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The goals of this chapter are: 

•	 to analyze several methods for discretizing a continuous-time sys­
tem; and 

•	 to illustrate complex poles and the significance of the unit circle. 

How can you compute a sine wave if your programming language did not 
have a built-in sine function? You can use the coupled oscillator from the 
first problem set: 

ẏ1 = y2, 

ẏ2 = −y1. 

Let’s rewrite the equations to have physical meaning. Imagine y1 as the 
oscillator’s position x. Then y2 is ẋ, which is the oscillator’s velocity. So 
replace y1 with x, and replace y2 with v. Then ẏ2 is the acceleration a, 
making the equations 

ẋ = v, 

a = −x. 

The first equation is a purely mathematical definition, so it has no physi­
cal content. But the second equation describes the acceleration of an ideal 
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spring with unit spring constant and unit mass. So the position x(t) is a 
linear combination of sin t and cos t. An accurate discrete-time simula­
tion, if we can make one, would reproduce these sinusoidal oscillations, 
and this chapter shows you how. 

To turn the system into a discrete-time system, let T be the time step, x[n] be 
the discrete-time estimate for the position x(nT), and v[n] be the discrete-
time estimate for the velocity v(nT). Those changes take care of all the 
terms except for the derivatives. How do you translate the derivatives? 
Three methods are easy to use, and we try each, finding its poles and ana­
lyzing its fidelity to the original, continuous-time system. 

6.1 Forward Euler 

The first method for translating the derivatives is the forward-Euler ap­
proximation. It estimates the continuous-time derivatives ẋ(nT) and v̇(nT) 
using the forward differences 

ẋ(nT ) → 
x[n + 1] − x[n] 

,

T


v̇(nT) → 
v[n + 1] − v[n] 

.

T


Then the continuous-time system becomes 

x[n + 1] − x[n] = Tv[n], 

v[n + 1] − v[n] = −Tx[n]. 

The new samples x[n + 1] and v[n + 1] depend only on the old samples 
x[n] and v[n]. So this system provides an explicit recipe for computing 
later samples. 

6.1.1 Simulation 

Here is Python code to implement these equations. It starts the system 
with the initial conditions x[0] = 1 and v[0] = 0 and plots v vs x. 

from scipy import *

import pylab as p


T = 0.1 
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N = int(T**-2) 
x = zeros(N) 
x[0] = 1 
v = zeros(N) 

for	 n in range(N-1): 
x[n+1] = x[n] + T*v[n] 
v[n+1] = v[n] - T*x[n] 

p.plot(x,v,’r.’) 
p.show() 

Here is the plot (generated with MetaPost rather than Python, but from the 
same data): 

v 

x 

where the n = 0 sample is marked with the prominent dot.


Pause to try 26. What would the plot look like for an exact solution 
of the continuous-time differential equations? 

When the solution generates a true sine wave, which the continuous-time 
equations do, then the plot is of v(t) = − sin t versus x(t) = cos t, which 
is a circle. 

Since the discrete-time response is a growing spiral, it does not accurately 
represent the continuous-time system. Indeed after 50 or so time steps, the 



74 6.1 Forward Euler 

points have spiraled outward significantly. The spiraling signifies that x[n] 
and v[n] individually are not only oscillating, they are also growing. 

6.1.2 Analysis using poles 

To explain why the system oscillates and grows, find its poles. First, turn 
the two first-order equations into one second-order equation. Then find 
the poles of the second-order system. This method avoids having to un­
derstand what poles mean in a coupled system of equations. 

To convert to a second-order system, use the first equation to eliminate v 
from the second equation. First multiply the second equation by T to get 

Tv[n + 1] − Tv[n] = −T2x[n]. 

Now express Tv[n + 1] using x[n] and v[n]; and Tv[n] using x[n − 1] and 
v[n − 1]. The forward-Euler replacements are 

Tv[n + 1] = x[n + 2] − x[n + 1],


Tv[n] = x[n + 1] − x[n].


Making these replacements in Tv[n + 1] − Tv[n] = −T2x[n] gives 

(x[n + 2] − x[n + 1]) − (x[n + 1] − x[n]) = −T2x[n]. � �� � � �� � 
Tv[n+1] Tv[n] 

Collect like terms to get: 

x[n + 2] − 2x[n + 1] + (1 + T2)x[n] = 0. 

To get a system functional, we should have included an input signal or 
forcing function F. Physically, the forcing function represents the force dri­
ving the spring. Here is one way to add it: 

x[n + 2] − 2x[n + 1] + (1 + T2)x[n] = f[n + 2], 

The system functional is: 

X 1 
= . 

