponential approx-
Because the plotted points fall ever closer to the

20 1.6180339985218

imation f[n] ≈ Azn becomes more exact as n 30 1.6180339887505

40 1.6180339887499grows. If the approximation were exact, then f[n]/f[n−
1] would always equal z, so f[n]/f[n−1] becomes 50 1.6180339887499

an ever closer approximation to z as n increases.

These ratios seem to converge to z = 1.6180339887499.

Its first few digits 1.618 might be familiar. For a memory amplifier, feed

the ratio to the online Inverse Symbolic Calculator (ISC). Given a number,

it guesses its mathematical source. When given the Fibonacci z, the In­

verse Symbolic Calculator suggests two equivalent forms: that z is a root
√
of 1 − x − x2 or that it is φ ≡ (1 + 5)/2. The constant φ is the famous
golden ratio [5].

Therefore, f[n] ≈ Aφn . To find the constant of
n f[n]/f[n − 1]

proportionality A, take out the big part by di­
viding f[n] by φn . These ratios hover around
0.723 . . ., so perhaps A is

√
3 − 1. Alas, exper­

10

20

0.72362506926472

0.72360679895785

iments with larger values of n strongly suggest
that the digits continue 0.723606 . . . whereas

√
3−

30

40

0.72360679775006

0.72360679774998

1 = 0.73205 A bit of experimentation or 50 0.72360679774998

the Inverse Symbolic Calculator suggests that√
0.72360679774998 probably originates from φ/ 5.

� �

6 1.1 Rabbits

√
This conjecture has the merit of reusing the 5 already contained in the de­
finition of φ, so it does not introduce a new arbitrary number. With that
conjecture for A, the approximation for f[n] becomes

φn+1

f[n] ≈ √ .
5

How accurate is this approximation?

To test the approximation, take out the big
n r[n]/r[n − 1]

part by computing the residual:
√ 2 −0.61803398874989601

r[n] = f[n] − φn+1/ 5. 3 −0.61803398874989812

4 −0.61803398874988624
The residual decays rapidly, perhaps expo­ 5 −0.61803398874993953
nentially. Then r has the general form 6 −0.61803398874974236

r[n] ≈ Byn ,
7 −0.61803398875029414

8 −0.61803398874847626

where y and B are constants. To find y, 9 −0.61803398875421256

compute the ratios r[n]/r[n − 1]. They con­ 10 −0.61803398873859083

verge to −0.61803 . . ., which is almost ex-
nactly 1 − φ or −1/φ. Therefore r[n] ≈ B(−1/φ) .

What is the constant of proportionality B?

nTo compute B, divide r[n] by (−1/φ) . These values, if n is not too large
(Problem 1.2), almost instantly settles on 0.27639320225. With luck, this √
number can be explained using φ and 5. A few numerical experiments
suggest the conjecture

1 1
B = √ × .

5 φ

The residual becomes � �n+1
1 1

r[n] = −√ × − .
5 φ

The number of rabbit pairs is the sum of the approximation Azn and the
residual Byn:

f[n] = √
1

φn+1 − (−φ)−(n+1) .
5

� �� �

7 1 Difference equations

How bizarre! The Fibonacci signal f splits into two signals in at least two
ways. First, it is the sum of the adult-pairs signal a and the child-pairs
signal c. Second, it is the sum f1 + f2 where f1 and f2 are defined by

1
f1[n] ≡ √ φn+1;

5
1

f2[n] ≡ −√ (−1/φ)n+1.
5

The equivalence of these decompositions would have been difficult to pre­
dict. Instead, many experiments and guesses were needed to establish
the equivalence. Another kind of question, also hard to answer, arises by
changing merely the plus sign in the Fibonacci difference equation into a
minus sign:

g[n] = g[n − 1] − g[n − 2].

With corresponding initial conditions, namely g[0] = g[1] = 1, the signal g
runs as follows (staring with n = 0):

1, 1, 0, −1, −1, 0, 1, 1, 0, −1, −1, 0,
one period

Rather than growing approximately exponentially, this sequence is exactly
periodic. Why? Furthermore, it has period 6. Why? How can this period
be predicted without simulation?

A representation suited for such questions is introduced in ??. For now,
let’s continue investigating difference equations to represent systems.

Problem 1.2 Actual residual

ln
 r

[n
]

n

Here is a semilog graph of the absolute resid­
ual |r[n]| computed numerically up to n =
80. (The absolute residual is used because
the residual is often negative and would
have a complex logarithm.) It follows the
predicted exponential decay for a while, but
then misbehaves. Why?

1.2 Leaky tank

In the Fibonacci system, the rabbits changed their behavior – grew up or
had children – only once a month. The Fibonacci system is a discrete-time

8 1.2 Leaky tank

system. These systems are directly suitable for computational simulation
and analysis because digital computers themselves act like discrete-time
systems. However, many systems in the world – such as piano strings,
earthquakes, microphones, or eardrums – are naturally described as continuous-
time systems.

To analyze continuous-time systems using discrete-time
tools requires approximations. These approximations are
illustrated in the simplest interesting continuous-time sys­
tem: a leaky tank. Imagine a bathtub or sink filled to a
height h with water. At time t = 0, the drain is opened
and water flows out. What is the subsequent height of
the water?

At t = 0, the water level and therefore the pressure is at its highest, so the
water drains most rapidly at t = 0. As the water drains and the level falls,
the pressure and the rate of drainage also fall. This behavior is captured by
the following differential equation:

h

leak

dh
= −f(h),

dt

where f(h) is an as-yet-unknown function of the height.

Finding f(h) requires knowing the geometry of the tub and piping and
then calculating the flow resistance in the drain and piping. The simplest
model for resistance is a so-called linear leak: that f(h) is proportional to
h. Then the differential equation simplifies to

dh ∝ −h.
dt

What are the dimensions of the missing constant of proportionality?

The derivative on the left side has dimensions of speed (height per time),
so the missing constant has dimensions of inverse time. Call the constant
1/τ, where τ is the time constant of the system. Then

dh h
= − .

dt τ

� �

� �

� �

9 1 Difference equations

An almost-identical differential equation describes the

voltage V on a capacitor discharging across a resistor:

dV 1
= − V.

dt RC

R

C

V

It is the leaky-tank differential equation with time con­
stant τ = RC.

Problem 1.3 Kirchoff’s laws

Use Kirchoff’s laws to verify this differential equation.

Approximating the continuous-time differential equation as a discrete-time
system enables the system to be simulated by hand and computer. In a
discrete-time system, time advances in lumps.

If the lump size, also known as the timestep, is T , then h[n] is the discrete-
time approximation of h(nT). Imagine that the system starts with h[0] =
h0. What is h[1]? In other words, what is the discrete-time approximation
for h(T)? The leaky-tank equation says that

dh h
= − .

dt τ

At t = 0 this derivative is −h0/τ. If dh/dt stays fixed for a whole timestep
– a slightly dubious but simple assumption – then the height falls by ap­
proximately h0T/τ in one timestep. Therefore

T T
h[1] = h0 − h0 = 1 − h[0].

τ τ

Using the same assumptions, what is h[2] and, in general, h[n]?

The reasoning to compute h[1] from h[0] applies when computing h[2]
from h[1]. The derivative at n = 1 – equivalently, at t = T – is −h[1]/τ.
Therefore between n = 1 and n = 2 – equivalently, between t = T and
t = 2T – the height falls by approximately −h[1]T/tau,

T T
h[2] = h1 − h1 = 1 − h[1].

τ τ

This pattern generalizes to a rule for finding every h[n]:

T
h[n] = 1 − h[n − 1].

τ

� �

10 1.2 Leaky tank

This implicit equation has the closed-form solution
n

T
h[n] = h0 1 − .

τ

How closely does this solution reproduce the behavior of the original, continuous-
time system?

The original, continuous-time differential equation dh/dt = −htau is
solved by

h(t) = h0e −t/τ.

At the discrete times t = nT , this solution becomes � �n

h(t) = h0e −nT/τ = h0 e −T/τ .

The discrete-time approximation replaces e−T/τ with 1 − T/τ. That differ­
ence is the first two terms in the Taylor series for e−T/τ: � �2 � �3

e −T/τ = 1 −
T

+
1 T

−
1 T

+
τ 2 τ 6 τ

Therefore the discrete-time approximation is accurate when the higher-
order terms in the Taylor series are small – namely, when T/τ � 1.

This method of solving differential equations by replacing them with discrete-
time analogs is known as the Euler approximation, and it can be used to
solve equations that are very difficult or even impossible to solve analyti­
cally.

Problem 1.4 Which is the approximate solution?

n

Here are unlabeled graphs showing the discrete-time sam­
ples h[n] and the continuous-time samples h(nT), for n =
0 . . . 6. Which graph shows the discrete-time signal?

Problem 1.5 Large timesteps

Sketch the discrete-time samples h[n] in three cases: (a.) T =
τ/2 (b.) T = τ (c.) T = 2τ (d.) T = 3τ

Problem 1.6 Tiny timesteps

Show that as T → 0, the discrete-time solution

� �

11 1 Difference equations

T n

h[n] = h0 1 − .
τ

approaches the continuous-time solution

h(t) = h0e −nT/τ.

How small does T have to be, as a function of n, in order that the two solutions
approximately match?

1.3 Fall of a fog droplet

The leaky tank (Section 1.2) is a first-order system, and its differential equa­
tion and difference equation are first-order equations. However, the phys­
ical world is often second order because Newton’s second law of motion,
F = ma, contains a second derivative.

For such systems, how applicable is the Euler approximation? To illustrate
the issues that arise in applying the Euler approximation to second-order
systems, let’s simulate the fall of a fog droplet acted on by gravity (F = mg)
and air resistance. A fog droplet is small enough that its air resistance is
proportional to velocity rather than to the more usual velocity squared.
Then the net downward force on the droplet is mg − bv, where v is its
velocity and b is a constant that measures the strength of the drag. In terms
of position x, with the positive direction as downward, Newton’s second
law becomes

d2x dx
m = mg − b .

dt2 dt

Dividing both sides by m gives

d2x b dx
= g − .

dt2 m dt

What are the dimensions of b/m?

The constant b/m turns the velocity dx/dt into an acceleration, so b/m has
dimensions of inverse time. Therefore rewrite it as 1/τ, where τ ≡ m/b is
a time constant. Then

d2x 1 dx
= g − .

dt2 τ dt

�
�

�

�

� �

12 1.3 Fall of a fog droplet

What is a discrete-time approximation for the second derivative?

In the leaky-tank equation,

dh h
= − ,

dt τ

the first derivative at t = nT had the Euler approximation (h[n + 1] −
h[n])/T and h(t = nT) became h[n]. The second derivative d2x/dt2 is the
limit of a difference of two first derivatives. Using the Euler approximation
procedure, approximate the first derivatives at t = nT and t = (n + 1)T :

dx � x[n + 1] − x[n] � ≈ ;
dt t=nT T

dx � x[n + 2] − x[n + 1] � ≈ .
dt t=(n+1)T T

Then

d2x � 1
�

x[n + 2] − x[n + 1] x[n + 1] − x[n]
� � ≈ − .

dt2 t=nT T T T

This approximation simplifies to

d2x � 1 � ≈ (x[n + 2] − 2x[n + 1] + x[n]) .
dt2 t=nT T2

The Euler approximation for the continuous-time equation of motion is
then

1 1 x[n + 1] − x[n]
(x[n + 2] − 2x[n + 1] + x[n]) = g −

T2 τ T

or

T
x[n + 2] − 2x[n + 1] + x[n] = gT2 − (x[n + 1] − x[n]).

τ

Our old friend from the leaky tank, the ratio T/τ, has reappeared in this
problem. To simplify the subsequent equations, define α ≡ T/τ. Then
after collecting the like terms, the difference equation for the falling fog
droplet is

x[n + 2] = (2 − α)x[n + 1] − (1 − α)x[n] + gT2.

13 1 Difference equations

As expected, this difference equation is second order. Like the previous
second-order equation, the Fibonacci equation, it needs two initial values.
Let’s try x[−1] = x[0] = 0. Physically, the fog droplet starts from rest at the
reference height 0, and at t = 0 starts feeling the gravitational force mg.

For a typical fog droplet with radius 10 μm, the physical parameters are:

m ∼ 4.2 · 10−12 kg;

b ∼ 2.8 · 10−9 kg s−1;

τ ∼ 1.5 · 10−3 s−1.

Relative to τ, the timestep T should be small, oth­

erwise the simulation error will large. A timestep

such as 0.1 ms is a reasonable compromise be-
 x

[n
](

μ
m

)

20

10

tween keeping reducing the error and speeding 0
up the simulation. Then the dimensionless ratio 0 10 20

n

α is 0.0675. A simulation using these parameters
shows x initially rising faster than linearly, probably quadratically, then
rising linearly at a rate of roughly 1.5 μm per timestep or 1.5 cm s−1 .

This simulation result explains the longevity of fog. Fog is, roughly speak­
ing, a cloud that has sunk to the ground. Imagine that this cloud reaches
up to 500 m (a typical cloud thickness). Then, to settle to the ground, the
cloud requires

500 m
tfall ∼ ∼ 9 hours.

1.5 cm s−1

In other words, fog should last overnight – in agreement with experience!

Counting timesteps How many timesteps would the fog-droplet simulation re­
quire (with T = 0.1 ms) in order for the droplet to fall 500 m in the simulation?
How long would your computer, or another easily available computer, require to
simulate that many timesteps?

Problem 1.7 Terminal velocity

By simulating the fog equation

x[n + 2] = (2 − α)x[n + 1] − (1 − α)x[n] + gT2 .

with several values of T and therefore α, guess a relation between g, T , α, and the
terminal velocity of the particle.

�

�

� �

� �

14 1.4 Springs

1.4 Springs

Now let’s extend our simulations to the most important second-order sys­
tem: the spring. Springs are a model for a vast number of systems in the
natural and engineered worlds: planetary orbits, chemical bonds, solids,
electromagnetic radiation, and even electron–proton bonds. Since color re­
sults from electromagnetic radiation meeting electron–proton bonds, grass
is green and the sky is blue because of how springs interact with springs.

The simplest spring system is a mass connected to a spring
and free to oscillate in just one dimension. Its differential
equation is

d2x
m + kx = 0,

dt2

where x is the block’s displacement from the equilibrium position, m is the
block’s mass, and k is the spring constant. Dividing by m gives

d2x k
+ x = 0.

dt2 m

Defining the angular frequency ω ≡ k/m gives the clean equation:

d2x
+ ω2x = 0.

dt2

Now divide time into uniform steps of duration T , and replace the second
derivative d2x/dt2 with a discrete-time approximation:

d2x � x[n + 2] − 2x[n + 1] + x[n] � ≈ ,
dt2 t=nT T2

where as usual the sample x[n] corresponds to the continuous-time signal
x(t) at t = nT . Then

x[n + 2] − 2x[n + 1] + x[n]
+ ω2x[n] = 0

T2

or after collecting like terms,

x[n + 2] = 2x[n + 1] − 1 + (ωT)2 x[n].

Defining α ≡ ωT ,

x[n + 2] = 2x[n + 1] − 1 + α2 x[n].

k
m

x

15 1 Difference equations

This second-order difference equation needs two initial values. A simple
pair is x[0] = x[1] = x0. This choice corresponds to pulling the mass right-
wards by x0, then releasing it at t = T . What happens afterward?

To simulate the system numerically, one should
choose T to make α small. As a reasonable small
α, try 100 samples per oscillation period: α =

name: dummy

file: shm-forward
2π/100 or roughly 0.06. Alas, the simulation pre-

state: unknown
dicts that the oscillations grow to infinity.

What went wrong?

Perhaps α, even 0.06, is too large. Here are two simulations with smallerat
values of α:

x x

t t

α ≈ 0.031 α ≈ 0.016

These oscillations also explode. The only difference seems to be the rate of
growth (Problem 1.8).

Problem 1.8 Tiny values of α

Simulate
 � �
x[n + 2] = 2x[n + 1] − 1 + α2 x[n]

using very small values for α. What happens?

