
6
The perfect (sine) wave

6.1 Forward Euler	 72
6.2 Backward Euler	 76
6.3 Leapfrog	 79
6.4 Summary	 82

The goals of this chapter are:

•	 to analyze several methods for discretizing a continuous-time sys­
tem; and

•	 to illustrate complex poles and the significance of the unit circle.

How can you compute a sine wave if your programming language did not
have a built-in sine function? You can use the coupled oscillator from the
first problem set:

ẏ1 = y2,

ẏ2 = −y1.

Let’s rewrite the equations to have physical meaning. Imagine y1 as the
oscillator’s position x. Then y2 is ẋ, which is the oscillator’s velocity. So
replace y1 with x, and replace y2 with v. Then ẏ2 is the acceleration a,
making the equations

ẋ = v,

a = −x.

The first equation is a purely mathematical definition, so it has no physi­
cal content. But the second equation describes the acceleration of an ideal

72 6.1 Forward Euler

spring with unit spring constant and unit mass. So the position x(t) is a
linear combination of sin t and cos t. An accurate discrete-time simula­
tion, if we can make one, would reproduce these sinusoidal oscillations,
and this chapter shows you how.

To turn the system into a discrete-time system, let T be the time step, x[n] be
the discrete-time estimate for the position x(nT), and v[n] be the discrete-
time estimate for the velocity v(nT). Those changes take care of all the
terms except for the derivatives. How do you translate the derivatives?
Three methods are easy to use, and we try each, finding its poles and ana­
lyzing its fidelity to the original, continuous-time system.

6.1 Forward Euler

The first method for translating the derivatives is the forward-Euler ap­
proximation. It estimates the continuous-time derivatives ẋ(nT) and v̇(nT)
using the forward differences

ẋ(nT) →
x[n + 1] − x[n]

,

T

v̇(nT) →
v[n + 1] − v[n]

.

T

Then the continuous-time system becomes

x[n + 1] − x[n] = Tv[n],

v[n + 1] − v[n] = −Tx[n].

The new samples x[n + 1] and v[n + 1] depend only on the old samples
x[n] and v[n]. So this system provides an explicit recipe for computing
later samples.

6.1.1 Simulation

Here is Python code to implement these equations. It starts the system
with the initial conditions x[0] = 1 and v[0] = 0 and plots v vs x.

from scipy import *

import pylab as p

T = 0.1

6 The perfect (sine) wave	 73

N = int(T**-2)
x = zeros(N)
x[0] = 1
v = zeros(N)

for	 n in range(N-1):
x[n+1] = x[n] + T*v[n]
v[n+1] = v[n] - T*x[n]

p.plot(x,v,’r.’)
p.show()

Here is the plot (generated with MetaPost rather than Python, but from the
same data):

v

x

where the n = 0 sample is marked with the prominent dot.

Pause to try 26. What would the plot look like for an exact solution
of the continuous-time differential equations?

When the solution generates a true sine wave, which the continuous-time
equations do, then the plot is of v(t) = − sin t versus x(t) = cos t, which
is a circle.

Since the discrete-time response is a growing spiral, it does not accurately
represent the continuous-time system. Indeed after 50 or so time steps, the

74 6.1 Forward Euler

points have spiraled outward significantly. The spiraling signifies that x[n]
and v[n] individually are not only oscillating, they are also growing.

6.1.2 Analysis using poles

To explain why the system oscillates and grows, find its poles. First, turn
the two first-order equations into one second-order equation. Then find
the poles of the second-order system. This method avoids having to un­
derstand what poles mean in a coupled system of equations.

To convert to a second-order system, use the first equation to eliminate v
from the second equation. First multiply the second equation by T to get

Tv[n + 1] − Tv[n] = −T2x[n].

Now express Tv[n + 1] using x[n] and v[n]; and Tv[n] using x[n − 1] and
v[n − 1]. The forward-Euler replacements are

Tv[n + 1] = x[n + 2] − x[n + 1],

Tv[n] = x[n + 1] − x[n].

Making these replacements in Tv[n + 1] − Tv[n] = −T2x[n] gives

(x[n + 2] − x[n + 1]) − (x[n + 1] − x[n]) = −T2x[n]. � �� � � �� �
Tv[n+1] Tv[n]

Collect like terms to get:

x[n + 2] − 2x[n + 1] + (1 + T2)x[n] = 0.

To get a system functional, we should have included an input signal or
forcing function F. Physically, the forcing function represents the force dri­
ving the spring. Here is one way to add it:

x[n + 2] − 2x[n + 1] + (1 + T2)x[n] = f[n + 2],

The system functional is:

X 1
= .