F 1 − 2R + (1 + T2)R2 

To find the poles, factor the denominator 1− 2R +(1+ T2)R2 into the form 
(1 − p1R)(1 − p2R). 
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Pause to try 27. Where are poles p1 and p2? 

The quadratic formula is useful in finding p1 and p2, but too often it substi­
tutes for, and does not augment understanding. So here is an alternative, 
intuitive analysis to find the poles. First expand the generic factored form: 

(1 − p1R)(1 − p2R) = 1 − (p1 + p2)R + p1p2R
2. 

Now match this form to the particular denominator 1 − 2R + (1 + T2)R2 . 
The result is 

p1 + p2 = 2,


p1p2 = 1 + T2.


The sum of the roots is 2 while the product is greater than 1. 

Pause to try 28. Show that these conditions are impossible to meet 
if p1 and p2 are real. 

Let p1 = 1 + a and p2 = 1 − a, which ensures that Im z 

p1 + p2 = 2. Then p1p2 = 1 − a2, which cannot be 
greater than 1 if a is real. So a must be imaginary. 
The resulting poles are: 

p1,2 = 1 ± jT 

and are marked on the z-plane. 

The poles are not on the positive real axis, which 
means that they produce oscillating outputs. Oscillation is desirable in a 
simulation of an oscillating continuous-time system. However, both poles 
lie outside the unit circle! Poles in that region of the z-plane produce grow­
ing outputs. So the poles of our system, which lie off the positive real axis 
and outside the unit circle, produce outputs that oscillate and grow, as 
shown in the X–V plot. 

The forward-Euler method does not produce an accurate approximation to 
the continuous-time oscillating system. 

Re z 
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Exercise 34. To place the poles on the unit circle, why not simu­
late with T = 0? 

Exercise 35. On the z-plane, sketch how the poles move as T in­
creases from 0 to 1. 

6.2 Backward Euler 

Let’s find another method. Being lazy, we invent it using symmetry. If for­
ward Euler is inaccurate, try backward Euler by estimating the derivatives 
using backward differences: 

ẋ(nT) → 
x[n] − x[n − 1] 

,

T


v̇(nT) → 
v[n] − v[n − 1] 

.

T


These estimates are left-shifted versions of the forward-Euler estimates. 

Then the system of continuous-time equations becomes 

x[n] − x[n − 1] = Tv[n], 

v[n] − v[n − 1] = −Tx[n]. 

The new values x[n] and v[n] depend on the new values themselves! This 
discrete-time system is an implicit recipe for computing the next samples, 
wherefore the backward Euler method is often called implicit Euler. 

6.2.1 Finding an explicit recipe 

Being a set of implicit equations, they require massaging to become an 
explicit recipe that we can program. You can do so with a matrix inversion, 
but let’s do it step by step. The system of equations is 

x[n] − Tv[n] =  x[n − 1],

Tx[n] + v[n] = v[n − 1].
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Eliminate v[n] to get an equation for x[n] in terms of only the preceding 
samples x[n−1] and v[n−1]. To eliminate v[n], multiply the second equa­
tion by T then add. The result is 

(1 + T2)x[n] = x[n − 1] + Tv[n − 1]. 

Similarly, eliminate x[n] to get an equation for v[n] in terms of only the 
preceding values v[n− 1] and x[n− 1]. To eliminate x[n], multiply the first 
equation by T then subtract. The result is 

(1 + T2)v[n] = v[n − 1] − Tx[n − 1]. 

These equations are similar to the forward-Euler equations except for the 
factors of 1 + T2. Those factors shrink x[n] and v[n], so they might control 
the runaway oscillations. 

Pause to try 29. Modify the Python program for forward Euler to 
implement backward Euler, and plot the results. 

To implement backward Euler, only two lines of the program need to be 
changed, the lines that compute the new samples. The code is 

for	 n in range(N-1): 
x[n+1] = (x[n] + T*v[n])/(1+T**2) 
v[n+1] = (v[n] - T*x[n])/(1+T**2) 

and the X–V plot is 

v 

x 

Now the points spiral inward! The factor of 1 + T2 is overkill. 
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6.2.2 Poles of backward Euler 

Let’s explain the inward spiral by finding the poles of the system. The first 
step is to convert the two first-order difference equations into one second-
order equation. 

Pause to try 30. Find the second-order difference equation. 

To convert to a second-order difference equation, eliminate v[n] and v[n−1] 
by using 

Tv[n] = x[n] − x[n − 1] 
and by using its counterpart shifted one sample, which is Tv[n − 1] =  
x[n − 1] − x[n − 2]. Make these substitutions into Tx[n] + v[n] = v[n − 1] 
after multiplying both sides by −T . Then 

−T2x[n] = (x[n] − x[n − 1]) − (x[n − 1] − x[n − 2]) � �� � � �� � 
Tv[n] Tv[n−1] 

= x[n] − 2x[n − 1] + x[n − 2]. 