An alternative explanation is that the discrete-time approximation of the
derivative caused the problem. If so, it would be surprising, because the
same approximation worked when simulating the fall of a fog droplet. But
let’s try an alternative definition: Instead of defining �

dx � x[n + 1] − x[n] � ≈ ,
dt t=nT T

try the simple change to

dx x[n] − x[n − 1]≈ .
dt T

�

�

Using the same procedure for the second derivative,

d2x � x[n] − 2x[n − 1] + x[n − 2] � ≈ .
dt2 t=nT T2

The discrete-time spring equation is then x

(1 + α2)x[n] = 2x[n − 1] − x[n − 2],

or

t

2x[n − 1] − x[n − 2]
x[n] = .

1 + α2

Using the same initial conditions x[0] = x[1] = 1, what is the subsequent
time course? The bad news is that these oscillations decay to zero!

However, the good news is that changing the de- x

rivative approximation can significantly affect the
behavior of the discrete-time system. Let’s try a
symmetric second derivative:

t

d2x � x[n + 1] − 2x[n] + x[n − 1] � ≈ .
dt2 t=nT T2

Then the difference equation becomes

x[n + 2] = (2 − α2)x[n + 1] − x[n].

Now the system oscillates stably, just as a spring without energy loss or
input should behave.

Why did the simple change to a symmetric second derivative solve the
problem of decaying or growing oscillations? The representation of the
alternative discrete-time systems as difference equations does not help an­
swer that question. Its answer requires the two most important ideas in
signals and systems: operators (??) and modes (??).

Problem 1.9 Different initial conditions
x

t

Here are the subsequent samples using the symmet­
ric second derivative and initial conditions x[0] = 0,
x[1] = x0. The amplitude is, however, much larger
than x0. Is that behavior physically reasonable? If
yes, explain why. If not, explain what should happen.

2
Difference equations and modularity

2.1	 Modularity: Making the input like the output 17
2.2	 Endowment gift 21
2.3	 Rabbits 25

The goals of this chapter are:

•	 to illustrate modularity and to describe systems in a modular way;

•	 to translate problems from their representation as a verbal descrip­
tion into their representation as discrete-time mathematics (differ­
ence equations); and

•	 to start investigating the simplest second-order system, the second-
simplest module for analyzing and designing systems.

The themes of this chapter are modularity and the representation of ver­
bal descriptions as discrete-time mathematics. We illustrate these themes
with two examples, money in a hypothetical MIT endowment fund and
rabbits reproducing in a pen, setting up difference equations to represent
them. The rabbit example, which introduces a new module for building
and analyzing systems, is a frequent visitor to these chapters. In this chap­
ter we begin to study how that module behaves. Before introducing the
examples, we illustrate what modularity is and why it is useful.

2.1 Modularity: Making the input like the output

A common but alas non-modular way to formulate difference and differ­
ential equations uses boundary conditions. An example from population

18 2.1 Modularity: Making the input like the output

growth illustrates this formulation and how to improve it by making it
modular. The example is the population of the United States. The US pop­
ulation grows at an annual rate of roughly 1%, according to the World Fact-
Book [2], and the US population is roughly 300 million in 2007. What will
be the US population be in 2077 if the growth rate remains constant at 1%?

Pause to try 1. What is the population equation and boundary con­
dition representing this information?

The difference equation for the population in year n is

p[n] = (1 + r)p[n − 1] (population equation),

where r = 0.01 is the annual growth rate. The boundary condition is

p[2007] = 3 × 108 (boundary condition).

To find the population in 2077, solve this difference equation with bound­
ary condition to find p[2077].

Exercise 1. What is p[2077]? How could you have quickly ap­
proximated the answer?

You might wonder why, since no terms are subtracted, the population
equation is called a difference equation. The reason is by analogy with
differential equations, which tell you how to find f(t) from f(t − Δt), with
Δt going to 0. Since the discrete-time population equation tells us how to
find f[n] from f[n − 1], it is called a difference equation and its solution is
the subject of the calculus of finite differences. When the goal – here, the
population – appears on the input side, the difference equation is also a
recurrence relation. What recurrence has to do with it is the topic of an
upcoming chapter; for now take it as pervasive jargon.

The mathematical formulation as a recurrence relation with boundary con­
dition, while sufficient for finding p[2077], is messy: The boundary condi­
tion is a different kind of object from the solution to a recurrence. This
objection to clashing categories may seem philosophical – in the colloquial

�

19 2 Difference equations and modularity

meaning of philosophical as irrelevant – but answering it helps us to un­
derstand and design systems. Here the system is the United States. The
input to the system is one number, the initial population p[2007]; however,
the output is a sequence of populations p[2008], p[2009], In this for­
mulation, the system’s output cannot become the input to another system.
Therefore we cannot design large systems by combining small, easy-to­
understand systems. Nor we can we analyze large, hard-to-understand
systems by breaking them into small systems.

Instead, we would like a modular formulation in which the input is the
same kind of object as the output. Here is the US-population question
reformulated along those lines: If x[n] people immigrate into the United states
in year n, and the US population grows at 1% annually, what is the population in
year n? The input signal is the number of immigrants versus time, so it is
a sequence like the output signal. Including the effect of immigration, the
recurrence is

p[n] = (1 + r)p[n − 1] + x[n] . ���� � �� � ����
output reproduction immigration

The boundary condition is no longer separate from the equation! Instead
it is part of the input signal. This modular formulation is not only elegant;
it is also more general than is the formulation with boundary conditions,
for we can recast the original question into this framework. The recasting
involves finding an input signal – here the immigration versus time – that
reproduces the effect of the boundary condition p[2007] = 3 × 108 .

Pause to try 2. What input signal reproduces the effect of the
boundary condition?

The boundary condition can be reproduced with this immigration sched­
ule (the input signal):

3 × 108 if n = 2007;x[n] =
0 otherwise.

This model imagines an empty United States into which 300 million people
arrive in the year 2007. The people grow (in numbers!) at an annual rate

�

20 2.1 Modularity: Making the input like the output

of 1%, and we want to know p[2077], the output signal (the population) in
the year 2077.

The general formulation with an arbitrary input signal is harder to solve
directly than is the familiar formulation using boundary conditions, which
can be solved by tricks and guesses. For our input signal, the output signal
is

3 · 108 × 1.01n−2007 for n � 2007;p[n] =
0 otherwise.

Exercise 2. Check that this output signal satisfies the boundary
condition and the population equation.

In later chapters you learn how to solve the formulation with an arbi­
trary input signal. Here we emphasize not the method of solution but the
modular formulation where a system turns one signal into another signal.
This modular description using signals and systems helps analyze com­
plex problems and build complex systems.

To see how it helps, first imagine a world with two countries: Ireland and
the United States. Suppose that people emigrate from Ireland to the United
States, a reasonable model in the 1850’s. Suppose also that the Irish pop­
ulation has an intrinsic 10 annual decline due to famines and that another
10% of the population emigrate annually to the United States. Ireland and
the United States are two systems, with one system’s output (Irish emigra­
tion) feeding into the other system’s input (the United States’s immigra­
tion). The modular description helps when programming simulations. In­
deed, giant population-growth simulations are programmed in this object-
oriented way. Each system is an object that knows how it behaves – what
it outputs – when fed input signals. The user selects systems and spec­
ifies connections among them. Fluid-dynamics simulations use a similar
approach by dividing the fluid into zillions of volume elements. Each ele­
ment is a system, and energy, entropy, and momentum emigrate between
neighboring elements.

Our one- or two-component population systems are simpler than fluid-
dynamics simulations, the better to illustrate modularity. Using two ex­
amples, we next practice modular description and how to represent verbal
descriptions as mathematics.

2 Difference equations and modularity 21

2.2 Endowment gift

The first example for representing descriptions as mathematics involves a
hypothetical endowment gift to MIT. A donor gives �107 dollars to MIT
to support projects proposed and chosen by MIT undergraduates! MIT
would like to use this fund for a long time and draw �0.5 × 106 every
year for a so-called 5% drawdown. Assume that the money is placed in a
reliable account earning 4% interest compounded annually. How long can
MIT and its undergraduates draw on the fund before it dwindles to zero?

Never make a calculation until you know roughly what the answer will be! This
maxim is recommended by John Wheeler, a brilliant physicist whose most
famous student was MIT alum Richard Feynman [9]. We highly recom­
mend Wheeler’s maxim as a way to build intuition. So here are a few esti­
mation questions to get the mental juices flowing. Start with the broadest
distinction, whether a number is finite or infinite. This distinction suggests
the following question:

Pause to try 3. Will the fund last forever?

Alas, the fund will not last forever. In the first year, the drawdown is
slightly greater than the interest, so the endowment capital will dwindle
slightly. As a result, the next year’s interest will be smaller than the first
year’s interest. Since the drawdown stays the same at $500,000 annually
(which is 5% of the initial amount), the capital will dwindle still more in
later years, reducing the interest, leading to a greater reduction in interest,
leading to a greater reduction in capital. . . Eventually the fund evaporates.
Given that the lifetime is finite, roughly how long is it? Can your great-
grandchildren use it?

Pause to try 4. Will the fund last longer than or shorter than 100
years?

The figure of 100 years comes from the difference between the outflow
– the annual drawdown of 5% of the gift – and the inflow produced by
the interest rate of 4%. The difference between 5% and 4% annually is

22 2.2 Endowment gift

δ = 0.01/year. The dimensions of δ are inverse time, suggesting an en­
dowment lifetime of 1/δ, which is 100 years. Indeed, if every year were
like the first, the fund would last for 100 years. However, the inflow from
interest decreases as the capital decreases, so the gap between outflow and
inflow increases. Thus this 1/δ method, based on extrapolating the first
year’s change to every year, overestimates the lifetime.

Having warmed up with two estimates, let’s describe the system mathe­
matically and solve for the true lifetime. In doing so, we have to decide
what is the input signal, what is the output signal, and what is the system.
The system is the least tricky part: It is the bank account paying 4 interest.
The gift of $10 million is most likely part of the input signal.

Pause to try 5. Is the $500,000 annual drawdown part of the output
or the input signal?

The drawdown flows out of the account, and the account is the system,
so perhaps the drawdown is part of the output signal. No!! The output
signal is what the system does, which is to produce or at least to compute
a balance. The input signal is what you do to the system. Here, you move
money in or out of the system:

bank
account

money
in or out balance

The initial endowment is a one-time positive input signal, and the annual
drawdown is a recurring negative input signal. To find how long the en­
dowment lasts, find when the output signal crosses below zero. These
issues of representation are helpful to figure out before setting up mathe­
matics. Otherwise with great effort you create irrelevant equations, where­
upon no amount of computing power can help you.

Now let’s represent the description mathematically. First represent the
input signal. To minimize the large numbers and dollar signs, measure
money in units of $500,000. This choice makes the input signal dimension­
less:

X = 20, −1, −1, −1, −1, . . .

�

23 2 Difference equations and modularity

We use the notation that a capital letter represents the entire signal, while a
lowercase letter with an index represents one sample from the signal. For
example, P is the sequence of populations and p[n] is the population in
year n.

The output signal is

Y = 20, ?, ?, ?, . . .

Pause to try 6. Explain why y[0] = 20.

The problem is to fill in the question marks in the output signal and find
when it falls below zero. The difference equation describing the system is

y[n] = (1 + r)y[n − 1] + x[n],

where r is the annual interest rate (here, r = 0.04). This difference equation
is a first-order equation because any output sample y[n] depends on the
one preceding sample y[n − 1]. The system that the equation represents is
said to be a first-order system. It is the simplest module for building and
analyzing complex systems.

Exercise 3. Compare this equation to the one for estimating the
US population in 2077.

Now we have formulated the endowment problem as a signal processed
by a system to produce another signal – all hail modularity! – and rep­
resented this description mathematically. However, we do not yet know
how to solve the mathematics for an arbitrary input signal X. But here we
need to solve it only for the particular input signal

X = 20, −1, −1, −1, −1,

With that input signal, the recurrence becomes

y[n] = 	 1.04 · y[n − 1] − 1 n > 0;

20 n = 0.

The y[0] = 20 reflects that the donor seeds the account with 20 units of
money, which is the $10,000,000 endowment. The −1 in the recurrence

24 2.2 Endowment gift

reflects that we draw 1 unit every year. Without the −1 term, the solution
to the recurrence would be y[n] ∼ 1.04n, where the ∼ symbol means ‘except
for a constant’. The −1 means that simple exponential growth is not a
solution. However, −1 is a constant so it may contribute only a constant to
the solution. That reasoning is dubious but simple, so try it first. Using a
bit of courage, here is a guess for the form of the solution:

y[n] = A · 1.04n + B (guess),

where A and B are constants to be determined. Before finding A and B,
figure out the most important characteristic, their signs. So:

Pause to try 7. Assume that this form is correct. What are the signs
of A and B?

Since the endowment eventually vanishes, the variable term A ·1.04n must
make a negative contribution; so A < 0. Since the initial output y[0] is
positive, B must overcome the negative contribution from A; so B > 0.

Pause to try 8. Find A and B.

Solving for two unknowns A and B requires two equations. Each equation
will probably come from one condition. So match the guess to the known
balances at two times. The times (values of n) that involve the least calcu­
lation are the extreme cases n = 0 and n = 1. Matching the guess to the
behavior at n = 0 gives the first equation:

20 = A + B (n = 0 condition).

To match the guess to the behavior at n = 1, first find y[1]. At n = 1,
which is one year after the gift, 0.8 units of interest arrive from 4% of 20,
and 1 unit leaves as the first drawdown. So

y[1] = 20 + 0.8 − 1 = 19.8.

Matching this value to the guess gives the second equation:

19.8 = 1.04A + B (n = 1 condition).

25 2 Difference equations and modularity

Both conditions are satisfied when A = −5 and B = 25. As predicted,
A < 0 and B > 0. With that solution the guess becomes

y[n] = 25 − 5 × 1.04n.

This solution has a strange behavior. After the balance drops below zero,
the 1.04n grows ever more rapidly so the balance becomes negative ever
faster.

Exercise 4.	 Does that behavior of becoming negative more and
more rapidly indicate an incorrect solution to the
recurrence relation, or an incomplete mathematical
translation of what happens in reality?

Exercise 5. The guess, with the given values for A and B, works
for n = 0 and n = 1. (How do you know?) Show
that it is also correct for n > 1.

Now we can answer the original question: When does y[n] fall to zero?
nAnswer: When 1.04 > 5, which happens at n = 41.035 So MIT can

draw on the fund in years 1, 2, 3, . . . , 41, leaving loose change in the ac­
count for a large graduation party. The exact calculation is consistent with
the argument that the lifetime be less than 100 years.

Exercise 6. How much loose change remains after MIT draws
its last payment? Convert to real money!

2.3 Rabbits

The second system to represent mathematically is the fecundity of rabbits.
The Encyclopedia Britannica (1981 edition) states this population-growth
problem as follows [6]:

26 2.3 Rabbits

A certain man put a pair of rabbits in a place surrounded on all sides by a wall.
How many pairs of rabbits can be produced from that pair in a year if it is sup­
posed that every month each pair begs a new pair which from the second month
on becomes productive?

That description is an English representation of the original Latin. We first
represent the verbal description mathematically and then play with the
equations to understand how the system behaves. It is the simplest system
beyond the first-order systems like the endowment, so it is an important
module for building and analyzing complex systems.

2.3.1 From words to recurrence

Before representing the system mathematically, we describe it modularly
using signals and systems by finding a system, an input signal, and an
output signal. It is usually easiest to begin by looking for the system since
it is the active element. The phrase ‘surrounding on all sides by a wall’
indicates a candidate for a system. The system is the inside of the wall,
which is where the rabbits reproduce, together with the rules under which
rabbits reproduce.

Pause to try 9. What is the input signal?

An input to the system is placing rabbits into it or taking them from it.
The input signal is the number of pairs that enter the system at month n,
where the signal would be negative if rabbits emigrate from the system to
seek out tastier grass or other rabbit friends.

Pause to try 10. What is the output signal?

Some pairs are placed into the system as children (the immigrants); other
pairs are born in the system (the native born). The sum of these kinds of
pairs is the output signal.

To describe the system mathematically, decompose it by type of rabbit:

1. children, who cannot reproduce but become adults in one month; and

2. adults, who reproduce that month and thereafter.

