
7 
Control 

7.1 Motor model with feedforward control 83 
7.2 Simple feedback control 85 
7.3 Sensor delays 87 
7.4 Inertia 90 

The goals of this chapter are to study: 

• how to use feedback to control a system; 

• how slow sensors destabilize a feedback system; and 

• how to model inertia and how it destabilizes a feedback system. 

A common engineering design problem is to control a system that inte­
grates. For example, position a rod attached to a motor that turns input 
(control) voltage into angular velocity. The goal is an angle whereas the 
control variable, angular velocity, is one derivative different from angle. 
We first make a discrete-time model of such a system and try to control 
it without feedback. To solve the problems of the feedforward setup, we 
then introduce feedback and analyze its effects. 

7.1 Motor model with feedforward control 

We would like to design a controller that tells the motor how to place the 
arm at a given position. The simplest controller is entirely feedforward in 
that it does not use information about the actual angle. Then the high-level 
block diagram of the controller–motor system is 



� 

84 7.1 Motor model with feedforward control 

controller motorinput output 

where we have to figure out what the output and input signals represent. 

A useful input signal is the desired angle of the arm. This angle may vary 
with time, as it would for a robot arm being directed toward a teacup (for 
a robot that enjoys teatime). 

The output signal should be the variable that interests us: the position 
(angle) of the arm. That choice helps later when we analyze feedback con­
trollers, which use the output signal to decide what to tell the motor. With 
the output signal being the same kind of quantity as the input signal (both 
are angles), a feedback controller can easily compute the error signal by 
subtracting the output from the input. 

With this setup, the controller–motor system takes the desired angle as its 
input signal and produces the actual angle of the arm as its output. 

To design the controller, we need to model the motor. The motor turns 
a voltage into the arm’s angular velocity ω. The continuous-time system 
that turns ω into angle is θ ∝ ω dt. Its forward-Euler approximation is 
the difference equation 

y[n] = y[n − 1] + x[n − 1]. 

The corresponding system functional is R/(1 − R), which represents an 
accumulator with a delay. 

Exercise 37. Draw the corresponding block diagram. 

The ideal output signal would be a copy of the input signal, and the cor­
responding system functional would be 1. Since the motor’s system func­
tional is R/(1−R), the controller’s should be (1−R)/R. Sadly, time travel 
is not (yet?) available, so a bare R in a denominator, which represents a 
negative delay, is impossible. A realizable controller is 1 − R, which pro­
duces a single delay R for the combined system functional: 

R 
1 − R 

1 − R 

controller motor 

input output 



7 Control 85 

Alas, the 1 − R controller is sensitive to the particulars of the motor and of 
our model of it. Suppose that the arm starts with a non-zero angle before 
the motor turns on (for example, the whole system gets rotated without the 
motor knowing about it). Then the output angle remains incorrect by this 
initial angle. This situation is dangerous if the arm belongs to a 1500-kg 
robot where an error of 10◦ means that its arm crashes through a brick wall 
rather than stopping to pick up the teacup near the wall. 

A problem in the same category is an error in the constant of proportional­
ity. Suppose that the motor model underestimates the conversion between 
voltage and angular velocity, say by a factor of 1.5. Then the system func­
tional of the controller–motor system is 1.5R rather than R. A 500-kg arm 
might again arrive at the far side of a brick wall. 

One remedy for these problems is feedback control, whose analysis is the 
subject of the next sections. 

7.2 Simple feedback control 

In feedback control, the controller uses the output signal to decide what 
to tell the motor. Knowing the input and output signals, an infinitely in­
telligent controller could deduce how the motor works. Such a controller 
would realize that the arm’s angle starts with an offset or that the mo­
tor’s conversion is incorrect by a factor of 1.5, and it would compensate for 
those and other problems. That mythical controller is beyond the scope of 
this course (and maybe of all courses). In this course, we use only linear-
systems theory rather than strong AI. But the essential and transferable 
idea in the mythical controller is feedback. 

