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The goals of this chapter are: 

•	 to illustrate the experimental way that an engineer studies sys­
tems, even abstract, mathematical systems; 

•	 to illustrate what modes are by finding them for the Fibonacci sys­
tem; and 

•	 to decompose second-order systems into modes, explaining the 
decomposition using operators and block diagrams. 

The first question is what a mode is. That question will be answered as we 
decompose the Fibonacci sequence into simpler sequences. Each simple 
sequence can be generated by a first-order system like the leaky tank and is 
called a mode of the system. By decomposing the Fibonacci sequence into 
modes, we decompose the system into simpler, first-order subsystems. 

The plan of the chapter is to treat the Fibonacci system first as a black 
box producing an output signal F and to develop computational probes 
to examine signals. This experimental approach is how an engineer stud­
ies even abstract, mathematical systems. The results from the probes will 
show us how to decompose the signal into its modes. These modes are 
then reconciled with what the operator method predicts for decomposing 
the system. 
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Why describe the experimental, and perhaps harder, method for finding 
the modes before giving the shortcuts using operators? We know the op­
erator expression for the Fibonacci system, and could just rewrite it using 
algebra. The answer is that the operator method has meaning only after 
you feel modes in your fingertips, a feeling developed only as you play 
with signals. Without first playing, we would be teaching you amazing 
feats of calculation on meaningless objects. 

Furthermore, the experimental approach works even when no difference 
equation is available to generate the sequence. Engineers often character­
ize such unknown or partially known systems. The system might be: 

•	 computational: Imagine debugging someone else’s program. You send 
in test inputs to find out how it works and what makes it fail. 

•	 electronic: Imagine debugging a CPU that just returned from the fabri­
cation run, perhaps in quantities of millions, but that does not correctly 
divide floating-point numbers [12]. You might give it numbers to di­
vide until you find the simplest examples that give wrong answers. 
From that data you can often deduce the flaw in the wiring. 

•	 mathematical: Imagine computing primes to investigate the twin-prime 
conjecture [16], one of the outstanding unsolved problems of number 
theory. [The conjecture states that there are an infinite number of prime 
pairs p, p + 2, such as (3, 5), (5, 7), etc.] The new field of experimental 
mathematics, which uses computational tools to investigate mathemat­
ics problems, is lively, growing, and a fertile field for skilled engineers 
[4, 14, 8]. 

So we hope that, through experimental probes of the Fibonacci sequence, 
you learn a general approach to solving problems. 

4.1 Growth of the Fibonacci series 

Section 1.1.2 estimated how fast the sequence f[n√] grew. It seemed to grow 
geometrically with an order of growth between 2 and 2. Our first project 
is to experimentally narrow this range and thereby to guess a closed form 
for the order of growth. 

One probe to find the order of growth is to compute the successive ratios 
f[n]/f[n − 1]. The ratios oscillated around 1.618, but this estimate is not 



4 Modes 53 

accurate enough to guess a closed form. Since the oscillations in the ratio 
die out as n grows, let’s estimate the ratio accurately by computing it for 
large n. Our tool for these experiments – our probe – is a computer that we 
program in Python, a clean, widely available language. Use any tool that 
fits you, perhaps another language, a graphing calculator, or a spreadsheet. 

Section 2.3.2 offered this Python code to compute f[n]: 

def f(n): 
if n < 2:  return 1 
return f(n-1) + f(n-2) 

But the code is slow when n is large. Here are the running times to evaluate 
f[n] on a Pentium CoreDuo 1.8GHz processor: 

n  10  15  20  25  30  
time (ms) 0.17 1.5 21 162 1164 

The times grow rapidly! 

Exercise 21. What is the running time of this implementation? 

The times might seem low enough to be usable, but imagine being on a 
desert island with only a graphing calculator; then the times might be a 
factor of 10 or of 100 longer. We would like to build an efficient computa­
tional probe so that it is widely usable. 

An efficient function would store previously computed answers, returning 
the stored answer when possible rather than recomputing old values. In 
Python, one can store the values in a dictionary, which is analogous to a 
hash in Perl or an associative array in awk. The memoized version of the 
Fibonacci function is: 

memo = {} 
def f(n): 

if n < 2  : return 1 
if n in memo : return memo[n] 
memo[n] = f(n-1) + f(n-2) 
return memo[n] 
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Pause to try 20. What is the running time of the memoized function, 
in big-Oh notation? 

The new function runs in linear time – a faster probe! – so we can inexpen­
sively compute f[n] for large n. Here are the ratios f[n]/f[n − 1]: 

n f[n]/f[n − 1] 

5 1.60000000000000009 
10 1.61818181818181817 
15 1.61803278688524599 
20 1.61803399852180330 
25 1.61803398867044312 
30 1.61803398875054083 
35 1.61803398874988957 
40 1.61803398874989490 
45 1.61803398874989490 

These values are very stable by n = 45, perhaps limited in stability only 
by the precision of the floating-point numbers. 