27 2 Difference equations and modularity

Let c[n] be the number of child pairs at month n and a[n] be the number
of adult pairs at month n. These intermediate signals combine to make the
output signal:

f[n] = a[n] + c[n] (output signal).

Pause to try 11. What equation contains the rule that children be­
come adults in one month?

Because children become adults in one month, and adults do not die, the
pool of adults grows by the number of child pairs in the previous month:

a[n] = a[n − 1] + c[n − 1] (growing-up equation).

The two terms on the right-hand side represent the two ways to be an
adult:

1. You were an adult last month (a[n − 1]), or

2. you were a child last month (c[n − 1]) and grew up.

The next equation says that all adults, and only adults, reproduce to make
new children:

c[n] = a[n − 1].

However, this equation is not complete because immigration also con­
tributes child pairs. The number of immigrant pairs at month n is the
input signal x[n]. So the full story is:

c[n] = a[n − 1] + x[n] (child equation)

Our goal is a recurrence for f[n], the total number of pairs. So we eliminate
the number of adult pairs a[n] and the number of child pairs c[n] in favor
of f[n]. Do it in two steps. First, use the growing-up equation to replace
a[n − 1] in the child equation with a[n − 2] + c[n − 2]. That substitution
gives

c[n] = a[n − 2] + c[n − 2] + x[n].

28 2.3 Rabbits

Since f[n] = c[n] + a[n], we can turn the left side into f[n] by adding a[n].
The growing-up equation says that a[n] is also a[n − 1] + c[n − 1], so add
those terms to the right side and pray for simplification. The result is

c[n] + a[n] = a[n − 2] + c[n − 2] +x[n] + a[n − 1] + c[n − 1] . � �� � � �� � � �� �
f[n] f[n−2] f[n−1]

The left side is f[n]. The right side contains a[n − 2] + c[n − 2], which is
f[n − 2]; and a[n − 1] + c[n − 1], which is f[n − 1]. So the sum of equations
simplifies to

f[n] = f[n − 1] + f[n − 2] + x[n].

The Latin problem description is from Fibonacci’s Liber Abaci [10], pub­
lished in 1202, and this equation is the famous Fibonacci recurrence but
with an input signal x[n] instead of boundary conditions.

This mathematical representation clarifies one point that is not obvious in
the verbal representation: The number of pairs of rabbits at month n de­
pends on the number in months n−1 and n−2. Because of this dependence
on two preceding samples, this difference equation is a second-order dif­
ference equation. Since all the coefficients are unity, it is the simplest equa­
tion of that category, and ideal as a second-order system to understand
thoroughly. To build that understanding, we play with the system and see
how it responds.

2.3.2 Trying the recurrence

To play with the system described by Fibonacci, we need to represent Fi­
bonacci’s boundary condition that one pair of child rabbits enter the walls
only in month 0. The corresponding input signal is X = 1, 0, 0, 0, Us­
ing that X, known as an impulse or a unit sample, the recurrence produces
(leaving out terms that are zero):

f[0] = x[0] = 1,

f[1] = f[0] = 1,

f[2] = f[0] + f[1] = 2,

f[3] = f[1] + f[2] = 3,

. . .

2 Difference equations and modularity 29

When you try a few more lines, you get the sequence: F = 1, 1, 2, 3, 5, 8, 13, 21, 34,
When you tire of hand calculation, ask a computer to continue. Here is
slow Python code to print f[0], f[1],. . .,f[19]:

def f(n):
if n < 2: return 1
return f(n-1) + f(n-2)

print [f(i) for i in range(20)]

Exercise 7. Write the corresponding Matlab or Octave code,
then rewrite the code in one of the languages –
Python, Matlab, or Octave – to be efficient.

Exercise 8. Write Matlab, Octave, or Python code to find f[n]
when the input signal is 1, 1, 1, What is f[17]?

2.3.3 Rate of growth

To solve the recurrence in closed form – meaning an explicit formula for
f[n] that does not depend on preceding samples – it is helpful to investigate
its approximate growth. Even without sophisticated techniques to find the
output signal, we can understand the growth in this case when the input
signal is the impulse.

Pause to try 12. When the input signal is the impulse, how fast does
f[n] grow? Is it polynomial, logarithmic, or expo­
nential?

From looking at the first few dozen values, it looks like the sequence grows
quickly. The growth is almost certainly too rapid to be logarithmic and,
almost as certain, too fast to be polynomial unless it is a high-degree poly­
nomial. Exponential growth is the most likely candidate, meaning that an
approximation for f[n] is

30 2.3 Rabbits

f[n] ∼ zn

where z is a constant. To estimate z, play with the recurrence when n > 0,
which is when the input signal is zero. The f[n] are all positive and, since
f[n] = f[n − 1] + f[n − 2] when n > 0, the samples are increasing: f[n] >
f[n − 1]. This bound turns f[n] = f[n − 1] + f[n − 2] into the inequality

f[n] < f[n − 1] + f[n − 1].

So f[n] < 2f[n − 1] or f[n]/f[n − 1] < 2; therefore the upper bound on z
is z < 2. This bound has a counterpart lower bound obtained by replacing
f[n − 1] by f[n − 2] in the Fibonacci recurrence. That substitution turns
f[n] = f[n − 1] + f[n − 2] into

f[n] > f[n − 2] + f[n − 2].

The right side is 2f[n − 2] so f[n] > 2f[n − 2]. This bound leads to a lower √
bound: z2 > 2 or z > 2. The range of possible z is then

√
2 < z < 2.

Let’s check the bounds by experiment. Here is the sequence of ratios f[n]/f[n−
1] for n = 1, 2, 3, . . .:

1.0, 2.0, 1.5, 1.666 . . . , 1.6, 1.625, 1.615 . . . , 1.619 . . . , 1.617 . . .

The ratios seem to oscillate around 1.618, which lies between the predicted √
bounds 2 and 2. In later chapters, using new mathematical representa­
tions, you learn how to find the closed from for f[n]. We have walked two
steps in that direction by representing the system mathematically and by
investigating how f[n] grows.

Exercise 9. Use a more refined argument to improve the upper

bound to z <
√

3.

Exercise 10. Does the number 1.618 look familiar?

31 2 Difference equations and modularity

Exercise 11. [Hard!] Consider the same system but with one rab­
bit pair emigrating into the system every month,
not only in month 0. Compare the growth with
Fibonacci’s problem, where one pair emigrated in
month 0 only. Is it now faster than exponential? If
yes, how fast is it? If no, does the order of growth
change from z ≈ 1.618?

3
Block diagrams and operators:
Two new representations

3.1 Disadvantages of difference equations	 34
3.2 Block diagrams to the rescue	 35
3.3 The power of abstraction	 40
3.4 Operations on whole signals	 41
3.5 Feedback connections	 45
3.6 Summary	 49

The goals of this chapter are:

•	 to introduce two representations for discrete-time systems: block
diagrams and operators;

•	 to introduce the whole-signal abstraction and to exhort you to use
abstraction;

•	 to start manipulating operator expressions;

•	 to compare operator with difference-equation and block-diagram
manipulations.

The preceding chapters explained the verbal-description and difference-
equation representations. This chapter continues the theme of multiple
representations by introducing two new representations: block diagrams
and operators. New representations are valuable because they suggest
new thoughts and often provide new insight; an expert engineer values her
representations the way an expert carpenter values her tools. This chapter
first introduces block diagrams, discusses the whole-signal abstraction and

34 3.1 Disadvantages of difference equations

the general value of abstraction, then introduces the operator representa­
tion.

3.1 Disadvantages of difference equations

Chapter 2 illustrated the virtues of difference equations. When compared
to the verbal description from which they originate, difference equations
are compact, easy to analyze, and suited to computer implementation. Yet
analyzing difference equations often involves chains of micro-manipulations
from which insight is hard to find. As an example, show that the difference
equation

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3]

is equivalent to this set of equations:

d[n] = c[n] − c[n − 1]

c[n] = b[n] − b[n − 1]

b[n] = a[n] − a[n − 1].

As the first step, use the last equation to eliminate b[n] and b[n − 1] from
the c[n] equation:

c[n] = (a[n] − a[n − 1]) − (a[n − 1] − a[n − 2]) = a[n]−2a[n−1]+a[n−2]. � �� � � �� �
b[n] b[n−1]

Use that result to eliminate c[n] and c[n − 1] from the d[n] equation:

d[n] = (a[n] − 2a[n − 1] + a[n − 2]) − (a[n − 1] − 2a[n − 2] + a[n − 3]) � �� � � �� �
c[n] c[n−1]

= a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3].

Voilà: The three-equation system is equivalent to the single difference equa­
tion. But what a mess. Each step is plausible yet the chain of steps seems
random. If the last step had produced

d[n] = a[n] − 2a[n − 1] + 2a[n − 2] − a[n − 3],

it would not immediately look wrong. We would like a representation
where it would look wrong, perhaps not immediately but at least quickly.
Block diagrams are one such representation.

35 3 Block diagrams and operators: Two new representations

Exercise 12. Although this section pointed out a disadvantage of
difference equations, it is also important to appreci­
ate their virtues. Therefore, invent a verbal descrip­
tion (a story) to represent the single equation

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3]

and then a verbal description to represent the
equivalent set of three equations. Now have fun
showing, without converting to difference equa­
tions, that these descriptions are equivalent!

3.2 Block diagrams to the rescue

Block diagrams visually represent a system. To show how they work, here
are a few difference equations with corresponding block diagrams:

Delay

1/2+ y[n] = (x[n] + x[n − 1])/2
averaging filter

+

Delay

y[n] = y[n − 1] + x[n]
account with 0% interest

Pause to try 13. Draw the block diagram for the endowment ac­
count from Section 2.2.

The endowment account is a bank account that pays 4% interest, so it needs
a gain element in the loop, with gain equal to 1.04. The diagram is not
unique. You can place the gain element before or after the delay. Here is
one choice:

36 3.2 Block diagrams to the rescue

+

1.04Delay

y[n] = 1.04 y[n − 1] + x[n]
endowment account from Section 2.2

Amazingly, all systems in this course can be built from only two actions
and one combinator:

A action 1: multiply by α

Delay

+

action 2: delay one tick

combinator: add inputs

3.2.1 Block diagram for the Fibonacci system

To practice block diagrams, we translate (represent) the Fibonacci system
into a block diagram.

Pause to try 14. Represent the Fibonacci system of Section 1.1 using
a block diagram.

We could translate Fibonacci’s description (Section 1.1) directly into a block
diagram, but we worked so hard translating the description into a differ­
ence equation that we start there. Its difference equation is

f[n] = f[n − 1] + f[n − 2] + x[n],

where the input signal x[n] is how many pairs of child rabbits enter the
system at month n, and the output signal f[n] is how many pairs of rabbits
are in the system at month n. In the block diagram, it is convenient to let
input signals flow in from the left and to let output signals exit at the right
– following the left-to-right reading common to many languages.

37 3 Block diagrams and operators: Two new representations

Exercise 13. Do signals-and-systems textbooks in Hebrew or
Arabic, which are written right to left, put input sig­
nals on the right and output signals on the left?

The Fibonacci system combines the input sample, the previous output sam­
ple, and the second-previous output sample. These three signals are there­
fore inputs to the plus element. The previous output sample is produced
using a delay element to store samples for one time tick (one month) before
sending them onward. The second-previous output sample is produced by
using two delay elements in series. So the block diagram of the Fibonacci
system is

+

Delay

DelayDelay

f[n]x[n]

3.2.2 Showing equivalence using block diagrams

We introduced block diagrams in the hope of finding insight not easily
visible from difference equations. So use block diagrams to redo the proof
that

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3]

is equivalent to

d[n] = c[n] − c[n − 1],

c[n] = b[n] − b[n − 1],

b[n] = a[n] − a[n − 1].

The system of equations is a cascade of three equations with the structure

output = this input − previous input.

The block diagram for that structure is

-1 Delay

+

38 3.2 Block diagrams to the rescue

where the gain of −1 produces the subtraction.

The cascade of three such structures has the block diagram

Delay

+

-1 Delay

+

-1 Delay

+

-1

This diagram has advantages compared to the set of difference equations.
First, the diagram helps us describe the system compactly. Each stage in
the cascade is structurally identical, and the structural identity is appar­
ent by looking at it. Whereas in the difference-equation representation, the
common structure of the three equations is hidden by the varying signal
names. Each stage, it turns out, is a discrete-time differentiator, the sim­
plest discrete-time analog of a continuous-time differentiator. So the block
diagram makes apparent that the cascade is a discrete-time triple differen­
tiator.

Second, the block diagram helps rewrite the system, which we need to do
to show that it is identical to the single difference equation. So follow a
signal through the cascade. The signal reaches a fork three times (marked
with a dot), and each fork offers a choice of the bottom or top branch. Three
two-way branches means 23 or 8 paths through the system. Let’s examine
a few of them. Three paths accumulate two delays:

1. low road, low road, high road:

Delay

+

-1 Delay

+

-1 Delay

+

-1

2. low road, high road, low road:

-1 Delay

+

-1 Delay

+

-1 Delay

+

3. high road, low road, low road:

3 Block diagrams and operators: Two new representations 39

-1 Delay

+

-1 Delay

+

-1 Delay

+

Besides the two delays, each path accumulates two gains of −1, making a
gain of 1. So the sum of the three paths is a gain of 3 and a double delay.

Exercise 14.	 Show the other five paths are: three paths with a
single delay and a gain of −1, one path with three
delays and a gain of −1, and one path that goes
straight through (no gain, no delay).

A block diagram representing those four groups of paths is

−3 Delay

3 Delay Delay

−1 Delay Delay Delay

+

The single difference equation

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3].

also has this block diagram.

The pictorial approach is an advantage of block diagrams because humans
are sensory beings and vision is an important sense. Brains, over hun­
dreds of millions of years of evolution, have developed extensive hard­
ware to process sensory information. However, analytical reasoning and
symbol manipulation originate with language, skill perhaps 100,000 years
old, so our brains have much less powerful hardware in those domains.

40 3.3 The power of abstraction

Not surprisingly, computers are far more skilled than are humans at an­
alytical tasks like symbolic algebra and integration, and humans are far
more skilled than are computers at perceptual tasks like recognizing faces
or speech. When you solve problems, amplify your intelligence with a vi­
sual representation such as block diagrams.

On the other side, except by tracing and counting paths, we do not know to
manipulate block diagrams; whereas analytic representations lend them­
selves to transformation, an important property when redesigning sys­
tems. So we need a grammar for block diagrams. To find the rules of
this grammar, we introduce a new representation for systems, the operator
representation. This representation requires the whole-signal abstraction
in which all samples of a signal combine into one signal. It is a subtle
change of perspective, so we first discuss the value of abstraction in gen­
eral, then return to the abstraction.

3.3 The power of abstraction

Abstraction is a great tools of human thought. All language is built on
it: When you use a word, you invoke an abstraction. The word, even an
ordinary noun, stands for a rich, subtle, complex idea. Take cow and try
to program a computer to distinguish cows from non-cows; then you find
how difficult abstraction is. Or watch a child’s ability with language de­
velop until she learns that ‘red’ is not a property of a particular object but
is an abstract property of objects. No one knows how the mind manages
these amazing feats, nor – in what amounts to the same ignorance – can
anyone teach them to a computer.

Abstraction is so subtle that even Einstein once missed its value. Ein­
stein formulated the theory of special relativity [7] with space and time
as separate concepts that mingle in the Lorentz transformation. Two years
later, the mathematician Hermann Minkowski joined the two ideas into
the spacetime abstraction:

The views of space and time which I wish to lay before you have sprung from
the soil of experimental physics, and therein lies their strength. They are radical.
Henceforth space by itself, and time by itself, are doomed to fade away into
mere shadows, and only a kind of union of the two will preserve an independent
reality.

41 3 Block diagrams and operators: Two new representations

See the English translation in [11] or the wonderful textbook Spacetime
Physics [1], whose first author recently retired from the MIT physics de­
partment. Einstein thought that spacetime was a preposterous invention
of mathematicians with time to kill. Einstein made a mistake. It is per­
haps the fundamental abstraction of modern physics. The moral is that
abstraction is powerful but subtle.