So, sense the the angle of the arm, compare it to the desired angle, and use 
the difference (the error signal) to decide the motor’s speed: 

+ controller motor 

sensor−1 

controller motor 

sensor 

A real sensor cannot respond instantaneously, so assume the next-best sit­

uation, that the sensor includes one unit of delay. Then the sensor’s output

gets subtracted from the desired angle to get the error signal, which is used




� 

86 7.2 Simple feedback control 

by the controller. The simplest controller, which uses so-called propor­
tional control, just multiplies the error signal by a constant β. This setup 
has the block diagram 

+ C(R) = β M(R) =  
R 

1 − R 

S(R) = R−1 

controller 
motor 

sensor 

It was analyzed in lecture and has the system functional 

C(R)M(R) βR/(1 − R) 
= 

1 + C(R)M(R)S(R) 1 + βR2/(1 − R). 

Multiply by (1 − R)/(1 − R) to clear the fractions. Then 

βR 
F(R) =  ,

1 − R + βR2 

where F(R) is the functional for the whole feedback system. 

Let’s analyze its behavior in the extreme cases of the gain β. As  β → ∞, 
the system functional limits to R/R2 = 1/R, which is a time machine. Since 
we cannot build a time machine just by choosing a huge gain in a feedback 
system, some effect should prevent us raising β → ∞. Indeed, instability 
will prevent it, as we will see by smoothly raising β from 0 to ∞. 

To study stability, look at the poles of the feedback system, which are given 
by the factors of the denominator 1 − R + βR2. The factored form is (1 − 
p1R)(1 − p2R). So the sum of the poles is 1 and their product is β. At the 
β → 0 extreme, which means no feedback, the poles are approximately 1− 
β and β. The pole near 1 means that the system is almost an accumulator; it 
approximately integrates the input signal. This behavior is what the motor 
does without feedback and is far from our goal that the controller–motor 
system copy the input to the output. 

Turning up the gain improves the control. However, at the β → ∞ ex­
treme, the poles are roughly at 

1 
p1,2 ≈ ± j β 

2 



7 Control	 87 

so that p1p2 = β. Those poles lie far outside the unit circle, making the 
system highly unstable. Too much gain destabilizes a feedback system. 

To find the best gain, study the poles. The pole farthest from the origin has 
the most rapidly growing, or most slowly decaying output. Therefore, to 
make the system as stable as possible, minimize the distance to the pole 
most distant from the origin. To do so, place poles at the same location. In 
this example, the location must be p1 = p2 = 1/2 since p1 + p2 = 1. Since 
β = p1p2, choose β = 1/4. Now the output position rapidly approaches 
the desired position. Equivalently, in response to an impulse input signal, 
the error signal decays rapidly to zero, roughly halving each time step. 

Exercise 38.	 Why does the error signal roughly halve, rather than 
exactly halve with every time step? 

7.3 Sensor delays 

The preceding model contained a rapid sensor. Suppose instead that the 
sensor is slow, say S(R) = R2 . 

Pause to try 34. With this sensor, what is the functional for the feed­
back system? 

The functional for the feedback system is 

βR 
1 − R + βR3

, 

which is the previous functional with the R2 in the denominator replaced 
by R3 because of the extra power of R in the sensor functional. There are 
many analyses that one can do on this system. For simplicity, we choose a 
particular gain β – the rapid-convergence gain with the fast sensor – and 
see how the extra sensor delay moves the poles. But before analyzing, 
predict the conclusion! 



� 

88 7.3 Sensor delays 

Pause to try 35. Will the extra sensor delay move the least stable 
pole inward, outward, or leave its magnitude un­
changed? 

The poles are at the roots of the corresponding z3 − z2 

equation z3 − z2 + β = 0 or 

z3 − z2 = −β. 