F 1 − 2R + (1 + T2)R2

To find the poles, factor the denominator 1− 2R +(1+ T2)R2 into the form
(1 − p1R)(1 − p2R).

75 6 The perfect (sine) wave

Pause to try 27. Where are poles p1 and p2?

The quadratic formula is useful in finding p1 and p2, but too often it substi­
tutes for, and does not augment understanding. So here is an alternative,
intuitive analysis to find the poles. First expand the generic factored form:

(1 − p1R)(1 − p2R) = 1 − (p1 + p2)R + p1p2R
2.

Now match this form to the particular denominator 1 − 2R + (1 + T2)R2 .
The result is

p1 + p2 = 2,

p1p2 = 1 + T2.

The sum of the roots is 2 while the product is greater than 1.

Pause to try 28. Show that these conditions are impossible to meet
if p1 and p2 are real.

Let p1 = 1 + a and p2 = 1 − a, which ensures that Im z

p1 + p2 = 2. Then p1p2 = 1 − a2, which cannot be
greater than 1 if a is real. So a must be imaginary.
The resulting poles are:

p1,2 = 1 ± jT

and are marked on the z-plane.

The poles are not on the positive real axis, which
means that they produce oscillating outputs. Oscillation is desirable in a
simulation of an oscillating continuous-time system. However, both poles
lie outside the unit circle! Poles in that region of the z-plane produce grow­
ing outputs. So the poles of our system, which lie off the positive real axis
and outside the unit circle, produce outputs that oscillate and grow, as
shown in the X–V plot.

The forward-Euler method does not produce an accurate approximation to
the continuous-time oscillating system.

Re z

76 6.2 Backward Euler

Exercise 34. To place the poles on the unit circle, why not simu­
late with T = 0?

Exercise 35. On the z-plane, sketch how the poles move as T in­
creases from 0 to 1.

6.2 Backward Euler

Let’s find another method. Being lazy, we invent it using symmetry. If for­
ward Euler is inaccurate, try backward Euler by estimating the derivatives
using backward differences:

ẋ(nT) →
x[n] − x[n − 1]

,

T

v̇(nT) →
v[n] − v[n − 1]

.

T

These estimates are left-shifted versions of the forward-Euler estimates.

Then the system of continuous-time equations becomes

x[n] − x[n − 1] = Tv[n],

v[n] − v[n − 1] = −Tx[n].

The new values x[n] and v[n] depend on the new values themselves! This
discrete-time system is an implicit recipe for computing the next samples,
wherefore the backward Euler method is often called implicit Euler.

6.2.1 Finding an explicit recipe

Being a set of implicit equations, they require massaging to become an
explicit recipe that we can program. You can do so with a matrix inversion,
but let’s do it step by step. The system of equations is

x[n] − Tv[n] = x[n − 1],

Tx[n] + v[n] = v[n − 1].

77 6 The perfect (sine) wave

Eliminate v[n] to get an equation for x[n] in terms of only the preceding
samples x[n−1] and v[n−1]. To eliminate v[n], multiply the second equa­
tion by T then add. The result is

(1 + T2)x[n] = x[n − 1] + Tv[n − 1].

Similarly, eliminate x[n] to get an equation for v[n] in terms of only the
preceding values v[n− 1] and x[n− 1]. To eliminate x[n], multiply the first
equation by T then subtract. The result is

(1 + T2)v[n] = v[n − 1] − Tx[n − 1].

These equations are similar to the forward-Euler equations except for the
factors of 1 + T2. Those factors shrink x[n] and v[n], so they might control
the runaway oscillations.

Pause to try 29. Modify the Python program for forward Euler to
implement backward Euler, and plot the results.

To implement backward Euler, only two lines of the program need to be
changed, the lines that compute the new samples. The code is

for	 n in range(N-1):
x[n+1] = (x[n] + T*v[n])/(1+T**2)
v[n+1] = (v[n] - T*x[n])/(1+T**2)

and the X–V plot is

v

x

Now the points spiral inward! The factor of 1 + T2 is overkill.

78 6.2 Backward Euler

6.2.2 Poles of backward Euler

Let’s explain the inward spiral by finding the poles of the system. The first
step is to convert the two first-order difference equations into one second-
order equation.

Pause to try 30. Find the second-order difference equation.

To convert to a second-order difference equation, eliminate v[n] and v[n−1]
by using

Tv[n] = x[n] − x[n − 1]
and by using its counterpart shifted one sample, which is Tv[n − 1] =
x[n − 1] − x[n − 2]. Make these substitutions into Tx[n] + v[n] = v[n − 1]
after multiplying both sides by −T . Then

−T2x[n] = (x[n] − x[n − 1]) − (x[n − 1] − x[n − 2]) � �� � � �� �
Tv[n] Tv[n−1]

= x[n] − 2x[n − 1] + x[n − 2].