Exercise 15. Find a few abstractions in chemistry, biology, physics,
and programming.

If we lack Einstein’s physical insight, we ought not to compound the ab­
sence with his mistake. So look for and create abstractions. For example,
in a program, factor out common code into a procedure and encapsulate
common operations into a class. In general, organize knowledge into ab­
stractions or chunks [15].

3.4 Operations on whole signals

For signals and systems, the whole-signal abstraction increases our ability
to analyze and build systems. The abstraction is take all samples of a sig­
nal and lump them together, operating on the entire signal at once and as
one object. We have not been thinking that way because most of our repre­
sentations hinder this view. Verbal descriptions and difference equations
usually imply a sample-by-sample analysis. For example, for the Fibonacci
recurrence in Section 2.3.2, we found the zeroth sample f[0], used f[0] to
find f[1], used f[0] and f[1] to find f[2], found a few more samples, then got
tired and asked a computer to carry on.

Block diagrams, the third representation, seem to imply a sample-by-sample
analysis because the delay element holds on to samples, spitting out the
sample after one time tick. But block diagrams live in both worlds and can
also represent operations on whole signals. Just reinterpret the elements in
the whole-signal view, as follows:

42 3.4 Operations on whole signals

A action 1: multiply whole signal by α

Delay

+

action 2: shift whole signal right one tick

combinator: add whole signals

To benefit from the abstraction, compactly represent the preceding three
elements. When a signal is a single object, the gain element acts like ordi­
nary multiplication, and the plus element acts like addition of numbers. If
the delay element could also act like an arithmetic operation, then all three
elements would act in a familiar way, and block diagrams could be ma­
nipulated using the ordinary rules of algebra. In order to bring the delay
element into this familiar framework, we introduce the operator represen­
tation.

3.4.1 Operator representation

In operator notation, the symbol R stands for the right-shift operator. It
takes a signal and shifts it one step to the right. Here is the notation for a
system that delays a signal X by one tick to produce a signal Y:

Y = R{X}.

Now forget the curly braces, to simplify the notation and to strengthen the
parallel with ordinary multiplication. The clean notation is

Y = RX.

Pause to try 15. Convince yourself that right-shift operator R, rather
than the left-shift operator L, is equivalent to a de­
lay.

Let’s test the effect of applying R to the fundamental signal, the impulse.
The impulse is

I = 1, 0, 0, 0, . . .

Applying R to it gives

43 3 Block diagrams and operators: Two new representations

RI = 0, 1, 0, 0, . . .

which is also the result of delaying the signal by one time tick. So R rather
than L represents the delay operation. In operator notation, the block-
diagram elements are:

α action 1 (gain) multiply whole signal by α
R action 2 (delay) shift whole signal right one tick
+ combinator add whole signals

3.4.2 Using operators to rewrite difference equations

Let’s try operator notation on the first example of the chapter: rewriting
the single difference equation

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3]

into the system of three difference equations

d[n] = c[n] − c[n − 1],

c[n] = b[n] − b[n − 1],

b[n] = a[n] − a[n − 1].

To turn the sample-by-sample notation into whole-signal notation, turn
the left side of the long equation into the whole signal D, composed of the
samples d[0], d[1], d[2], Turn the samples on the right side into whole
signals as follows:

a[n] → A,

a[n − 1] → RA,

a[n − 2] → RRA,

a[n − 3] → RRRA.

Now import compact notation from algebra: If R acts like a variable or
number then RR can be written R2. Using exponent notation, the transla­
tions are:

a[n] → A,

a[n − 1] → RA,

a[n − 2] → R2A,

a[n − 3] → R3A.

44 3.4 Operations on whole signals

With these mappings, the difference equation turns into the compact form

D = (1 − 3R + 3R2 − R3)A.

To show that this form is equivalent to the system of three difference equa­
tions, translate them into an operator expression connecting the input sig­
nal A and the output signal D.

Pause to try 16. What are the operator versions of the three differ­
ence equations?

The system of equations turns into these operator expressions

d[n] = c[n] − c[n − 1] → D = (1 − R)C,

c[n] = b[n] − b[n − 1] → C = (1 − R)B,

b[n] = a[n] − a[n − 1] → B = (1 − R)A.

Eliminate B and C to get

D = (1 − R)(1 − R)(1 − R)A = (1 − R)3A.

Expanding the product gives

D = (1 − 3R + 3R2 − R3)A,

which matches the operator expression corresponding to the single dif­
ference equation. The operator derivation of the equivalence is simpler
than the block-diagram rewriting, and much simpler than the difference-
equation manipulation.

Now extend the abstraction by dividing out the input signal:

D
= 1 − 3R + 3R2 − R3.

A

The operator expression on the right, being independent of the input and
output signals, is a characteristic of the system alone and is called the sys­
tem functional.

The moral of the example is that operators help you efficiently analyze
systems. They provide a grammar for combining, for subdividing, and in
general for rewriting systems. It is a familiar grammar, the grammar of

45 3 Block diagrams and operators: Two new representations

algebraic expressions. Let’s see how extensively operators follow these. In
the next section we stretch the analogy and find that it does not break.

Exercise 16. What is the result of applying 1 − R to the signal
1, 2, 3, 4, 5, . . .?

Exercise 17. What is the result of applying (1 − R)2 to the signal
1, 4, 9, 16, 25, 36, . . .?

3.5 Feedback connections

The system with (1 − R)3 as its system functional used only feedforward
connections: The output could be computed directly from a fixed number
of inputs. However, many systems – such as Fibonacci or bank accounts
– contain feedback, where the output depends on previous values of the
output. Feedback produces new kinds of system functionals. Let’s test
whether they also obey the rules of algebra.

3.5.1 Accumulator

Here is the difference equation for the simplest feedback system, an accu­
mulator:

y[n] = y[n − 1] + x[n].

It is a bank account that pays no interest. The output signal (the balance)
is the sum of the inputs (the deposits, whether positive or negative) up to
and including that time. The system has this block diagram:

+

Delay

Now combine the visual virtues of block diagrams with the compactness
and symbolic virtues of operators by using R instead of ‘Delay’. The oper­
ator block diagram is

46 3.5 Feedback connections

X +

R

Y

Pause to try 17. What is its system functional?

Either from this diagram or from the difference equation, translate into
operator notation:

Y = RY + X.

Collect the Y terms on one side, and you find end up with the system func­
tional:

Y 1
= .

X 1 − R

It is the reciprocal of the differentiator.

This operator expression is the first to include R in the denominator. One
way to interpret division is to compare the output signal produced by the
difference equation with the output signal produced by the system func­
tional 1/(1 − R). For simplicity, test the equivalence using the impulse

I = 1, 0, 0, 0, . . .

as the input signal. So x[n] is 1 for n = 0 and is 0 otherwise. Then the
difference equation

y[n] = y[n − 1] + x[n]

produces the output signal

Y = 1, 1, 1, 1,

Exercise 18. Check this claim.

The output signal is the discrete-time step function θ. Now apply 1/(1−R)

to the impulse I by importing techniques from algebra or calculus. Use

47

1

3 Block diagrams and operators: Two new representations

synthetic division, Taylor series, or the binomial theorem to rewrite 1/(1 −
R) as

= 1 + R + R2 + R3 + · · · .
1 − R

To apply 1/(1 − R) to the impulse, apply the each of terms 1, R, R2 , . . . to
the impulse I:

1I = 1, 0, 0, 0, 0, 0, 0, . . . ,

RI = 0, 1, 0, 0, 0, 0, 0, . . . ,

R2I = 0, 0, 1, 0, 0, 0, 0, . . . ,

R3I = 0, 0, 0, 1, 0, 0, 0, . . . ,

R4I = 0, 0, 0, 0, 1, 0, 0, . . . ,

. . .

Add these signals to get the output signal Y.

Pause to try 18. What is Y?

For n � 0, the y[n] sample gets a 1 from the RnI term, and from no other
term. So the output signal is all 1’s from n = 0 onwards. The signal with
those samples is the step function:

Y = 1, 1, 1, 1,

Fortunately, this output signal matches the output signal from running the
difference equation. So, for an impulse input signal, these operator expres­
sions are equivalent:

1
and 1 + R + R2 + R3 + · · · .

1 − R

Exercise 19. If you are mathematically inclined, convince your­
self that verifying the equivalence for the impulse
is sufficient. In other words, we do not need to try
all other input signals.

48 3.5 Feedback connections

The moral is that the R operator follows the rules of algebra and calculus.
So have courage: Use operators to find results, and do not worry.

3.5.2 Fibonacci

Taking our own advice, we now analyze the Fibonacci system using oper­
ators. The recurrence is:

output = delayed output + twice-delayed output + input.

Pause to try 19. Turn this expression into a system functional.

The output signal is F, and the input signal is X. The delayed output is RX,
and the twice-delayed output is RRX or R2X. So

F = RF + R2F + X.

Collect all F terms on one side:

F − RF − R2F = X.

Then factor the F:

(1 − R − R2)F = X.

Then divide both sides by the R expression:

1
F = X.

1 − R − R2

So the system functional is

1
.

1 − R − R2

3 Block diagrams and operators: Two new representations	 49

Exercise 20.	 Using maxima or otherwise, find the Taylor se­
ries for 1/(1 − R − R2). What do you notice
about the coefficients? Coincidence? maxima (max­
ima.sourceforge.net) is a powerful symbolic algebra
and calculus system. It descends from Macsyma,
which was created at MIT in the 1960’s. maxima is
free software (GPL license) and is available for most
platforms.

3.6 Summary

Including the two system representations discussed in this chapter, you
have four representation for discrete-time systems:

1. verbal descriptions,

2. difference equations,

3. block diagrams, and

4. operator expressions.

In the next chapter, we use the operator representation to decompose, and
design systems.

4
Modes

4.1 Growth of the Fibonacci series	 52
4.2 Taking out the big part from Fibonacci	 55
4.3 Operator interpretation	 57
4.4 General method: Partial fractions	 59

The goals of this chapter are:

•	 to illustrate the experimental way that an engineer studies sys­
tems, even abstract, mathematical systems;

•	 to illustrate what modes are by finding them for the Fibonacci sys­
tem; and

•	 to decompose second-order systems into modes, explaining the
decomposition using operators and block diagrams.

The first question is what a mode is. That question will be answered as we
decompose the Fibonacci sequence into simpler sequences. Each simple
sequence can be generated by a first-order system like the leaky tank and is
called a mode of the system. By decomposing the Fibonacci sequence into
modes, we decompose the system into simpler, first-order subsystems.

The plan of the chapter is to treat the Fibonacci system first as a black
box producing an output signal F and to develop computational probes
to examine signals. This experimental approach is how an engineer stud­
ies even abstract, mathematical systems. The results from the probes will
show us how to decompose the signal into its modes. These modes are
then reconciled with what the operator method predicts for decomposing
the system.

52 4.1 Growth of the Fibonacci series

Why describe the experimental, and perhaps harder, method for finding
the modes before giving the shortcuts using operators? We know the op­
erator expression for the Fibonacci system, and could just rewrite it using
algebra. The answer is that the operator method has meaning only after
you feel modes in your fingertips, a feeling developed only as you play
with signals. Without first playing, we would be teaching you amazing
feats of calculation on meaningless objects.

Furthermore, the experimental approach works even when no difference
equation is available to generate the sequence. Engineers often character­
ize such unknown or partially known systems. The system might be:

•	 computational: Imagine debugging someone else’s program. You send
in test inputs to find out how it works and what makes it fail.

•	 electronic: Imagine debugging a CPU that just returned from the fabri­
cation run, perhaps in quantities of millions, but that does not correctly
divide floating-point numbers [12]. You might give it numbers to di­
vide until you find the simplest examples that give wrong answers.
From that data you can often deduce the flaw in the wiring.

•	 mathematical: Imagine computing primes to investigate the twin-prime
conjecture [16], one of the outstanding unsolved problems of number
theory. [The conjecture states that there are an infinite number of prime
pairs p, p + 2, such as (3, 5), (5, 7), etc.] The new field of experimental
mathematics, which uses computational tools to investigate mathemat­
ics problems, is lively, growing, and a fertile field for skilled engineers
[4, 14, 8].

So we hope that, through experimental probes of the Fibonacci sequence,
you learn a general approach to solving problems.

4.1 Growth of the Fibonacci series

Section 1.1.2 estimated how fast the sequence f[n√] grew. It seemed to grow
geometrically with an order of growth between 2 and 2. Our first project
is to experimentally narrow this range and thereby to guess a closed form
for the order of growth.

One probe to find the order of growth is to compute the successive ratios
f[n]/f[n − 1]. The ratios oscillated around 1.618, but this estimate is not

4 Modes 53

accurate enough to guess a closed form. Since the oscillations in the ratio
die out as n grows, let’s estimate the ratio accurately by computing it for
large n. Our tool for these experiments – our probe – is a computer that we
program in Python, a clean, widely available language. Use any tool that
fits you, perhaps another language, a graphing calculator, or a spreadsheet.

Section 2.3.2 offered this Python code to compute f[n]:

def f(n):
if n < 2: return 1
return f(n-1) + f(n-2)

But the code is slow when n is large. Here are the running times to evaluate
f[n] on a Pentium CoreDuo 1.8GHz processor:

n 10 15 20 25 30
time (ms) 0.17 1.5 21 162 1164

The times grow rapidly!

Exercise 21. What is the running time of this implementation?

The times might seem low enough to be usable, but imagine being on a
desert island with only a graphing calculator; then the times might be a
factor of 10 or of 100 longer. We would like to build an efficient computa­
tional probe so that it is widely usable.

An efficient function would store previously computed answers, returning
the stored answer when possible rather than recomputing old values. In
Python, one can store the values in a dictionary, which is analogous to a
hash in Perl or an associative array in awk. The memoized version of the
Fibonacci function is:

memo = {}
def f(n):

if n < 2 : return 1
if n in memo : return memo[n]
memo[n] = f(n-1) + f(n-2)
return memo[n]

54 4.1 Growth of the Fibonacci series

Pause to try 20. What is the running time of the memoized function,
in big-Oh notation?

The new function runs in linear time – a faster probe! – so we can inexpen­
sively compute f[n] for large n. Here are the ratios f[n]/f[n − 1]:

n f[n]/f[n − 1]

5 1.60000000000000009
10 1.61818181818181817
15 1.61803278688524599
20 1.61803399852180330
25 1.61803398867044312
30 1.61803398875054083
35 1.61803398874988957
40 1.61803398874989490
45 1.61803398874989490

These values are very stable by n = 45, perhaps limited in stability only
by the precision of the floating-point numbers.

Let’s see what closed form would produce the ratio 1.61803398874989490
at n = 45. One source for closed forms is your intuition and experience.
Another wonderful source is the Inverse Symbolic Calculator
By using the Inverse Symbolic Calculator, you increase your repertoire of
closed form and thereby enhance your intuition.

Pause to try 21. Ask the Inverse Symbolic Calculator about 1.61803398874989490.

The Inverse Symbolic Calculator thinks that 1.61803398874989490 is most
likely the positive root of x2 − x − 1 or, equivalently, is the golden ratio φ:

√
1 + 5

φ ≡
2

Let’s use that hypothesis. Then

f[n] ∼ φn.

But we do not know the constant hidden by the ∼ symbol. Find that con­
stant by using the Inverse Symbolic Calculator one more time. Here is a

.

http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html

4 Modes 55

table of the ratio f[n]/φn . With luck it converges to a constant. And it
does:

n f[n]/φn

0 1.00000000000000000
10 0.72362506926471781
20 0.72360679895785285
30 0.72360679775005809
40 0.72360679774997805
50 0.72360679774997783
60 0.72360679774997749
70 0.72360679774997727
80 0.72360679774997705
90 0.72360679774997672

100 0.72360679774997649
√

Around n = 10, the ratios look like 3 −1 ≈ 0.732 but later ratios stabilize
around a value inconsistent with that guess.

Pause to try 22. Ask the Inverse Symbolic Calculator about 0.72360679774997649.
Which of the alternatives seem most reasonable?