Here is a sketch of the curve z3 − z2 . Its mini­
mum is at M = (2/3, −4/27), so the horizontal 
line at −1/4 intersects the curve only once, in the 
left half of the plane. The equation therefore has one (negative) real root 
and two complex roots. So, for β = 1/4, the system has two complex poles 
and one real pole. The following Python code finds the poles. It first finds 
the real pole p1 using the Newton–Raphson [18] method of successive ap­
proximation. The Newton–Raphson code is available as part of the scipy 
package. The real pole constrains the real part of the complex poles be­
cause the sum of the poles p1 + p2 + p3 is 1, and the two complex poles 
have the same real part. So 

Re p2,3 = 
1 − p1

. 
2 

To find the imaginary part of p2 or p3, use the product of the poles. The 
product p1p2p3 is −β. Since the magnitudes of the complex poles are equal 
because they are complex conjugates, we have 

−β 
|p2,3| = .


p1


Then find the imaginary part of one complex pole from the computed real 
part and magnitude. This algorithm is implemented below. 

from scipy import * 

def poly(beta): 
def f(z): # closure that knows the passed-in value of 

beta 

z 

MM



7 Control 89 

return z**3-z**2+beta

return f


# return the three poles of 1-R+beta*R^3 by solving z^3-z^2+beta=0 
# method works for beta>4/27 (one real root, two complex roots) 
def solve(beta): 

# use Newton-Raphson to find the one real root (for beta>4/27)

realroot = optimize.newton(poly(beta), 1.0)

# use realroot to find complex roots

realpart = (1-realroot)/2 # sum of the roots


is 1 
magnitude = sqrt(-beta/realroot) # product of roots is 

-beta 
imaginarypart = sqrt(magnitude**2 - realpart**2) 
complexroot = realpart + 1j*imaginarypart 
return (realroot, complexroot, conjugate(complexroot)) 

The result is 

p1 ≈ −0.419,


p2 ≈ 0.710 + 0.303j,


p3 ≈ 0.710 − 0.303j.


With these locations, the complex poles are the least stable modes. These 
poles have a magnitude of approximately 0.772. In the previous system 
with the fast sensor and the same gain β = 1/4, both poles had magnitude 
0.5. So the sensor delay has made the system more unstable and, since the 
poles are complex, has introduced oscillations. 

To make the system more stable, one can reduce β. But this method has 
problems. The β → ∞ limit makes the feedback system turn into the sys­
tem R−2, independent of the motor’s characteristics. The other direction, 
reducing β, exposes more particulars of the motor, making a feedback sys­
tem sensitive to the parameters of the motor. Thus lower β means one 
gives up some advantages of feedback. No choices are easy if the sensor 
delay is long. When β is small, the system system is stable but benefits 
hardly at all from feedback. 

Pause to try 36. What happens when β is large? 



� �� � 

90 7.4 Inertia 

When β is large, then the feedback system is less stable and eventually 
unstable. To prove this, look at how the denominator 1 − R + βR3 con­
strains the location of the poles. The product of the poles the negative of 
the coefficient of R3, so  p1p2p3 = −β. Using magnitudes, 

|p1| |p2| |p3| = β, 

so when β > 1, at least one pole must have magnitude greater than one, 
meaning that it lies outside the unit circle. 

From the analysis with S(R) = R and S(R) = R2, try to guess what happens 
with one more delay in the sensor, which makes S(R) =  R3 (again with 
β = 1/4). 

Exercise 39. What happens to the stability if the sensor has yet 
another delay, so S(R) = R3? First guess then check 
your guess by finding the poles numerically or oth­
erwise. 

7.4 Inertia 

Now return to the quick sensor with one delay, but improve the physical 
model of the motor. A physical motor cannot change its angular veloc­
ity arbitrarily quickly, especially with a heavy rod attached to it. Instant 
changes imply zero inertia. So we should add inertia to the model of the 
motor. 

A simple model of inertia is a new term in the difference equation: 

1 
y[n] = y[n − 1] + x[n − 1] +  (y[n − 1] − y[n − 2]) . 