Let’s see what closed form would produce the ratio 1.61803398874989490 
at n = 45. One source for closed forms is your intuition and experience. 
Another wonderful source is the Inverse Symbolic Calculator  
By using the Inverse Symbolic Calculator, you increase your repertoire of 
closed form and thereby enhance your intuition. 

Pause to try 21. Ask the Inverse Symbolic Calculator about 1.61803398874989490. 

The Inverse Symbolic Calculator thinks that 1.61803398874989490 is most 
likely the positive root of x2 − x − 1 or, equivalently, is the golden ratio φ: 

√ 
1 + 5 

φ ≡ 
2 

Let’s use that hypothesis. Then 

f[n] ∼ φn. 

But we do not know the constant hidden by the ∼ symbol. Find that con­
stant by using the Inverse Symbolic Calculator one more time. Here is a 

. 

http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html
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table of the ratio f[n]/φn . With luck it converges to a constant. And it 
does: 

n f[n]/φn 

0 1.00000000000000000 
10 0.72362506926471781 
20 0.72360679895785285 
30 0.72360679775005809 
40 0.72360679774997805 
50 0.72360679774997783 
60 0.72360679774997749 
70 0.72360679774997727 
80 0.72360679774997705 
90 0.72360679774997672 

100 0.72360679774997649 
√ 

Around n = 10, the ratios look like 3 −1 ≈ 0.732 but later ratios stabilize 
around a value inconsistent with that guess. 

Pause to try 22. Ask the Inverse Symbolic Calculator about 0.72360679774997649. 
Which of the alternatives seem most reasonable? 

The Inverse Symbolic Calculator provides many closed forms for 0.72360679774997649.√ √ 
A choice that contains 5 is reasonable since φ contains 5. The closed √ √ 
form nearest to 0.72360679774997649 and containing 5 is (1 + 1/ 5)/2,√ 
which is also φ/ 5. So the Fibonacci sequence is roughly 

φ 
f[n] ≈ √ φn.


5


4.2 Taking out the big part from Fibonacci 

Now let’s take out the big part by peeling away the √φ φn contribution to 
5


see what remains. Define the signal F1 by


φ 
f1[n] = √ φn.


5


This signal is one mode of the Fibonacci sequence. The shape of a mode is

its order of growth, which here is φ. The amplitude of a mode is the prefac­
√ 
tor, which here is φ/ 5. The mode shape is a characteristic of the system, 
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whereas the amplitude depends on the input signal (for this example, the 
input signal was the impulse). So we often have more interest in the shape 
than in the amplitude. However, here we need shape and amplitude in 
order to determine the signal and peel it away. 

So tabulate the residual signal F2 = F − F1: 

n f2[n] = f[n] − f1[n] 

0 +0.27639320225002106 
1 −0.17082039324993681 
2 +0.10557280900008426 
3 −0.06524758424985277 
4 +0.04032522475023104 
5 −0.02492235949962307 
6 +0.01540286525060708 
7 −0.00951949424901599 
8 +0.00588337100158753 
9 −0.00363612324743201 

10 +0.00224724775415552 

The residual signal starts small and gets smaller, so the main mode F1 is an 
excellent approximation to the Fibonacci sequence F. To find a closed form 
for the residual signal F2, retry the successive-ratios probe: 

n f2[n]/f2[n − 1] 

1 −0.61803398874989446 
2 −0.61803398874989601 
3 −0.61803398874989390 
4 −0.61803398874989046 
5 −0.61803398874993953 
6 −0.61803398874974236 
7 −0.61803398875029414 
8 −0.61803398874847626 
9 −0.61803398875421256 

10 −0.61803398873859083 

The successive ratios are almost constant and look suspiciously like 1 − φ, 
which is also −1/φ. 

Exercise 22. Show that 1 − φ = −1/φ.
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So f2[n] ∼ (−φ)−n . To evaluate the amplitude, divide f2[n] by the mode 
shape (−φ)−n. Here is a table of those results: 

n f2[n]/(−φ)−n 

1 0.27639320225002090 
2 0.27639320225002140 
3 0.27639320225002101 
4 0.27639320225001901 
5 0.27639320225003899 
6 0.27639320224997083 
7 0.27639320225014941 
8 0.27639320224951497 
9 0.27639320225144598 

10 0.27639320224639063 

Those values stabilize quickly and look like one minus the amplitude of the √ 
φn mode. So the amplitude of the (−φ)n mode is 1 − φ/ 5, which is also √ 
1/(φ 5). Thus the residual signal, combining its shape and amplitude, is


1 
f2[n] =  √ (−φ)−n. 