The Inverse Symbolic Calculator provides many closed forms for 0.72360679774997649.√ √
A choice that contains 5 is reasonable since φ contains 5. The closed √ √
form nearest to 0.72360679774997649 and containing 5 is (1 + 1/ 5)/2,√
which is also φ/ 5. So the Fibonacci sequence is roughly

φ
f[n] ≈ √ φn.

5

4.2 Taking out the big part from Fibonacci

Now let’s take out the big part by peeling away the √φ φn contribution to
5

see what remains. Define the signal F1 by

φ
f1[n] = √ φn.

5

This signal is one mode of the Fibonacci sequence. The shape of a mode is

its order of growth, which here is φ. The amplitude of a mode is the prefac­
√
tor, which here is φ/ 5. The mode shape is a characteristic of the system,

56 4.2 Taking out the big part from Fibonacci

whereas the amplitude depends on the input signal (for this example, the
input signal was the impulse). So we often have more interest in the shape
than in the amplitude. However, here we need shape and amplitude in
order to determine the signal and peel it away.

So tabulate the residual signal F2 = F − F1:

n f2[n] = f[n] − f1[n]

0 +0.27639320225002106
1 −0.17082039324993681
2 +0.10557280900008426
3 −0.06524758424985277
4 +0.04032522475023104
5 −0.02492235949962307
6 +0.01540286525060708
7 −0.00951949424901599
8 +0.00588337100158753
9 −0.00363612324743201

10 +0.00224724775415552

The residual signal starts small and gets smaller, so the main mode F1 is an
excellent approximation to the Fibonacci sequence F. To find a closed form
for the residual signal F2, retry the successive-ratios probe:

n f2[n]/f2[n − 1]

1 −0.61803398874989446
2 −0.61803398874989601
3 −0.61803398874989390
4 −0.61803398874989046
5 −0.61803398874993953
6 −0.61803398874974236
7 −0.61803398875029414
8 −0.61803398874847626
9 −0.61803398875421256

10 −0.61803398873859083

The successive ratios are almost constant and look suspiciously like 1 − φ,
which is also −1/φ.

Exercise 22. Show that 1 − φ = −1/φ.

4 Modes	 57

So f2[n] ∼ (−φ)−n . To evaluate the amplitude, divide f2[n] by the mode
shape (−φ)−n. Here is a table of those results:

n f2[n]/(−φ)−n

1 0.27639320225002090
2 0.27639320225002140
3 0.27639320225002101
4 0.27639320225001901
5 0.27639320225003899
6 0.27639320224997083
7 0.27639320225014941
8 0.27639320224951497
9 0.27639320225144598

10 0.27639320224639063

Those values stabilize quickly and look like one minus the amplitude of the√
φn mode. So the amplitude of the (−φ)n mode is 1 − φ/ 5, which is also √
1/(φ 5). Thus the residual signal, combining its shape and amplitude, is

1
f2[n] = √ (−φ)−n.

φ 5

Now combine the F1 and F2 signals to get the Fibonacci signal:

f[n] = f1[n] + f2[n]
φ 1

= √ φn + √ (−φ)−n.
5 φ 5

This closed form, deduced using experiment, is the famous Binet formula
for the nth Fibonacci number.

Exercise 23.	 Use peeling away and educated guessing to find a
closed form for the output signal when the impulse
is fed into the following difference equation:

y[n] = 7y[n − 1] − 12y[n − 2] + x[n].

4.3 Operator interpretation

Next we interpret this experimental result using operators and block di­
agrams. Modes are the simplest persistent responses that a system can

58 4.3 Operator interpretation

make, and are the building blocks of all systems, so we would like to find
the operator or block-diagram representations for a mode.

The Fibonacci signal decomposed into two simpler signals F1 and F2 –
which are also the modes – and each mode grows geometrically. Geomet­
ric growth results from one feedback loop. So the φn mode is produced by
this system

+

φR

with the system functional (1 − φR)−1 .

The (−φ)−n mode is produced by this system

+

−φ−1R

with the system functional (1 + R/φ)−1 .

The Fibonacci system is the sum of these signals scaled by the respective
amplitudes, so its block diagram is a weighted sum of the preceding block
diagrams. The system functional for the Fibonacci system is a weighted
sum of the pure-mode system functionals.

So let’s add the individual system functionals and see what turns up:

F(R) = F1(R) + F2(R)
φ 1 1 1

= √ + √
5 1 − φR φ 5 1 + R/φ

1
= .

1 − R − R2

That functional is the system functional for the Fibonacci system derived
directly from the block diagram (Section 3.5.2)! So the experimental and
operator approaches agree that these operator block diagrams are equiva­
lent:

4 Modes 59

1

φ
√

5

1
1 + R/φ

1
1 − R − R2

φ √
5

1
1 − φR

+=

where, to make the diagram easier to parse, system functionals stand for
the first- and second-order systems that they represent.

Exercise 24. Write the system of difference equations that cor­
responds to the parallel-decomposition block dia­
gram. Show that the system is equivalent to the
usual difference equation

f[n] = f[n − 1] + f[n − 2] + x[n].

The equivalence is obvious neither from the block diagrams nor from the
difference equations directly. Making the equivalence obvious needs either
experiment or the operator representation. Having experimented, you are
ready to use the operator representation generally to find modes.

4.4 General method: Partial fractions

So we would like a way to decompose a system without peeling away and
guessing. And we have one: the method of partial fractions, which shows
the value of the operator representation and system functional. Because
the system functional behaves like an algebraic expression – or one might
say, because it is an algebraic expression – it is often easier to manipulate
than is the block diagram or the difference equation.

Having gone from the decomposed first-order systems to the original second-
order system functional, let’s now go the other way: from the original sys­
tem functional to the decomposed systems. To do so, first factor the R
expression:

1 1 1
= .

1 − R − R2 1 − φR 1 + R/φ

60 4.4 General method: Partial fractions

This factoring, a series decomposition, will help us study poles and zeros
in a later chapter. Here we use it to find the parallel decomposition by
using the technique of partial fractions.

The partial fractions should use the two factors in denominator, so guess
this form:

1 a b
= + ,

1 − R − R2 1 − φR 1 + R/φ

where a and b are unknown constants. After adding the fractions, the
denominator will be the product (1 − φR)(1 + R/φ) and the numerator
will be the result of cross multiplying:

a(1 + R/φ) + b(1 − φR) = a + (a/φ)R + b − bφR.

We want the numerator to be 1. If we set a = φ and b = 1/φ, then at least
the R terms cancel, leaving only the constant a +√b. So we chose a and b
too large by the sum a + b, which is φ + 1/φ or 5. So instead choose

√
a = φ/ 5, √
b = 1/(φ 5).

If you prefer solving linear equations to the guess-and-check method, here
are the linear equations:

a + b = 1,

a/φ − bφ = 0,

whose solutions are the ones deduced using the guess-and-check method.

The moral: To find how a system behaves, factor its system functional and
use partial fractions to decompose that factored form into a sum of first-
order systems. With that decomposition, you can predict the output signal
because you know how first-order systems behave.

You can practice the new skill of decomposition with the following ques­
tion:

4 Modes 61

Exercise 25. Look again at the system

y[n] = 7y[n − 1] − 12y[n − 2] + x[n].

Decompose the operator representation into a sum
of two modes and draw the corresponding block
diagram (using block diagram elements). When
the input signal X is the impulse, do the opera­
tor and block-diagram decompositions produce the
same closed form that you find by peeling away
and guessing?

5
Repeated roots

5.1 Leaky-tank background 64
5.2 Numerical computation 65
5.3 Analyzing the output signal 67
5.4 Deforming the system: The continuity argument 68
5.5 Higher-order cascades 70

After reading this chapter you should be able

• to use a continuity argument

• to explain the non-geometric output of a mode with a double root.

Modes generate persistent outputs. So far our examples generate persis­
tent geometric sequences. But a mode from a repeated root, such as from
the system functional (1 − R/2)−3, produces outputs that are not geomet­
ric sequences. How does root repetition produce this seemingly strange
behavior?

The analysis depends on the idea that repeated roots are an unlikely, spe­
cial situation. If roots scatter randomly on the complex plane, the prob­
ability is zero that two roots land exactly on the same place. A generic,
decent system does not have repeated roots, and only through special con­
trivance does a physical system acquire repeated roots. This fact suggests
deforming a repeated-root system into a generic system by slightly moving
one root so that the modes of the deformed system produce geometric se­
quences. This new system is therefore qualitatively easier to analyze than
is the original system, and it can approximate the original system as closely
as desired. This continuity argument depends on the idea that the world

64 5.1 Leaky-tank background

changes smoothly: that a small change to a system, such as by moving a
root a tiny amount, produces only a small change to the system’s output.

To generate a double root, we use the RC circuit (??) or the leaky tank
(Section 1.2). Either system alone has one mode. To make a double root,
cascade two identical tanks or RC circuits, where the output of the first
system is the input to the second system.

Exercise 26. When making an RC cascade system analogous to
a cascade of two leaky tanks, does the RC cascade
need a unity-gain buffer between the two RC cir­
cuits?

5.1 Leaky-tank background

Let the leaky tank or RC circuit have time constant τ. Let Vin be the input
signal, which is the flow rate into the tank system or the input voltage
in the RC circuit, and let Vout be the output signal. Then the differential
equation of either system is

τV̇
out = Vin − Vout.

Convert this equation into a discrete-time system using the forward-Euler
approximation (??). Using a time step T , the difference equation becomes

Vout[n] − Vout[n − 1]
τ = Vin[n − 1] − Vout[n − 1].

T

To promote equation hygiene, define the dimensionless ratio ε ≡ T/τ and
collect like terms. The clean difference equation is

Vout[n] − (1 − ε)Vout[n − 1] = εVin[n − 1].

Pause to try 23. What system functional corresponds to this differ­
ence equation?

The corresponding system functional is

65 5 Repeated roots

Vout εR
= .

Vin 1 − (1 − ε)R

Exercise 27. What block diagram corresponds to this system
functional?

A double root arises from cascading two identical systems. Here is its high-

level block diagram showing the input, intermediate, and output signals:

leaky tank
or RC circuit

leaky tank
or RC circuit

V0
V1

V2

Its system functional is the square of the functional for one system: � �2
V2 εR

= .
V0 1 − (1 − ε)R

The numerator (εR)2 does not add interesting features to the analysis, so
simplify life by ignoring it. To simplify the algebra further, define β = 1−ε.
With that definition and without the boring εR factor, the purified system
is

V2 1
= .

V0 (1 − βR)2

5.2 Numerical computation

By design, this cascade system has a double root at β = 1 − ε. Let’s simu­
late its impulse response and find patterns in the data. Simulation requires
choosing numerical values for the parameters, and here the only parameter
is ε = T/τ. An accurate discretization uses a time step T much shorter than
the system time constant τ; otherwise the system changes significantly be­
tween samples, obviating the discrete-time approximation. So use ε � 1.

Pause to try 24. Write a program to simulate the impulse response,
choosing a reasonable ε or β.

66 5.2 Numerical computation

The following simulation uses ε = 0.05 or β = 0.95 in computing the
impulse response:

from scipy import *

N = 100

impulse = zeros(N)

impulse[0] = 1

beta = 0.95

return the output signal from feeding INPUT signal through

a system

with a feedback loop containing a delay and the given GAIN.

def onestage(input, gain):

output = input * 0
output[0] = input[0]
for i in range(1,len(output)): # 1..n-1

output[i] = input[i] + gain*output[i-1]
return output

signal = impulse # start with the impulse
for gain in [beta, beta]: # run it through each system

signal = onestage(signal, gain)
print signal

The impulse response is:

n y[n]

0 1.000000
1 1.900000
2 2.707500
3 3.429500
4 4.072531
5 4.642686
6 5.145643
7 5.586698
8 5.970784
9 6.302494

10 6.586106
. . .

5 Repeated roots 67

5.3 Analyzing the output signal

The impulse response contains a pattern. To find it, play with the data
and make conjectures. The first few samples look like n + 1. However, by
n = 10 that conjecture looks dubious. So look for another pattern. A single
system (1 −βR)−1 would have a geometric-sequence output where the nth

sample is βn . Maybe that geometric decay appears in the double system
and swamps the conjectured n +1 growth. Therefore, take out the big part
from the impulse response by tabulating the signal y[n]/0.95n . To do so,
add one line of code to the previous program:

print signal/0.95**arange(N)

The data are

n y[n]/0.95n

0 1.000000

1 2.000000

2 3.000000

3 4.000000

4 5.000000

5 6.000000

6 7.000000

7 8.000000

8 9.000000

9 10.000000

10 11.000000

Now y[n] = n + 1 is exact! The impulse response of the double cascade is
the signal

y[n] = (n + 1) · 0.95n for n � 0.

The factor of 0.95n makes sense because a single system (1 − 0.95R)−1

would have 0.95n as its impulse response. But how does the factor of n +1
arise? To understand its origin, one method is convolution, which was
discussed in the lecture. Here we show an alternative method using a con­
tinuity argument.

68 5.4 Deforming the system: The continuity argument

5.4 Deforming the system: The continuity argument

The cascade is hard to analyze because its roots are replicated. So de­
form the cascade by making the second root be 0.951 instead of 0.95. That
slightly deformed system has the functional

1 1 · .
1 − 0.951R 1 − 0.95R

Since the root hardly moved, the impulse response should be almost the
same as the impulse response of the original system. This assumption is
the essence of the continuity argument. We could find the response by
slightly modifying the preceding program. However, reaching for a pro­
gram too often does not add insight.

Alternatively, now that the system’s roots are unequal, we can easily use
partial fractions. The first step in partial fractions is to find the modes:

1 1
M1 = and M2 = .

1 − 0.951R 1 − 0.95R

The system functional is a linear combination of these modes:

1 1 C1 C2 · = − .
1 − 0.951R 1 − 0.95R 1 − 0.951R 1 − 0.95R

Exercise 28. Show that C1 = 951 and C2 = 950.

The partial-fractions decomposition is
 � �
1 1 1 0.951 0.95 · = − .

1 − 0.95R 1 − 0.951R 0.001 1 − 0.951R 1 − 0.95R

The 0.951/(1 − 0.951R) system contributes the impulse response 0.951n+1 ,
and the 0.95/(1 − 0.95R) system contributes the impulse response 0.95n+1 .

Exercise 29. Check these impulse responses.

So the impulse response of the deformed system is

y[n] = 1000 · (0.951n+1 − 0.95n+1).

69 5 Repeated roots

Since 0.951 ≈ 0.95, the difference in parentheses is tiny. However, the
difference is magnified by the factor of 1000 outside the parentheses. The
resulting signal is not tiny, and might contain the non-geometric factor of
n + 1 in the impulse response of a true double root.

To approximate the difference 0.951n+1 − 0.95n+1, use the binomial theo­
rem, keeping only the two largest terms:

0.951n+1 = (0.95 + 0.001)n+1

≈ 0.95n+1 + (n + 1)0.95n · 0.001 + · · · .

Thus the approximate impulse response is

y[n] ≈ 1000 · (n + 1) · 0.95n · 0.001.

The factor of 1000 cancels the factor of 0.001 to leave

y[n] ≈ (n + 1) · 0.95n,

which is what we conjectured numerically!

Thus the linear prefactor n +1 comes from subtracting two garden-variety,

geometric-sequence modes that are almost identical. The ≈ sign reflects

that we kept only the first two terms in the binomial expansion of 0.951n+1 .

However, as the deformation shrinks, the shifted root at 0.951 becomes

instead 0.9501 or 0.95001, etc. As the root approaches 0.95, the binomial

approximation becomes exact, as does the impulse response (n +1) ·0.95n .

The response (n + 1) · 0.95n is the product of an increasing function with

a decreasing function, with each function fighting for victory. In such sit­

uations, one function usually wins at the n → 0 extreme, and the other

function wins at the n → ∞ extreme, with a maximum product where the

two functions arrange a draw.

Exercise 30. Sketch n + 1, 0.95n, and their product.

Pause to try 25. Where is the maximum of (n + 1) · 0.95n?

This product reaches a maximum when two successive samples are equal.
The ratio of successive samples is

� �

70 5.5 Higher-order cascades

y[n] 0.95n · (n + 1)
= = 0.95 · 1 + .

y[n − 1] 0.95n−1 · n n

That ratio is one when n = 19. So y[19] and y[18] are the maximums of the
impulse response. The signal rises till then, plateaus, and then decays to
zero.

