
4
Modes

4.1 Growth of the Fibonacci series	 52
4.2 Taking out the big part from Fibonacci	 55
4.3 Operator interpretation	 57
4.4 General method: Partial fractions	 59

The goals of this chapter are:

•	 to illustrate the experimental way that an engineer studies sys­
tems, even abstract, mathematical systems;

•	 to illustrate what modes are by finding them for the Fibonacci sys­
tem; and

•	 to decompose second-order systems into modes, explaining the
decomposition using operators and block diagrams.

The first question is what a mode is. That question will be answered as we
decompose the Fibonacci sequence into simpler sequences. Each simple
sequence can be generated by a first-order system like the leaky tank and is
called a mode of the system. By decomposing the Fibonacci sequence into
modes, we decompose the system into simpler, first-order subsystems.

The plan of the chapter is to treat the Fibonacci system first as a black
box producing an output signal F and to develop computational probes
to examine signals. This experimental approach is how an engineer stud­
ies even abstract, mathematical systems. The results from the probes will
show us how to decompose the signal into its modes. These modes are
then reconciled with what the operator method predicts for decomposing
the system.

52 4.1 Growth of the Fibonacci series

Why describe the experimental, and perhaps harder, method for finding
the modes before giving the shortcuts using operators? We know the op­
erator expression for the Fibonacci system, and could just rewrite it using
algebra. The answer is that the operator method has meaning only after
you feel modes in your fingertips, a feeling developed only as you play
with signals. Without first playing, we would be teaching you amazing
feats of calculation on meaningless objects.

Furthermore, the experimental approach works even when no difference
equation is available to generate the sequence. Engineers often character­
ize such unknown or partially known systems. The system might be:

•	 computational: Imagine debugging someone else’s program. You send
in test inputs to find out how it works and what makes it fail.

•	 electronic: Imagine debugging a CPU that just returned from the fabri­
cation run, perhaps in quantities of millions, but that does not correctly
divide floating-point numbers [12]. You might give it numbers to di­
vide until you find the simplest examples that give wrong answers.
From that data you can often deduce the flaw in the wiring.

•	 mathematical: Imagine computing primes to investigate the twin-prime
conjecture [16], one of the outstanding unsolved problems of number
theory. [The conjecture states that there are an infinite number of prime
pairs p, p + 2, such as (3, 5), (5, 7), etc.] The new field of experimental
mathematics, which uses computational tools to investigate mathemat­
ics problems, is lively, growing, and a fertile field for skilled engineers
[4, 14, 8].

So we hope that, through experimental probes of the Fibonacci sequence,
you learn a general approach to solving problems.

4.1 Growth of the Fibonacci series

Section 1.1.2 estimated how fast the sequence f[n√] grew. It seemed to grow
geometrically with an order of growth between 2 and 2. Our first project
is to experimentally narrow this range and thereby to guess a closed form
for the order of growth.

One probe to find the order of growth is to compute the successive ratios
f[n]/f[n − 1]. The ratios oscillated around 1.618, but this estimate is not

4 Modes 53

accurate enough to guess a closed form. Since the oscillations in the ratio
die out as n grows, let’s estimate the ratio accurately by computing it for
large n. Our tool for these experiments – our probe – is a computer that we
program in Python, a clean, widely available language. Use any tool that
fits you, perhaps another language, a graphing calculator, or a spreadsheet.

Section 2.3.2 offered this Python code to compute f[n]:

def f(n):
if n < 2: return 1
return f(n-1) + f(n-2)

But the code is slow when n is large. Here are the running times to evaluate
f[n] on a Pentium CoreDuo 1.8GHz processor:

n 10 15 20 25 30
time (ms) 0.17 1.5 21 162 1164

The times grow rapidly!

Exercise 21. What is the running time of this implementation?

The times might seem low enough to be usable, but imagine being on a
desert island with only a graphing calculator; then the times might be a
factor of 10 or of 100 longer. We would like to build an efficient computa­
tional probe so that it is widely usable.

An efficient function would store previously computed answers, returning
the stored answer when possible rather than recomputing old values. In
Python, one can store the values in a dictionary, which is analogous to a
hash in Perl or an associative array in awk. The memoized version of the
Fibonacci function is:

memo = {}
def f(n):

if n < 2 : return 1
if n in memo : return memo[n]
memo[n] = f(n-1) + f(n-2)
return memo[n]

54 4.1 Growth of the Fibonacci series

Pause to try 20. What is the running time of the memoized function,
in big-Oh notation?