Combining the x[n] terms and adding a forcing function F produces this
difference equation

(1 + T2)x[n] − 2x[n − 1] + x[n − 2] = f[n]

and this system functional

F 1
= .

X (1 + T2) − 2R + R2

Pause to try 31. Find the poles.

79 6 The perfect (sine) wave

Now find its poles by factoring the denominator. Im z

Avoid the quadratic formula! The denominator looks
similar to the denominator in forward Euler where
it was 1 −2R +(1 +T2)R2, but the end coefficients 1
and 1 +T2 are interchanged. This interchange turns
roots into their reciprocals, so the poles are

1	 1
p1 = p2 = .

1 + jT 1 − jT

Re z

These poles lie inside the unit circle, so the oscillations die out and the X–V
plot spirals into the origin.

Pause to try 32. Do a cheap hack to the program make the points
stay on the unit circle. Hint: Add just eight charac­
ters to the code.

A cheap hack is to fix the problem manually. If dividing x[n + 1] and
v[n + 1] by 1 + T2 overcorrected, and dividing by 1 undercorrected, then √
try dividing by a compromise value 1 + T2:

for	 n in range(N-1):

x[n+1] = (x[n] + T*v[n])/sqrt(1+T**2)

v[n+1] = (v[n] - T*x[n])/sqrt(1+T**2)

However, this hack does not generalize, which is why it is a cheap hack
rather than a method. In this problem we can solve the continuous-time
system, so we can construct a hack to reproduce its behavior with a discrete-
time system. However, for many systems we do not know the continuous-
time solution, which is why we simulate. So we would like a principled
method to get accurate simulations.

6.3	 Leapfrog

Leapfrog, also known as the trapezoidal approximation, is a mixture of
forward and backward Euler. Use forward Euler for the x derivative:

ẋ(nT) →
x[n + 1] − x[n]

T

80 6.3 Leapfrog

The discrete-time equation is, as in forward Euler,

x[n + 1] − x[n] = Tv[n].

Then use backward Euler for the v derivative. So

v̇(nT) →
v[n] − v[n − 1]

T

and

v[n] − v[n − 1] = −Tx[n]

or

v[n + 1] − v[n] = −Tx[n + 1].

In this mixed method, the x computation is an explicit recipe, whereas the
v computation is an implicit recipe.

6.3.1 Simulation

Fortunately, this implicit recipe, unlike the full backward Euler, has a clean
implementation. The system of equations is

x[n + 1] = x[n] + Tv[n],

v[n + 1] = v[n] − Tx[n + 1].

Pause to try 33. Implement leapfrog by modifying the magic two
lines in the Python program.

The only change from forward Euler is in the computation of v[n + 1].
Leapfrog uses x[n + 1], which is the just-computed value of x. So the code
is

for n in range(N-1):
x[n+1] = x[n] + T*v[n]
v[n+1] = v[n] - T*x[n+1]

and the plot is

81 6 The perfect (sine) wave

x

v

√
A beautiful circle without 1 + T2 hacks!

6.3.2 Analysis using poles

Let’s explain that behavior by finding the poles of this system. As usual,
convert the two first-order equations into one second-order equation for
the position. To eliminate v, use the first equation, that Tv[n] = x[n + 1] −
x[n]. Then v[n + 1] = v[n] − Tx[n + 1] becomes after multiplying by T :

(x[n + 2] − x[n + 1]) − (x[n + 1] − x[n]) = −T2x[n + 1]. � �� � � �� �
Tv[n+1] Tv[n]

After rearranging and including a forcing function, the result is

x[n + 2] − (2 − T2)x[n + 1] + x[n] = f[n + 2].

The system functional is

1
.

1 − (2 − T2)R + R2

Again factor into the form (1 − p1R)(1 − p2R). The Im z

product p1p2 is 1 because it is the coefficient of R2 .
The sum p1 + p2 is 2 − T2, which is less than 2.
So the roots must be complex. A pair of complex-
conjugate roots whose product is 1 lie on the unit
circle. Poles on the unit circle produce oscillations
that do not grow or shrink, wherefore leapfrog pro­
duces such a fine sine wave.

Re z

82 6.4 Summary

Exercise 36. Find the poles of the second-
order equation and confirm
that they lie on the unit cir­
cle.

6.4 Summary

The forward-Euler method is too aggressive. The backward-Euler method
is too passive. But, at least for second-order systems, the mixed, forward–
backward Euler method (leapfrog) is just right [13].

MIT OpenCourseWare
http://ocw.mit.edu

6.003 Signals and Systems
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