5.5 Higher-order cascades

The propagation of an impulse in a neuronal dendrite – which has active
amplification and regeneration – is a continuous-space RC cascade. It can
be simulated approximately as a giant cascade of discrete-space RC filters.

Rather than try a 1000-element cascade, try the impulse response of a triple
cascade. Guess before calculating, whether calculating numerically or an­
alytically. The single system (1 − βR)−1 produces plain geometric decay
βn with no prefactor. The double system (1 − βR)−2 produces geometric
decay with a linear prefactor n + 1. So a triple cascade should produce
geometric decay with a quadratic prefactor. And it does.

Exercise 31. Guess the quadratic prefactor of the impulse re­
sponse of the triple cascade. How can you confirm
your guess?

Exercise 32. Compute and sketch the output signal of the triple
cascade.

Exercise 33. Where is the maximum of the impulse response?
How does it compare to the maximum for the dou­
ble cascade?

6
The perfect (sine) wave

6.1 Forward Euler	 72
6.2 Backward Euler	 76
6.3 Leapfrog	 79
6.4 Summary	 82

The goals of this chapter are:

•	 to analyze several methods for discretizing a continuous-time sys­
tem; and

•	 to illustrate complex poles and the significance of the unit circle.

How can you compute a sine wave if your programming language did not
have a built-in sine function? You can use the coupled oscillator from the
first problem set:

ẏ 1 = y2,

ẏ 2 = −y1.

Let’s rewrite the equations to have physical meaning. Imagine y1 as the
oscillator’s position x. Then y2 is ẋ, which is the oscillator’s velocity. So
replace y1 with x, and replace y2 with v. Then ẏ 2 is the acceleration a,
making the equations

ẋ = v,

a = −x.

The first equation is a purely mathematical definition, so it has no physi­
cal content. But the second equation describes the acceleration of an ideal

72 6.1 Forward Euler

spring with unit spring constant and unit mass. So the position x(t) is a
linear combination of sin t and cos t. An accurate discrete-time simula­
tion, if we can make one, would reproduce these sinusoidal oscillations,
and this chapter shows you how.

To turn the system into a discrete-time system, let T be the time step, x[n] be
the discrete-time estimate for the position x(nT), and v[n] be the discrete-
time estimate for the velocity v(nT). Those changes take care of all the
terms except for the derivatives. How do you translate the derivatives?
Three methods are easy to use, and we try each, finding its poles and ana­
lyzing its fidelity to the original, continuous-time system.

6.1 Forward Euler

The first method for translating the derivatives is the forward-Euler ap­
proximation. It estimates the continuous-time derivatives ẋ(nT) and v̇(nT)
using the forward differences

ẋ (nT) →
x[n + 1] − x[n]

,

T

v̇ (nT) →
v[n + 1] − v[n]

.

T

Then the continuous-time system becomes

x[n + 1] − x[n] = Tv[n],

v[n + 1] − v[n] = −Tx[n].

The new samples x[n + 1] and v[n + 1] depend only on the old samples
x[n] and v[n]. So this system provides an explicit recipe for computing
later samples.

6.1.1 Simulation

Here is Python code to implement these equations. It starts the system
with the initial conditions x[0] = 1 and v[0] = 0 and plots v vs x.

from scipy import *

import pylab as p

T = 0.1

6 The perfect (sine) wave	 73

N = int(T**-2)
x = zeros(N)
x[0] = 1
v = zeros(N)

for	 n in range(N-1):
x[n+1] = x[n] + T*v[n]
v[n+1] = v[n] - T*x[n]

p.plot(x,v,’r.’)
p.show()

Here is the plot (generated with MetaPost rather than Python, but from the
same data):

v

x

where the n = 0 sample is marked with the prominent dot.

Pause to try 26. What would the plot look like for an exact solution
of the continuous-time differential equations?

When the solution generates a true sine wave, which the continuous-time
equations do, then the plot is of v(t) = − sin t versus x(t) = cos t, which
is a circle.

Since the discrete-time response is a growing spiral, it does not accurately
represent the continuous-time system. Indeed after 50 or so time steps, the

74 6.1 Forward Euler

points have spiraled outward significantly. The spiraling signifies that x[n]
and v[n] individually are not only oscillating, they are also growing.

6.1.2 Analysis using poles

To explain why the system oscillates and grows, find its poles. First, turn
the two first-order equations into one second-order equation. Then find
the poles of the second-order system. This method avoids having to un­
derstand what poles mean in a coupled system of equations.

To convert to a second-order system, use the first equation to eliminate v
from the second equation. First multiply the second equation by T to get

Tv[n + 1] − Tv[n] = −T2x[n].

Now express Tv[n + 1] using x[n] and v[n]; and Tv[n] using x[n − 1] and
v[n − 1]. The forward-Euler replacements are

Tv[n + 1] = x[n + 2] − x[n + 1],

Tv[n] = x[n + 1] − x[n].

Making these replacements in Tv[n + 1] − Tv[n] = −T2x[n] gives

(x[n + 2] − x[n + 1]) − (x[n + 1] − x[n]) = −T2x[n]. � �� � � �� �
Tv[n+1] Tv[n]

Collect like terms to get:

x[n + 2] − 2x[n + 1] + (1 + T2)x[n] = 0.

To get a system functional, we should have included an input signal or
forcing function F. Physically, the forcing function represents the force dri­
ving the spring. Here is one way to add it:

x[n + 2] − 2x[n + 1] + (1 + T2)x[n] = f[n + 2],

The system functional is:

X 1
= .

F 1 − 2R + (1 + T2)R2

To find the poles, factor the denominator 1− 2R +(1+ T2)R2 into the form
(1 − p1R)(1 − p2R).

75 6 The perfect (sine) wave

Pause to try 27. Where are poles p1 and p2?

The quadratic formula is useful in finding p1 and p2, but too often it substi­
tutes for, and does not augment understanding. So here is an alternative,
intuitive analysis to find the poles. First expand the generic factored form:

(1 − p1R)(1 − p2R) = 1 − (p1 + p2)R + p1p2R
2.

Now match this form to the particular denominator 1 − 2R + (1 + T2)R2 .
The result is

p1 + p2 = 2,

p1p2 = 1 + T2.

The sum of the roots is 2 while the product is greater than 1.

Pause to try 28. Show that these conditions are impossible to meet
if p1 and p2 are real.

Let p1 = 1 + a and p2 = 1 − a, which ensures that Im z

p1 + p2 = 2. Then p1p2 = 1 − a2, which cannot be
greater than 1 if a is real. So a must be imaginary.
The resulting poles are:

p1,2 = 1 ± jT

and are marked on the z-plane.

The poles are not on the positive real axis, which
means that they produce oscillating outputs. Oscillation is desirable in a
simulation of an oscillating continuous-time system. However, both poles
lie outside the unit circle! Poles in that region of the z-plane produce grow­
ing outputs. So the poles of our system, which lie off the positive real axis
and outside the unit circle, produce outputs that oscillate and grow, as
shown in the X–V plot.

The forward-Euler method does not produce an accurate approximation to
the continuous-time oscillating system.

Re z

76 6.2 Backward Euler

Exercise 34. To place the poles on the unit circle, why not simu­
late with T = 0?

Exercise 35. On the z-plane, sketch how the poles move as T in­
creases from 0 to 1.

6.2 Backward Euler

Let’s find another method. Being lazy, we invent it using symmetry. If for­
ward Euler is inaccurate, try backward Euler by estimating the derivatives
using backward differences:

ẋ (nT) →
x[n] − x[n − 1]

,

T

v̇ (nT) →
v[n] − v[n − 1]

.

T

These estimates are left-shifted versions of the forward-Euler estimates.

Then the system of continuous-time equations becomes

x[n] − x[n − 1] = Tv[n],

v[n] − v[n − 1] = −Tx[n].

The new values x[n] and v[n] depend on the new values themselves! This
discrete-time system is an implicit recipe for computing the next samples,
wherefore the backward Euler method is often called implicit Euler.

6.2.1 Finding an explicit recipe

Being a set of implicit equations, they require massaging to become an
explicit recipe that we can program. You can do so with a matrix inversion,
but let’s do it step by step. The system of equations is

x[n] − Tv[n] = x[n − 1],

Tx[n] + v[n] = v[n − 1].

77 6 The perfect (sine) wave

Eliminate v[n] to get an equation for x[n] in terms of only the preceding
samples x[n−1] and v[n−1]. To eliminate v[n], multiply the second equa­
tion by T then add. The result is

(1 + T2)x[n] = x[n − 1] + Tv[n − 1].

Similarly, eliminate x[n] to get an equation for v[n] in terms of only the
preceding values v[n− 1] and x[n− 1]. To eliminate x[n], multiply the first
equation by T then subtract. The result is

(1 + T2)v[n] = v[n − 1] − Tx[n − 1].

These equations are similar to the forward-Euler equations except for the
factors of 1 + T2. Those factors shrink x[n] and v[n], so they might control
the runaway oscillations.

Pause to try 29. Modify the Python program for forward Euler to
implement backward Euler, and plot the results.

To implement backward Euler, only two lines of the program need to be
changed, the lines that compute the new samples. The code is

for	 n in range(N-1):
x[n+1] = (x[n] + T*v[n])/(1+T**2)
v[n+1] = (v[n] - T*x[n])/(1+T**2)

and the X–V plot is

v

x

Now the points spiral inward! The factor of 1 + T2 is overkill.

78 6.2 Backward Euler

6.2.2 Poles of backward Euler

Let’s explain the inward spiral by finding the poles of the system. The first
step is to convert the two first-order difference equations into one second-
order equation.

Pause to try 30. Find the second-order difference equation.

To convert to a second-order difference equation, eliminate v[n] and v[n−1]
by using

Tv[n] = x[n] − x[n − 1]
and by using its counterpart shifted one sample, which is Tv[n − 1] =
x[n − 1] − x[n − 2]. Make these substitutions into Tx[n] + v[n] = v[n − 1]
after multiplying both sides by −T . Then

−T2x[n] = (x[n] − x[n − 1]) − (x[n − 1] − x[n − 2]) � �� � � �� �
Tv[n] Tv[n−1]

= x[n] − 2x[n − 1] + x[n − 2].

Combining the x[n] terms and adding a forcing function F produces this
difference equation

(1 + T2)x[n] − 2x[n − 1] + x[n − 2] = f[n]

and this system functional

F 1
= .

X (1 + T2) − 2R + R2

Pause to try 31. Find the poles.

79 6 The perfect (sine) wave

Now find its poles by factoring the denominator. Im z

Avoid the quadratic formula! The denominator looks
similar to the denominator in forward Euler where
it was 1 −2R +(1 +T2)R2, but the end coefficients 1
and 1 +T2 are interchanged. This interchange turns
roots into their reciprocals, so the poles are

1	 1
p1 = p2 = .

1 + jT 1 − jT

These poles lie inside the unit circle, so the oscillations die out and the X–V
plot spirals into the origin.

Re z

Pause to try 32. Do a cheap hack to the program make the points
stay on the unit circle. Hint: Add just eight charac­
ters to the code.

A cheap hack is to fix the problem manually. If dividing x[n + 1] and
v[n + 1] by 1 + T2 overcorrected, and dividing by 1 undercorrected, then√
try dividing by a compromise value 1 + T2:

for	 n in range(N-1):

x[n+1] = (x[n] + T*v[n])/sqrt(1+T**2)

v[n+1] = (v[n] - T*x[n])/sqrt(1+T**2)

However, this hack does not generalize, which is why it is a cheap hack
rather than a method. In this problem we can solve the continuous-time
system, so we can construct a hack to reproduce its behavior with a discrete-
time system. However, for many systems we do not know the continuous-
time solution, which is why we simulate. So we would like a principled
method to get accurate simulations.

6.3	 Leapfrog

Leapfrog, also known as the trapezoidal approximation, is a mixture of
forward and backward Euler. Use forward Euler for the x derivative:

ẋ (nT) →
x[n + 1] − x[n]

T

80 6.3 Leapfrog

The discrete-time equation is, as in forward Euler,

x[n + 1] − x[n] = Tv[n].

Then use backward Euler for the v derivative. So

v̇ (nT) →
v[n] − v[n − 1]

T

and

v[n] − v[n − 1] = −Tx[n]

or

v[n + 1] − v[n] = −Tx[n + 1].

In this mixed method, the x computation is an explicit recipe, whereas the
v computation is an implicit recipe.

6.3.1 Simulation

Fortunately, this implicit recipe, unlike the full backward Euler, has a clean
implementation. The system of equations is

x[n + 1] = x[n] + Tv[n],

v[n + 1] = v[n] − Tx[n + 1].

Pause to try 33. Implement leapfrog by modifying the magic two
lines in the Python program.

The only change from forward Euler is in the computation of v[n + 1].
Leapfrog uses x[n + 1], which is the just-computed value of x. So the code
is

for n in range(N-1):
x[n+1] = x[n] + T*v[n]
v[n+1] = v[n] - T*x[n+1]

and the plot is

81 6 The perfect (sine) wave

x

v

√
A beautiful circle without 1 + T2 hacks!

6.3.2 Analysis using poles

Let’s explain that behavior by finding the poles of this system. As usual,
convert the two first-order equations into one second-order equation for
the position. To eliminate v, use the first equation, that Tv[n] = x[n + 1] −
x[n]. Then v[n + 1] = v[n] − Tx[n + 1] becomes after multiplying by T :

(x[n + 2] − x[n + 1]) − (x[n + 1] − x[n]) = −T2x[n + 1]. � �� � � �� �
Tv[n+1] Tv[n]

After rearranging and including a forcing function, the result is

x[n + 2] − (2 − T2)x[n + 1] + x[n] = f[n + 2].

The system functional is

1
.

1 − (2 − T2)R + R2

Again factor into the form (1 − p1R)(1 − p2R). The Im z

product p1p2 is 1 because it is the coefficient of R2 .

The sum p1 + p2 is 2 − T2, which is less than 2.

So the roots must be complex. A pair of complex-

conjugate roots whose product is 1 lie on the unit

circle. Poles on the unit circle produce oscillations

that do not grow or shrink, wherefore leapfrog pro­

duces such a fine sine wave.

Re z

82 6.4 Summary

Exercise 36. Find the poles of the second-
order equation and confirm
that they lie on the unit cir­
cle.

6.4 Summary

The forward-Euler method is too aggressive. The backward-Euler method
is too passive. But, at least for second-order systems, the mixed, forward–
backward Euler method (leapfrog) is just right [13].

7
Control

7.1 Motor model with feedforward control 83
7.2 Simple feedback control 85
7.3 Sensor delays 87
7.4 Inertia 90

The goals of this chapter are to study:

• how to use feedback to control a system;

• how slow sensors destabilize a feedback system; and

• how to model inertia and how it destabilizes a feedback system.

A common engineering design problem is to control a system that inte­
grates. For example, position a rod attached to a motor that turns input
(control) voltage into angular velocity. The goal is an angle whereas the
control variable, angular velocity, is one derivative different from angle.
We first make a discrete-time model of such a system and try to control
it without feedback. To solve the problems of the feedforward setup, we
then introduce feedback and analyze its effects.

7.1 Motor model with feedforward control

We would like to design a controller that tells the motor how to place the
arm at a given position. The simplest controller is entirely feedforward in
that it does not use information about the actual angle. Then the high-level
block diagram of the controller–motor system is

�

84 7.1 Motor model with feedforward control

controller motorinput output

where we have to figure out what the output and input signals represent.

A useful input signal is the desired angle of the arm. This angle may vary
with time, as it would for a robot arm being directed toward a teacup (for
a robot that enjoys teatime).

The output signal should be the variable that interests us: the position
(angle) of the arm. That choice helps later when we analyze feedback con­
trollers, which use the output signal to decide what to tell the motor. With
the output signal being the same kind of quantity as the input signal (both
are angles), a feedback controller can easily compute the error signal by
subtracting the output from the input.

With this setup, the controller–motor system takes the desired angle as its
input signal and produces the actual angle of the arm as its output.