The new function runs in linear time – a faster probe! – so we can inexpen­
sively compute f[n] for large n. Here are the ratios f[n]/f[n − 1]:

n f[n]/f[n − 1]

5 1.60000000000000009
10 1.61818181818181817
15 1.61803278688524599
20 1.61803399852180330
25 1.61803398867044312
30 1.61803398875054083
35 1.61803398874988957
40 1.61803398874989490
45 1.61803398874989490

These values are very stable by n = 45, perhaps limited in stability only
by the precision of the floating-point numbers.

Let’s see what closed form would produce the ratio 1.61803398874989490
at n = 45. One source for closed forms is your intuition and experience.
Another wonderful source is the Inverse Symbolic Calculator
By using the Inverse Symbolic Calculator, you increase your repertoire of
closed form and thereby enhance your intuition.

Pause to try 21. Ask the Inverse Symbolic Calculator about 1.61803398874989490.

The Inverse Symbolic Calculator thinks that 1.61803398874989490 is most
likely the positive root of x2 − x − 1 or, equivalently, is the golden ratio φ:

√
1 + 5

φ ≡
2

Let’s use that hypothesis. Then

f[n] ∼ φn.

But we do not know the constant hidden by the ∼ symbol. Find that con­
stant by using the Inverse Symbolic Calculator one more time. Here is a

.

http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html

4 Modes 55

table of the ratio f[n]/φn . With luck it converges to a constant. And it
does:

n f[n]/φn

0 1.00000000000000000
10 0.72362506926471781
20 0.72360679895785285
30 0.72360679775005809
40 0.72360679774997805
50 0.72360679774997783
60 0.72360679774997749
70 0.72360679774997727
80 0.72360679774997705
90 0.72360679774997672

100 0.72360679774997649
√

Around n = 10, the ratios look like 3 −1 ≈ 0.732 but later ratios stabilize
around a value inconsistent with that guess.

Pause to try 22. Ask the Inverse Symbolic Calculator about 0.72360679774997649.
Which of the alternatives seem most reasonable?

The Inverse Symbolic Calculator provides many closed forms for 0.72360679774997649.√ √
A choice that contains 5 is reasonable since φ contains 5. The closed √ √
form nearest to 0.72360679774997649 and containing 5 is (1 + 1/ 5)/2,√
which is also φ/ 5. So the Fibonacci sequence is roughly

φ
f[n] ≈ √ φn.

5

4.2 Taking out the big part from Fibonacci

Now let’s take out the big part by peeling away the √φ φn contribution to
5

see what remains. Define the signal F1 by

φ
f1[n] = √ φn.

5

This signal is one mode of the Fibonacci sequence. The shape of a mode is

its order of growth, which here is φ. The amplitude of a mode is the prefac­
√
tor, which here is φ/ 5. The mode shape is a characteristic of the system,

56 4.2 Taking out the big part from Fibonacci

whereas the amplitude depends on the input signal (for this example, the
input signal was the impulse). So we often have more interest in the shape
than in the amplitude. However, here we need shape and amplitude in
order to determine the signal and peel it away.

So tabulate the residual signal F2 = F − F1:

n f2[n] = f[n] − f1[n]

0 +0.27639320225002106
1 −0.17082039324993681
2 +0.10557280900008426
3 −0.06524758424985277
4 +0.04032522475023104
5 −0.02492235949962307
6 +0.01540286525060708
7 −0.00951949424901599
8 +0.00588337100158753
9 −0.00363612324743201

10 +0.00224724775415552

The residual signal starts small and gets smaller, so the main mode F1 is an
excellent approximation to the Fibonacci sequence F. To find a closed form
for the residual signal F2, retry the successive-ratios probe:

n f2[n]/f2[n − 1]

1 −0.61803398874989446
2 −0.61803398874989601
3 −0.61803398874989390
4 −0.61803398874989046
5 −0.61803398874993953
6 −0.61803398874974236
7 −0.61803398875029414
8 −0.61803398874847626
9 −0.61803398875421256

10 −0.61803398873859083

The successive ratios are almost constant and look suspiciously like 1 − φ,
which is also −1/φ.

Exercise 22. Show that 1 − φ = −1/φ.

4 Modes	 57

So f2[n] ∼ (−φ)−n . To evaluate the amplitude, divide f2[n] by the mode
shape (−φ)−n. Here is a table of those results:

n f2[n]/(−φ)−n

1 0.27639320225002090
2 0.27639320225002140
3 0.27639320225002101
4 0.27639320225001901
5 0.27639320225003899
6 0.27639320224997083
7 0.27639320225014941
8 0.27639320224951497
9 0.27639320225144598

10 0.27639320224639063

Those values stabilize quickly and look like one minus the amplitude of the √
φn mode. So the amplitude of the (−φ)n mode is 1 − φ/ 5, which is also √
1/(φ 5). Thus the residual signal, combining its shape and amplitude, is

1
f2[n] = √ (−φ)−n.