2 
inertia 

The difference y[n − 1] − y[n − 2] estimates the motor’s angular velocity. 
The coefficient of 1/2 means that, with each time step, the motor gets rid of 
one-half of its previous angular velocity. Alternatively, it means that one-
half of its previous angular velocity remains to affect the new angle. This 
coefficient depends on the mass of the motor and the mass and length of 
the rod – more exactly, on the moment of inertia of the system – and on the 



91 7 Control 

power of the motor. For illustrating the ideas, we picked the convenient 
coefficient of 1/2. 

The motor’s system functional, which was R/(1 − R), becomes 

R 
M(R) =  

1
. 

1 − 3 R + R2 
2 2 

Pause to try 37. Find the poles of this system and mark them on a 
pole–zero diagram. 

This functional factors into 

R 
M(R) =

(1 − 1
2 R)(1 − R) 

so the poles are p1 = 1/2 and p2 = 1. 

The functional for the feedback system of controller C(R), sensor S(R), and 
motor M(R) is 

C(R)M(R)
F(R) =  ,

1 + C(R)M(R)S(R)

With the usual controller C(R) = β, fast sensor S(R) = R, and new motor 
model M(R) with inertia, the feedback system has the functional 

βR/(1 − 3 R + 1 R2)
2 2 . 

1 + βR2/(1 − 3
2 R + 1

2 R
2) 

Clear the fractions to get 

βR 
F(R) =  � � . 

1 − 3 R + β + 1 R2 
2 2 

This denominator is quadratic so we can find the poles for all β without 
needing numerical solutions. So let β increase from 0 to ∞. Their locations 
are determined by factoring the denominator When β = 0, it factors into 
(1−R/2)(1 −R), and the poles are at 1/2 and 1 – which are the poles of the 
motor itself. The pole at 1 indicates an accumulator, which means that the 
system is very different than one that copies the input signal to the output 



92 7.4 Inertia 

signal. But we knew it would happen that way, because choosing β = 0 
turns off feedback. 

As β increases, the poles move. The sum p1 +p2 remains constant at 3/2, so  
the poles are at 3/4 ± α. For β = 0, the α is 1/4. As  β increases, α increases 
and the poles slide along the real axis until they collide at p1,2 = 3/4. When 
they collide, the product of the poles is p1p2 = 9/16. This product is the 
coefficient of R2, which is 1/2 + β. So  1/2 + β = 9/16, which means that 
the poles collide when β = 1/16. That controller gain results in the most 
stable system. It is also significantly smaller than the corresponding gain 
when the motor had no inertia. This simple controller that only has a gain 
has difficulty compensating for inertia. 

Pause to try 38. For what β do the poles cross the unit circle into 
instability? Compare that critical β with the corre­
sponding value in the model without inertia. 

As β increases farther, the poles move along a vertical line with real part 
3/4. The next interesting β is when the poles hit the unit circle. Their 
product is then 1, which is the coefficient of R2 in the denominator of the 
system functional. So 1/2 + β = 1 or β = 1/2. The resulting poles are 

√ 
3 7 

p1,2 = ± j . 
4 4 

In the model without inertia, β could increase to 1 before the feedback 
system became unstable, whereas now it can increase only till 1/2: Inertia 
destabilizes the feedback system. 

Exercise 40. Sketch how the poles move as β changes from 0 to 
∞. 



93 7 Control 

Exercise 41. What if the system has more inertia, meaning that 
old angular velocities persist longer? For example: 

y[n] =  y[n−1]+x[n−1]+ 
4 
5
(y[n − 1] −  y[n − 2]) � �� � 

inertia 

. 

Sketch how the poles of the feedback system move 
as β changes from 0 to ∞, and compare with the 
case of no inertia and of inertia with a coefficient of 
1/2. 



MIT OpenCourseWare
http://ocw.mit.edu

6.003 Signals and Systems
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