To design the controller, we need to model the motor. The motor turns
a voltage into the arm’s angular velocity ω. The continuous-time system
that turns ω into angle is θ ∝ ω dt. Its forward-Euler approximation is
the difference equation

y[n] = y[n − 1] + x[n − 1].

The corresponding system functional is R/(1 − R), which represents an
accumulator with a delay.

Exercise 37. Draw the corresponding block diagram.

The ideal output signal would be a copy of the input signal, and the cor­
responding system functional would be 1. Since the motor’s system func­
tional is R/(1−R), the controller’s should be (1−R)/R. Sadly, time travel
is not (yet?) available, so a bare R in a denominator, which represents a
negative delay, is impossible. A realizable controller is 1 − R, which pro­
duces a single delay R for the combined system functional:

R
1 − R

1 − R

controller motor

input output

7 Control 85

Alas, the 1 − R controller is sensitive to the particulars of the motor and of
our model of it. Suppose that the arm starts with a non-zero angle before
the motor turns on (for example, the whole system gets rotated without the
motor knowing about it). Then the output angle remains incorrect by this
initial angle. This situation is dangerous if the arm belongs to a 1500-kg
robot where an error of 10◦ means that its arm crashes through a brick wall
rather than stopping to pick up the teacup near the wall.

A problem in the same category is an error in the constant of proportional­
ity. Suppose that the motor model underestimates the conversion between
voltage and angular velocity, say by a factor of 1.5. Then the system func­
tional of the controller–motor system is 1.5R rather than R. A 500-kg arm
might again arrive at the far side of a brick wall.

One remedy for these problems is feedback control, whose analysis is the
subject of the next sections.

7.2 Simple feedback control

In feedback control, the controller uses the output signal to decide what
to tell the motor. Knowing the input and output signals, an infinitely in­
telligent controller could deduce how the motor works. Such a controller
would realize that the arm’s angle starts with an offset or that the mo­
tor’s conversion is incorrect by a factor of 1.5, and it would compensate for
those and other problems. That mythical controller is beyond the scope of
this course (and maybe of all courses). In this course, we use only linear-
systems theory rather than strong AI. But the essential and transferable
idea in the mythical controller is feedback.

So, sense the the angle of the arm, compare it to the desired angle, and use
the difference (the error signal) to decide the motor’s speed:

+ controller motor

sensor−1

controller motor

sensor

A real sensor cannot respond instantaneously, so assume the next-best sit­

uation, that the sensor includes one unit of delay. Then the sensor’s output

gets subtracted from the desired angle to get the error signal, which is used

�

86 7.2 Simple feedback control

by the controller. The simplest controller, which uses so-called propor­
tional control, just multiplies the error signal by a constant β. This setup
has the block diagram

+ C(R) = β M(R) =
R

1 − R

S(R) = R−1

controller
motor

sensor

It was analyzed in lecture and has the system functional

C(R)M(R) βR/(1 − R)
=

1 + C(R)M(R)S(R) 1 + βR2/(1 − R).

Multiply by (1 − R)/(1 − R) to clear the fractions. Then

βR
F(R) = ,

1 − R + βR2

where F(R) is the functional for the whole feedback system.

Let’s analyze its behavior in the extreme cases of the gain β. As β → ∞,
the system functional limits to R/R2 = 1/R, which is a time machine. Since
we cannot build a time machine just by choosing a huge gain in a feedback
system, some effect should prevent us raising β → ∞. Indeed, instability
will prevent it, as we will see by smoothly raising β from 0 to ∞.

To study stability, look at the poles of the feedback system, which are given
by the factors of the denominator 1 − R + βR2. The factored form is (1 −
p1R)(1 − p2R). So the sum of the poles is 1 and their product is β. At the
β → 0 extreme, which means no feedback, the poles are approximately 1−
β and β. The pole near 1 means that the system is almost an accumulator; it
approximately integrates the input signal. This behavior is what the motor
does without feedback and is far from our goal that the controller–motor
system copy the input to the output.

Turning up the gain improves the control. However, at the β → ∞ ex­
treme, the poles are roughly at

1
p1,2 ≈ ± j β

2

7 Control	 87

so that p1p2 = β. Those poles lie far outside the unit circle, making the
system highly unstable. Too much gain destabilizes a feedback system.

To find the best gain, study the poles. The pole farthest from the origin has
the most rapidly growing, or most slowly decaying output. Therefore, to
make the system as stable as possible, minimize the distance to the pole
most distant from the origin. To do so, place poles at the same location. In
this example, the location must be p1 = p2 = 1/2 since p1 + p2 = 1. Since
β = p1p2, choose β = 1/4. Now the output position rapidly approaches
the desired position. Equivalently, in response to an impulse input signal,
the error signal decays rapidly to zero, roughly halving each time step.

Exercise 38.	 Why does the error signal roughly halve, rather than
exactly halve with every time step?

7.3 Sensor delays

The preceding model contained a rapid sensor. Suppose instead that the
sensor is slow, say S(R) = R2 .

Pause to try 34. With this sensor, what is the functional for the feed­
back system?

The functional for the feedback system is

βR
1 − R + βR3

,

which is the previous functional with the R2 in the denominator replaced
by R3 because of the extra power of R in the sensor functional. There are
many analyses that one can do on this system. For simplicity, we choose a
particular gain β – the rapid-convergence gain with the fast sensor – and
see how the extra sensor delay moves the poles. But before analyzing,
predict the conclusion!

�

88 7.3 Sensor delays

Pause to try 35. Will the extra sensor delay move the least stable
pole inward, outward, or leave its magnitude un­
changed?

The poles are at the roots of the corresponding z3 − z2

equation z3 − z2 + β = 0 or

z3 − z2 = −β.

Here is a sketch of the curve z3 − z2 . Its mini­
mum is at M = (2/3, −4/27), so the horizontal
line at −1/4 intersects the curve only once, in the
left half of the plane. The equation therefore has one (negative) real root
and two complex roots. So, for β = 1/4, the system has two complex poles
and one real pole. The following Python code finds the poles. It first finds
the real pole p1 using the Newton–Raphson [18] method of successive ap­
proximation. The Newton–Raphson code is available as part of the scipy
package. The real pole constrains the real part of the complex poles be­
cause the sum of the poles p1 + p2 + p3 is 1, and the two complex poles
have the same real part. So

Re p2,3 =
1 − p1

.
2

To find the imaginary part of p2 or p3, use the product of the poles. The
product p1p2p3 is −β. Since the magnitudes of the complex poles are equal
because they are complex conjugates, we have

−β
|p2,3| = .

p1

Then find the imaginary part of one complex pole from the computed real
part and magnitude. This algorithm is implemented below.

from scipy import *

def poly(beta):
def f(z): # closure that knows the passed-in value of

beta

z

MM

7 Control 89

return z**3-z**2+beta

return f

return the three poles of 1-R+beta*R^3 by solving z^3-z^2+beta=0
method works for beta>4/27 (one real root, two complex roots)
def solve(beta):

use Newton-Raphson to find the one real root (for beta>4/27)

realroot = optimize.newton(poly(beta), 1.0)

use realroot to find complex roots

realpart = (1-realroot)/2 # sum of the roots

is 1
magnitude = sqrt(-beta/realroot) # product of roots is

-beta
imaginarypart = sqrt(magnitude**2 - realpart**2)
complexroot = realpart + 1j*imaginarypart
return (realroot, complexroot, conjugate(complexroot))

The result is

p1 ≈ −0.419,

p2 ≈ 0.710 + 0.303j,

p3 ≈ 0.710 − 0.303j.

With these locations, the complex poles are the least stable modes. These
poles have a magnitude of approximately 0.772. In the previous system
with the fast sensor and the same gain β = 1/4, both poles had magnitude
0.5. So the sensor delay has made the system more unstable and, since the

poles are complex, has introduced oscillations.

To make the system more stable, one can reduce β. But this method has

problems. The β → ∞ limit makes the feedback system turn into the sys­

tem R−2, independent of the motor’s characteristics. The other direction,

reducing β, exposes more particulars of the motor, making a feedback sys­

tem sensitive to the parameters of the motor. Thus lower β means one

gives up some advantages of feedback. No choices are easy if the sensor

delay is long. When β is small, the system system is stable but benefits

hardly at all from feedback.

Pause to try 36. What happens when β is large?

� �� �

90 7.4 Inertia

When β is large, then the feedback system is less stable and eventually
unstable. To prove this, look at how the denominator 1 − R + βR3 con­
strains the location of the poles. The product of the poles the negative of
the coefficient of R3, so p1p2p3 = −β. Using magnitudes,

|p1| |p2| |p3| = β,

so when β > 1, at least one pole must have magnitude greater than one,
meaning that it lies outside the unit circle.

From the analysis with S(R) = R and S(R) = R2, try to guess what happens
with one more delay in the sensor, which makes S(R) = R3 (again with
β = 1/4).

Exercise 39. What happens to the stability if the sensor has yet
another delay, so S(R) = R3? First guess then check
your guess by finding the poles numerically or oth­
erwise.

7.4 Inertia

Now return to the quick sensor with one delay, but improve the physical
model of the motor. A physical motor cannot change its angular veloc­
ity arbitrarily quickly, especially with a heavy rod attached to it. Instant
changes imply zero inertia. So we should add inertia to the model of the
motor.

A simple model of inertia is a new term in the difference equation:

1
y[n] = y[n − 1] + x[n − 1] + (y[n − 1] − y[n − 2]) .

2
inertia

The difference y[n − 1] − y[n − 2] estimates the motor’s angular velocity.
The coefficient of 1/2 means that, with each time step, the motor gets rid of
one-half of its previous angular velocity. Alternatively, it means that one-
half of its previous angular velocity remains to affect the new angle. This
coefficient depends on the mass of the motor and the mass and length of
the rod – more exactly, on the moment of inertia of the system – and on the

91 7 Control

power of the motor. For illustrating the ideas, we picked the convenient
coefficient of 1/2.

The motor’s system functional, which was R/(1 − R), becomes

R
M(R) =

1
.

1 − 3 R + R2
2 2

Pause to try 37. Find the poles of this system and mark them on a
pole–zero diagram.

This functional factors into

R
M(R) =

(1 − 1
2 R)(1 − R)

so the poles are p1 = 1/2 and p2 = 1.

The functional for the feedback system of controller C(R), sensor S(R), and
motor M(R) is

C(R)M(R)
F(R) = ,

1 + C(R)M(R)S(R)

With the usual controller C(R) = β, fast sensor S(R) = R, and new motor
model M(R) with inertia, the feedback system has the functional

βR/(1 − 3 R + 1 R2)
2 2 .

1 + βR2/(1 − 3
2 R + 1

2 R
2)

Clear the fractions to get

βR
F(R) =

1 − 3 R +
�
β + 1

�
R2

.

2 2

This denominator is quadratic so we can find the poles for all β without
needing numerical solutions. So let β increase from 0 to ∞. Their locations
are determined by factoring the denominator When β = 0, it factors into
(1−R/2)(1 −R), and the poles are at 1/2 and 1 – which are the poles of the
motor itself. The pole at 1 indicates an accumulator, which means that the
system is very different than one that copies the input signal to the output

92 7.4 Inertia

signal. But we knew it would happen that way, because choosing β = 0
turns off feedback.

As β increases, the poles move. The sum p1 +p2 remains constant at 3/2, so
the poles are at 3/4 ± α. For β = 0, the α is 1/4. As β increases, α increases
and the poles slide along the real axis until they collide at p1,2 = 3/4. When
they collide, the product of the poles is p1p2 = 9/16. This product is the
coefficient of R2, which is 1/2 + β. So 1/2 + β = 9/16, which means that
the poles collide when β = 1/16. That controller gain results in the most
stable system. It is also significantly smaller than the corresponding gain
when the motor had no inertia. This simple controller that only has a gain
has difficulty compensating for inertia.

Pause to try 38. For what β do the poles cross the unit circle into
instability? Compare that critical β with the corre­
sponding value in the model without inertia.

As β increases farther, the poles move along a vertical line with real part
3/4. The next interesting β is when the poles hit the unit circle. Their
product is then 1, which is the coefficient of R2 in the denominator of the
system functional. So 1/2 + β = 1 or β = 1/2. The resulting poles are

√
3 7

p1,2 = ± j .
4 4

In the model without inertia, β could increase to 1 before the feedback
system became unstable, whereas now it can increase only till 1/2: Inertia
destabilizes the feedback system.

Exercise 40. Sketch how the poles move as β changes from 0 to
∞.

93 7 Control

Exercise 41. What if the system has more inertia, meaning that
old angular velocities persist longer? For example:

y[n] = y[n−1]+x[n−1]+
4
5
(y[n − 1] − y[n − 2]) � �� �

inertia

.

Sketch how the poles of the feedback system move
as β changes from 0 to ∞, and compare with the
case of no inertia and of inertia with a coefficient of
1/2.

8
Proportional and derivative
control

8.1	 Why derivative control 95
8.2	 Mixing the two methods of control 96
8.3	 Optimizing the combination 98
8.4	 Handling inertia 99
8.5	 Summary 103

The goals of this chapter are:

•	 to introduce derivative control; and

•	 to study the combination of proportional and derivative control
for taming systems with integration or inertia.

The controllers in the previous chapter had the same form: The control
signal was a multiple of the error signal. This method cannot easily control
an integrating system, such as the motor positioning a rod even without
inertia. If the system has inertia, the limits of proportional control become
even more apparent. This chapter introduces an alternative: derivative
control.

8.1 Why derivative control

An alternative to proportional control is derivative control. It is motivated
by the integration inherent in the motor system. We would like the feed­
back system to make the actual position be the desired position. In other

96 8.2 Mixing the two methods of control

words, it should copy the input signal to the output signal. We would even
settle for a bit of delay on top of the copying. This arrangement is shown
in the following block diagram:

+ C(R) =? M(R) =
R

1 − R

S(R) = R−1

controller
motor

sensor

Since the motor has the functional R/(1 − R), let’s put a discrete-time de­
rivative 1 − R into the controller to remove the 1 − R in the motor’s de­
nominator. With this derivative control, the forward-path cascade of the
controller and motor contains only powers of R. Although this method is
too fragile to use alone, it is a useful idea. Pure derivative control is fragile
because it uses pole–zero cancellation. This cancellation is mathematically
plausible but, for the reasons explained in lecture, it produces unwanted
offsets in the output. However, derivative control is still useful. As we
will find, in combination with proportional control, it helps to stabilize in­
tegrating systems.

8.2 Mixing the two methods of control

Proportional control uses β as the controller. Derivative control uses γ(1 −
R) as the controller. The linear mixture of the two methods is

C(R) = β + γ(1 − R).

+ C(R) = β + γ(1 − R) M(R) =
R

1 − R

S(R) = R−1

controller
motor

sensor

Let F(R) be the functional for the entire feedback system. Its numerator is
the forward path C(R)M(R). Its denominator is 1 − L(R), where L(R) is
the loop functional or loop gain that results from going once around the
feedback loop. Here the loop functional is

97 8 Proportional and derivative control

L(R) = −C(R)M(R)S(R).

Don’t forget the contribution of the inverting (gain= −1) element! So the
overall system functional is

(β + γ(1 − R))
1−
R
RF(R) = .

1 + (β + γ(1 − R))
1−
R
R R

Clear the fractions to get

whatever
F(R) = .

1 − R + (β + γ(1 − R))R2

The whatever indicates that we don’t care what is in the numerator. It can
contribute only zeros, whereas what we worry about are the poles. The
poles arise from the denominator, so to avoid doing irrelevant algebra and
to avoid cluttering up the expressions, we do not even compute the nu­
merator as long as we know that the fractions are cleared.

The denominator is

1 − R + (β + γ)R2 − γR3.