φ 5

Now combine the F1 and F2 signals to get the Fibonacci signal:

f[n] = f1[n] + f2[n]

=
φ √ φn +

1 √ (−φ)−n .
5 φ 5

This closed form, deduced using experiment, is the famous Binet formula
for the nth Fibonacci number.

Exercise 23.	 Use peeling away and educated guessing to find a
closed form for the output signal when the impulse
is fed into the following difference equation:

y[n] = 7y[n − 1] − 12y[n − 2] + x[n].

4.3 Operator interpretation

Next we interpret this experimental result using operators and block di­
agrams. Modes are the simplest persistent responses that a system can

58 4.3 Operator interpretation

make, and are the building blocks of all systems, so we would like to find
the operator or block-diagram representations for a mode.

The Fibonacci signal decomposed into two simpler signals F1 and F2 –
which are also the modes – and each mode grows geometrically. Geomet­
ric growth results from one feedback loop. So the φn mode is produced by
this system

+

φR

with the system functional (1 − φR)−1 .

The (−φ)−n mode is produced by this system

+

−φ−1R

with the system functional (1 + R/φ)−1 .

The Fibonacci system is the sum of these signals scaled by the respective
amplitudes, so its block diagram is a weighted sum of the preceding block
diagrams. The system functional for the Fibonacci system is a weighted
sum of the pure-mode system functionals.

So let’s add the individual system functionals and see what turns up:

F(R) = F1(R) + F2(R)
φ 1 1 1

= √ + √
5 1 − φR φ 5 1 + R/φ

1
= .

1 − R − R2

That functional is the system functional for the Fibonacci system derived
directly from the block diagram (Section 3.5.2)! So the experimental and
operator approaches agree that these operator block diagrams are equiva­
lent:

4 Modes 59

1

φ
√

5

1
1 + R/φ

1
1 − R − R2

φ √
5

1
1 − φR

+=

where, to make the diagram easier to parse, system functionals stand for
the first- and second-order systems that they represent.

Exercise 24. Write the system of difference equations that cor­
responds to the parallel-decomposition block dia­
gram. Show that the system is equivalent to the
usual difference equation

f[n] = f[n − 1] + f[n − 2] + x[n].

The equivalence is obvious neither from the block diagrams nor from the
difference equations directly. Making the equivalence obvious needs either
experiment or the operator representation. Having experimented, you are
ready to use the operator representation generally to find modes.

4.4 General method: Partial fractions

So we would like a way to decompose a system without peeling away and
guessing. And we have one: the method of partial fractions, which shows
the value of the operator representation and system functional. Because
the system functional behaves like an algebraic expression – or one might
say, because it is an algebraic expression – it is often easier to manipulate
than is the block diagram or the difference equation.

Having gone from the decomposed first-order systems to the original second-
order system functional, let’s now go the other way: from the original sys­
tem functional to the decomposed systems. To do so, first factor the R
expression:

1 1 1
= .

1 − R − R2 1 − φR 1 + R/φ

60 4.4 General method: Partial fractions

This factoring, a series decomposition, will help us study poles and zeros
in a later chapter. Here we use it to find the parallel decomposition by
using the technique of partial fractions.

The partial fractions should use the two factors in denominator, so guess
this form:

1 a b
= + ,

1 − R − R2 1 − φR 1 + R/φ

where a and b are unknown constants. After adding the fractions, the
denominator will be the product (1 − φR)(1 + R/φ) and the numerator
will be the result of cross multiplying:

a(1 + R/φ) + b(1 − φR) = a + (a/φ)R + b − bφR.

We want the numerator to be 1. If we set a = φ and b = 1/φ, then at least
the R terms cancel, leaving only the constant a +√b. So we chose a and b
too large by the sum a + b, which is φ + 1/φ or 5. So instead choose

√
a = φ/ 5, √
b = 1/(φ 5).

If you prefer solving linear equations to the guess-and-check method, here
are the linear equations:

a + b = 1,

a/φ − bφ = 0,

whose solutions are the ones deduced using the guess-and-check method.

The moral: To find how a system behaves, factor its system functional and
use partial fractions to decompose that factored form into a sum of first-
order systems. With that decomposition, you can predict the output signal
because you know how first-order systems behave.

You can practice the new skill of decomposition with the following ques­
tion:

4 Modes 61

Exercise 25. Look again at the system

y[n] = 7y[n − 1] − 12y[n − 2] + x[n].

Decompose the operator representation into a sum
of two modes and draw the corresponding block
diagram (using block diagram elements). When
the input signal X is the impulse, do the opera­
tor and block-diagram decompositions produce the
same closed form that you find by peeling away
and guessing?

MIT OpenCourseWare
http://ocw.mit.edu

6.003 Signals and Systems
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