Combining the x[n] terms and adding a forcing function F produces this 
difference equation 

(1 + T2)x[n] − 2x[n − 1] + x[n − 2] = f[n] 

and this system functional 

F 1 
= . 

X (1 + T2) − 2R + R2 

Pause to try 31. Find the poles. 
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Now find its poles by factoring the denominator. Im z 

Avoid the quadratic formula! The denominator looks 
similar to the denominator in forward Euler where 
it was 1 −2R +(1 +T2)R2, but the end coefficients 1 
and 1 +T2 are interchanged. This interchange turns 
roots into their reciprocals, so the poles are 

1	 1 
p1 = p2 = . 

1 + jT 1 − jT 

Re z 

These poles lie inside the unit circle, so the oscillations die out and the X–V 
plot spirals into the origin. 

Pause to try 32. Do a cheap hack to the program make the points 
stay on the unit circle. Hint: Add just eight charac­
ters to the code. 

A cheap hack is to fix the problem manually. If dividing x[n + 1] and 
v[n + 1] by 1 + T2 overcorrected, and dividing by 1 undercorrected, then √ 
try dividing by a compromise value 1 + T2: 

for	 n in range(N-1):

x[n+1] = (x[n] + T*v[n])/sqrt(1+T**2)

v[n+1] = (v[n] - T*x[n])/sqrt(1+T**2)


However, this hack does not generalize, which is why it is a cheap hack 
rather than a method. In this problem we can solve the continuous-time 
system, so we can construct a hack to reproduce its behavior with a discrete-
time system. However, for many systems we do not know the continuous-
time solution, which is why we simulate. So we would like a principled 
method to get accurate simulations. 

6.3	 Leapfrog 

Leapfrog, also known as the trapezoidal approximation, is a mixture of 
forward and backward Euler. Use forward Euler for the x derivative: 

ẋ(nT) → 
x[n + 1] − x[n]


T
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The discrete-time equation is, as in forward Euler, 

x[n + 1] − x[n] = Tv[n]. 

Then use backward Euler for the v derivative. So


v̇(nT) → 
v[n] − v[n − 1]


T


and 

v[n] − v[n − 1] = −Tx[n] 

or 

v[n + 1] − v[n] = −Tx[n + 1]. 

In this mixed method, the x computation is an explicit recipe, whereas the 
v computation is an implicit recipe. 

6.3.1 Simulation 

Fortunately, this implicit recipe, unlike the full backward Euler, has a clean 
implementation. The system of equations is 

x[n + 1] = x[n] + Tv[n], 

v[n + 1] = v[n] − Tx[n + 1]. 

Pause to try 33. Implement leapfrog by modifying the magic two 
lines in the Python program. 

The only change from forward Euler is in the computation of v[n + 1]. 
Leapfrog uses x[n + 1], which is the just-computed value of x. So the code 
is 

for n in range(N-1): 
x[n+1] = x[n] + T*v[n] 
v[n+1] = v[n] - T*x[n+1] 

and the plot is 
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x 

v 

√ 
A beautiful circle without 1 + T2 hacks! 

6.3.2 Analysis using poles 

Let’s explain that behavior by finding the poles of this system. As usual, 
convert the two first-order equations into one second-order equation for 
the position. To eliminate v, use the first equation, that Tv[n] = x[n + 1] −  
x[n]. Then v[n + 1] = v[n] − Tx[n + 1] becomes after multiplying by T : 

(x[n + 2] − x[n + 1]) − (x[n + 1] − x[n]) = −T2x[n + 1]. � �� � � �� � 
Tv[n+1] Tv[n] 

After rearranging and including a forcing function, the result is 

x[n + 2] − (2 − T2)x[n + 1] + x[n] = f[n + 2]. 

The system functional is 

1 
. 

1 − (2 − T2)R + R2 

Again factor into the form (1 − p1R)(1 − p2R). The Im z 

product p1p2 is 1 because it is the coefficient of R2 . 
The sum p1 + p2 is 2 − T2, which is less than 2. 
So the roots must be complex. A pair of complex-
conjugate roots whose product is 1 lie on the unit 
circle. Poles on the unit circle produce oscillations 
that do not grow or shrink, wherefore leapfrog pro­
duces such a fine sine wave. 

Re z 
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Exercise 36. Find the poles of the second-
order equation and confirm 
that they lie on the unit cir­
cle. 

6.4 Summary 

The forward-Euler method is too aggressive. The backward-Euler method 
is too passive. But, at least for second-order systems, the mixed, forward– 
backward Euler method (leapfrog) is just right [13]. 
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