This cubic polynomial produces three poles. Before studying their loca­
tions – a daunting task with a cubic – do an extreme-cases check: Take the
limit γ → 0 to turn off derivative control. The system should turn into the
pure proportional-control system from the previous chapter. It does: The
denominator becomes 1 − R + βR2, which is the denominator from Sec­
tion 7.2. As the proportional gain β increases from 0 to ∞, the poles, which
begin at 0 and 1, move inward; collide at 1/2 when β = 1/4; then split up­
ward and downward to infinity. Here is the root locus of this limiting case
of γ → 0, with only proportional control:

3

98 8.3 Optimizing the combination

8.3 Optimizing the combination

We would like to make the whole system as stable as possible, in the sense

that the least stable pole is as close to the origin as possible. The root

locus for the general combination has three branches, one for each pole,

whereas the limiting case of proportional control has only two poles and

two branches. Worse, the root locus for the general combination is gener­

ated by two parameters – the gains of the proportional and the derivative

portions – whereas in the limiting case it is generated by only one parame­

ter. The general analysis seems difficult.

Surprisingly, the extra parameter rescues us from painful mathematics. To

see how, look at the coefficients in the cubic:

1 − R + (β + γ)R2 − γR3.

The factored form is

(1−p1R)(1−p2R)(1−p3R) = 1−(p1 + p2 + p3) R+(p1p2 + p1p3 + p2p3) R
2−p1p2p3 R � �� � � �� � � �� �

1 β+γ γ

So the first constraint is

p1 + p2 + p3 = 1,

showing that the center of gravity of the poles is 1/3. That condition is

independent of β and γ. So the most stable system has a triple pole at 1/3,

if that arrangement is possible. To see why that arrangement is the most

stable, imagine starting from it. Now move one pole inward along the real

axis to increase its stability. To preserve the invariant p1 + p2 + p3 = 1,

at least one of the other poles must move outward and become less stable.

Thus it is best not to move any pole away from the triple cluster, so it is the

most stable arrangement.

Exercise 42. Where does the preceding argument require that
the center of gravity be independent of β and γ?

If the triple-pole arrangement is impossible, then the preceding argument,
which assumed its existence, does not work. And we need lots of work to
find the best arrangement of poles.

� �

99 8 Proportional and derivative control

Fortunately, the triple pole is possible thanks to the extra parameter γ.
Having freedom to choose β and γ, we can set the R2 coefficient β + γ
independently from the R3 coefficient, which is −γ. So, using β and γ as
separate dials, we can make any cubic whose poles are centered on 1/3.

Let’s set those dials by propagating constraints. With p1 = p2 = p3 = 1/3,
the product p1p2p3 = 1/27. So the gain of the derivative controller is

1
γ = .

27

The last constraint is that p1p2 +p1p3 +p2p3 = 3/9 = 1/3. So β +γ = 1/3.
With γ = 1/27, this equation requires that the gain of the proportional
controller be β = 8/27. The best controller is then

8 1 1 R
C(R) = + (1 − R) = 1 − .

27 27 3 9

Exercise 43. What is the pole-zero plot of the forward path
C(R)M(R)?

This controller has a zero at z = 1/9. So the added zero has pulled the
poles into the sweet spot of 1/3. In comparison with pure proportional
control, where the worst pole could not get closer than z = 1/2, derivative
control has dragged the poles all the way to z = 1/3. A judicious amount
of derivative control has helped stabilize the system.

8.4 Handling inertia

The last example showed how to use derivative control and computed how
much to use. However, derivative control was not essential to stabilizing
the feedback system since proportional control alone can do so and can
drag the least stable pole to z = 1/2. But derivative control becomes essen­
tial when the system has inertia.

Without inertia, the motor accumulates angular velocity to produce angle,
which is represented by the difference equation

y[n] = y[n − 1] + x[n − 1]

� �� �

100 8.4 Handling inertia

and the system functional M(R) = R/(1 − R). The model of inertia in
Section 7.4 added a term to the motor’s difference equation:

y[n] = y[n − 1] + x[n − 1] + m(y[n − 1] − y[n − 2]),

inertia

where m is a constant between 0 (no inertia) and 1 (maximum inertia). This
term changes the motor’s system functional to

1
M(R) = .

1 − (1 + m)R + mR2

It factors into poles at m and 1:

1
M(R) = .

(1 − mR)(1 − R)

The analysis in Section 7.4 used m = 1/2, and
then asked you to try m = 4/5. You should
have found that the arm is hard to position when
m is so close to 1. The figure shows the root
locus for the motor with inertia m = 4/5 and
controlled only using proportional control. The
least stable pole can, with the right proportional
gain, be dragged to the collision point z = 0.9.
But the pole cannot be moved farther inward
without moving the other pole outward. A pole
at z = 0.9 means that the system’s response
contains the mode 0.9n, which converges only
slowly to zero.

Pause to try 39. How many time steps before 0.9n has decayed
roughly by a factor of e3 (commonly used as a mea­
sure of ‘has fallen very close to zero’)?

The decay 0.9n takes roughly 10 steps to fall by a factor of e. Use the great­
est approximation in mathematics:

0.910 = (1 − 0.1)10 ≈ e −0.1×10 = e −1.

� �� �

� �� �

8 Proportional and derivative control 101

So 30 time steps make the signal fall by a factor of e3. In some applications,
this wait might be too long.

Derivative control can pull the poles toward the origin, thereby hasten­
ing the convergence. Let’s analyze how much derivative control to use by
finding the poles of the feedback system. The feedback system is

+ C(R) = β + γ(1 − R) M(R) =
R

(1 − mR)(1 − R)

S(R) = R−1

controller
motor

sensor

Its system functional has the form

N(R)
F(R) = ,

D(R)

where the denominator is

D(R) = 1 − (−C(R)M(R)S(R))

loop functional L(R)

= 1 + C(R)M(R)S(R).

In the product C(R)M(R)S(R), the only term with a denominator is M(R).
To clear its denominator from D(R), the whole denominator will get mul­
tiplied by the denominator of M(R), which is (1 − mR)(1 − R). So the
system functional will end up with a denominator of

(1 − mR)(1 − R) + (β + γ(1 − R)) R2.

controller

After the controller come two powers of R, one from the sensor, the other
from the numerator of the motor functional M(R). After expanding the
products, the denominator is

1 − (1 + m)R + (m + β + γ)R2 − γR3.

This system has three parameters: the proportional gain β, the derivative
gain γ, and the inertia pole m. Before spending the effort to analyze a cubic
equation for its poles, check whether the equation is even reasonable! The
fastest check is the extreme cases of taking parameters to zero. The limit

102 8.4 Handling inertia

m → 0 wipes out the inertia and should reproduce the denominator in the
preceding section. In that limit, the denominator becomes

1 − R + (β + γ)R2 − γR3 (m → 0 limit),

which matches the denominator in Section 8.2. Good!

Adding the limit γ → 0 then wipes out derivative control, which should
reproduce the analysis of the simple motor with only proportional control
in Section 7.2. Adding the γ → 0 limit turns the denominator into

1 − R + βR2 (m → 0, γ → 0 limit),

which passes the test. Adding the β → 0 limit wipes out the remaining
feedback, leaving the bare motor functional M(R), which indeed has a
factor of 1 − R in the denominator. So the candidate denominator passes
this third test too.

Although passing three tests does not guarantee correctness, the tests in­
crease our confidence in the algebra, perhaps enough to make it worth­
while to analyze the cubic to find where and how to place the poles. For
convenience, here is the cubic again:

1 − (1 + m)R + (m + β + γ)R2 − γR3.

We would like to choose β and γ so that the worst pole – the one farthest
from the origin – is as close as possible to the origin.

Maybe we can try the same trick (method?) that we used in the analysis
without inertia: to place all three poles at the same spot. Let’s assume that
this solution is possible, and propagate constraints again. The sum of the
poles is 1 + m, so each pole is at p = (1 + m)/3. The product of the poles,
p3, is (1 + m)3/27, which tells us

(1 + m)3

γ = .
27

. The sum of pairwise products of poles is 3p2 and is therefore m + β + γ.
Since 3p2 is (1 + m)2/3, the equation for β is

(1 + m)2

= m + β + γ.
3

So the proportional gain is:

� �

8 Proportional and derivative control 103

(1 + m)2 m2 − m + 1 (1 + m)3

β = − m − γ = − .
3 3 27

To summarize,

(1 + m)3

γ = ,
27

m2 − m + 1 (1 + m)3

β = − .
3 27

An interesting special case is maximum inertia, which is m = 1. Then
γ = 8/27 and β = 1/27, so the controller is

1 8 1 8
+ (1 − R) = − R

27 27 3 27
1 8

= 1 − R .
3 9

So the controller contains a zero at 8/9, near the double pole at 1. This
mixed proportional–derivative controller moves all the poles to z = (1 +
m)/3 = 2/3, which is decently inside the unit circle. So this mixed con­
troller can stabilize even this hard case. This case is the hardest one to
control because the motor-and-rod system now contains two integrations:
one because the motor turns voltage into angular velocity rather than po­
sition, and the second because of the inertia pole at 1. This system has the
same loop functional as the steering-a-car example in lecture (!), which was
unstable for any amount of pure proportional gain. By mixing in deriva­
tive control, all the poles can be placed at 2/3, which means that the system
is stable and settles reasonably quickly. Since � �2.5

2 ≈ e −1,
3

the time constant for settling is about 2.5 time steps, and the system is well
settled after three time constants, or about 7 time steps.

8.5 Summary

To control an integrating system, try derivative control. To control a sys­
tem with inertia, also try derivative control. In either situation, do not use
pure derivative control, for it is too fragile. Instead, mix proportional and
derivative control to maximize the stability, which often means putting all
the poles on top of each other.

Bibliography

[1]	 Spacetime Physics. W. H. Freeman and Co., 1992.

[2]	 Central Intelligence Agency. The World Factbook. Central Intelligence Agency,
2007. https://www.cia.gov/library/publications/the-world-factbook/.

[3]	 B. S. Bloom. The 2 sigma problem: The search for methods of group instruction as
effective as one-to-one tutoring. Educational Researcher, 13(6):4–16, 1984.

[4]	 Jonathan Borwein and David Bailey. Mathematics by Experiment: Plausible Reason­
ing in the 21st century. A K Peters, 2003.

[5]	 Richard A. Dunlap. The Golden Ratio and Fibonacci Numbers. World Scientific, 1997.

[6]	 Leah Edelstein-Keshet. Mathematical models in biology. SIAM, Philadelphia, 2005.

[7]	 Albert Einstein. Zur elektrodynamik bewegter kÃűrper [On the electrodynamics
of moving bodies]. Annalen der Physik, 17:891–921, 1905.

[8]	 David Epstein and Sylvio Levy. Experimentation and proof in mathematics. No­
tices of the American Mathematical Society, pages 670–674, June/July 1995.

[9]	 Richard Feynman and Ralph Leighton (contributor). Surely You’re Joking, Mr. Feyn­
man! Adventures of a Curious Character. W. W. Norton, 1985.

[10] Fibonacci. Liber Abaci., 1202.

[11] Hermann Minkowski H. A. Lorentz Albert Einstein and Hermann Weyl. The Prin­
ciple of Relativity: A Collection of Original Memoirs. Dover, 1952.

[12] Tom R. Halfhill. An error in a lookup table created the infamous bug in Intel’s lat­
est processor. BYTE, March 1995.

[13] Jan Brett (illustrator). Goldilocks and the Three Bears. Dodd, 1987.

[14] David Bailey Jonathan Borwein and Roland Girgensohn. Experimentation in Math­
ematics: Computational Paths to Discovery. A K Peters, 2004.

[15] G. A. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological Review, 63:81–97, 1956.

[16] P. Ribenboim. The New Book of Prime Number Records. Springer–Verlag, New York,
1996.

https://www.cia.gov/library/publications/the-world-factbook/

106

[17] William McC. Siebert.	 Circuits, Signals, and Systems. MIT Press, Cambridge, MA,
1986.

[18] Tjalling J. Ypma. Historical development of the Newton–Raphson method. SIAM
Review, 37(4):531-551,, 1995.

Index

Note: An italic page number refers to a problem on that page.

∼ 24 calculus
RC circuit 64 finite differences, of 18

change
abstraction 40 loose 25
whole-signal 33, 41 chunks 41

acceleration 71 clearing fractions 86
accumulator 45 closed form 4, 29, 52
aggressive 82 code
analogy 45 Python 29
analysis compounding

sample by sample 41 annual 21
angular velocity 84 conjectures 67
approximation continuity argument 63, 67, 68
discrete-space 70 controller 83

Aristotle x control variable 83
artificial intelligence 85 convolution 67
associative array coupled oscillator 71

awk 53 courage 24
cross multiplying 60

backward Euler 76 curly braces 42
Binet formula 57
binomial theorem 47, 69 danger 85
black box 51 data
block diagram playing with,play 67
elements in operator notation 43 deforming systems 68
operator 45 delay element 42

block diagrams 33 dendrite 70
boundary conditions 17 derivative
brick wall 85 continuous time 72
buffer 64 derivative control 96

derivatives 72
desert island 53

108

design 19
dictionary
Python 53

difference equation 17

differentiator

continuous time 38

discrete time 38, 46

dimensions 22

discretization 65

distinctions

finite or infinite 21

division

incorrect floating-point 52

donor 21

double root 64

drawdown 21

Einstein, Albert 40

elegance 19

endowment 21

engineering design 83

equation

first-order difference 23

second-order difference 4, 28

equation hygiene 64

equivalence

system 59

error signal 84, 85

experiment 30

experimental mathematics 52

explicit recipe 72

exponent notation 43

extreme-case

large n 69

extreme case

small n 69

extreme cases 24

gain 86

feedback 83

feedback control 85

feedforward 45, 83

Feynman, Richard 21

Fibonacci function

memoized 53

Fibonacci sequence
decomposition 51

forcing function 74

forward-Euler approximation 84

forward Euler 64, 72

function

decreasing 69

increasing 69

fund 21

gain
increasing 86

golden ratio 54

grammar 40

block diagrams 44

graphing calculator 53

growth

exponential 5, 24, 29

logarithmic 5, 29

polynomial 5, 29

rate 18

guess
solution to a difference equation 24

guess and check 60

guessing 70

hash

Perl 53

implicit Euler 76

implicit recipe 76

impulse 28

input signal

arbitrary 23

insight 33

instability 86

intuition 21

Inverse Symbolic Calculator 54

language 40

leaky tank 64

leapfrog 79

left-shift operator 42

letter

capital 23

lowercase 23

109

like terms 64

linear combination 72

linear equations 60

loop gain 96

mathematical definition 71

mathematical translation

incomplete 25

matrix inversion 76

maxim 21

meaningless objects 52

mind

amazing feats 40

Minkowski, Hermann 40

MIT 21

mode 51

amplitude 55

shape 55

model

population growth 19

modes 63

modular formulation 19

modularity 17, 23

multiple representations 33

mythical controller 85

negative contribution 24

negative delay 84

notation

entire signal 23

one sample 23

number theory 52

operator notation 42

operator representation 42

operators 33, 57

oscillations 30

output signal 22

parameter sensitivity 85

partial fractions 59, 68

party

graduation 25

passive 82

pattern 67

peeling away 55

philosophy 18

physical meaning 71

pole

farthest 87

poles 74

complex 71

population

growth 17

United States 18

probe 52

probes

computational 51

product

increasing with decreasing function

69

programming

object-oriented 20

proportional control 86

Python 53

quadratic formula 75

rabbits 25

system 26

ratio

dimensionless 64

recurrence relation 18

relativity

special 40

repeated root 63

representation 22

mathematical 17, 22

operator 34

residual signal 56

right-shift operator 42

robot 85

sensor

real 85

shift

left 76

signals and systems 20, 26

simulation 20, 65, 66

simulation data 67

sine wave 71

space 40

110

spacetime 40 time 40
spiral 73 time constant 8, 64
spreadsheet 53 time machine 86
spring time travel 84

ideal 71 translate
stability 86 derivatives 72
step function 46, 47 trapezoidal 79
successive ratios 52 tutorial teaching x
symmetry 76 twin-prime conjecture 52
synthetic division 47
system unit circle 71, 87
coupled 74 unit sample 28
first-order 23 unknowns
second-order 28 two 24

system characterization 52
system functional 44 variables
with feedback 45 eliminating 27

voltage 84
taking out the big part 67 volume elements 20
Taylor series 47
tea 84 warmup 22
techniques Wheeler, John 21

take out the big part 55

111

MIT OpenCourseWare
http://ocw.mit.edu

6.003 Signals and Systems
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