φ 5 

Now combine the F1 and F2 signals to get the Fibonacci signal: 

f[n] =  f1[n] +  f2[n] 

= 
φ √ φn + 

1 √ (−φ)−n . 
5 φ 5 

This closed form, deduced using experiment, is the famous Binet formula 
for the nth Fibonacci number. 

Exercise 23.	 Use peeling away and educated guessing to find a 
closed form for the output signal when the impulse 
is fed into the following difference equation: 

y[n] =  7y[n − 1] −  12y[n − 2] +  x[n]. 

4.3 Operator interpretation 

Next we interpret this experimental result using operators and block di­
agrams. Modes are the simplest persistent responses that a system can 
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make, and are the building blocks of all systems, so we would like to find 
the operator or block-diagram representations for a mode. 

The Fibonacci signal decomposed into two simpler signals F1 and F2 – 
which are also the modes – and each mode grows geometrically. Geomet­
ric growth results from one feedback loop. So the φn mode is produced by 
this system 

+ 

φR 

with the system functional (1 − φR)−1 . 

The (−φ)−n mode is produced by this system 

+ 

−φ−1R 

with the system functional (1 + R/φ)−1 . 

The Fibonacci system is the sum of these signals scaled by the respective 
amplitudes, so its block diagram is a weighted sum of the preceding block 
diagrams. The system functional for the Fibonacci system is a weighted 
sum of the pure-mode system functionals. 

So let’s add the individual system functionals and see what turns up: 

F(R) = F1(R) + F2(R) 
φ 1 1 1 

= √ + √ 
5 1 − φR φ 5 1 + R/φ 

1 
= . 

1 − R − R2 

That functional is the system functional for the Fibonacci system derived 
directly from the block diagram (Section 3.5.2)! So the experimental and 
operator approaches agree that these operator block diagrams are equiva­
lent: 
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1 

φ 
√ 

5 

1 
1 + R/φ 

1 
1 − R − R2 

φ √ 
5 

1 
1 − φR 

+= 

where, to make the diagram easier to parse, system functionals stand for 
the first- and second-order systems that they represent. 

Exercise 24. Write the system of difference equations that cor­
responds to the parallel-decomposition block dia­
gram. Show that the system is equivalent to the 
usual difference equation 

f[n] = f[n − 1] + f[n − 2] + x[n]. 

The equivalence is obvious neither from the block diagrams nor from the 
difference equations directly. Making the equivalence obvious needs either 
experiment or the operator representation. Having experimented, you are 
ready to use the operator representation generally to find modes. 

4.4 General method: Partial fractions 

So we would like a way to decompose a system without peeling away and 
guessing. And we have one: the method of partial fractions, which shows 
the value of the operator representation and system functional. Because 
the system functional behaves like an algebraic expression – or one might 
say, because it is an algebraic expression – it is often easier to manipulate 
than is the block diagram or the difference equation. 

Having gone from the decomposed first-order systems to the original second-
order system functional, let’s now go the other way: from the original sys­
tem functional to the decomposed systems. To do so, first factor the R 
expression: 

1 1 1 
= . 

1 − R − R2 1 − φR 1 + R/φ 
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This factoring, a series decomposition, will help us study poles and zeros 
in a later chapter. Here we use it to find the parallel decomposition by 
using the technique of partial fractions. 

The partial fractions should use the two factors in denominator, so guess 
this form: 

1 a b 
= + ,

1 − R − R2 1 − φR 1 + R/φ

where a and b are unknown constants. After adding the fractions, the 
denominator will be the product (1 − φR)(1 + R/φ) and the numerator 
will be the result of cross multiplying: 

a(1 + R/φ) + b(1 − φR) = a + (a/φ)R + b − bφR. 

We want the numerator to be 1. If  we  set  a = φ and b = 1/φ, then at least 
the R terms cancel, leaving only the constant a +√b. So we chose a and b 
too large by the sum a + b, which is φ + 1/φ or 5. So instead choose 

√ 
a = φ/ 5, √ 
b = 1/(φ 5). 

If you prefer solving linear equations to the guess-and-check method, here 
are the linear equations: 

a + b = 1,


a/φ − bφ = 0,


whose solutions are the ones deduced using the guess-and-check method. 

The moral: To find how a system behaves, factor its system functional and 
use partial fractions to decompose that factored form into a sum of first-
order systems. With that decomposition, you can predict the output signal 
because you know how first-order systems behave. 

You can practice the new skill of decomposition with the following ques­
tion: 
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Exercise 25. Look again at the system 

y[n] = 7y[n − 1] − 12y[n − 2] + x[n]. 

Decompose the operator representation into a sum 
of two modes and draw the corresponding block 
diagram (using block diagram elements). When 
the input signal X is the impulse, do the opera­
tor and block-diagram decompositions produce the 
same closed form that you find by peeling away 
and guessing? 
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