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The goals of this chapter are: 

•	 to introduce two representations for discrete-time systems: block 
diagrams and operators; 

•	 to introduce the whole-signal abstraction and to exhort you to use 
abstraction; 

•	 to start manipulating operator expressions; 

•	 to compare operator with difference-equation and block-diagram 
manipulations. 

The preceding chapters explained the verbal-description and difference-
equation representations. This chapter continues the theme of multiple 
representations by introducing two new representations: block diagrams 
and operators. New representations are valuable because they suggest 
new thoughts and often provide new insight; an expert engineer values her 
representations the way an expert carpenter values her tools. This chapter 
first introduces block diagrams, discusses the whole-signal abstraction and 
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the general value of abstraction, then introduces the operator representa­
tion. 

3.1 Disadvantages of difference equations 

Chapter 2 illustrated the virtues of difference equations. When compared 
to the verbal description from which they originate, difference equations 
are compact, easy to analyze, and suited to computer implementation. Yet 
analyzing difference equations often involves chains of micro-manipulations 
from which insight is hard to find. As an example, show that the difference 
equation 

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3] 

is equivalent to this set of equations: 

d[n] = c[n] − c[n − 1]


c[n] = b[n] − b[n − 1]


b[n] = a[n] − a[n − 1].


As the first step, use the last equation to eliminate b[n] and b[n − 1] from 
the c[n] equation: 

c[n] = (a[n] − a[n − 1]) − (a[n − 1] − a[n − 2]) = a[n]−2a[n−1]+a[n−2]. � �� � � �� � 
b[n] b[n−1] 

Use that result to eliminate c[n] and c[n − 1] from the d[n] equation: 

d[n] = (a[n] − 2a[n − 1] + a[n − 2]) − (a[n − 1] − 2a[n − 2] + a[n − 3]) � �� � � �� � 
c[n] c[n−1] 

= a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3]. 

Voilà: The three-equation system is equivalent to the single difference equa­
tion. But what a mess. Each step is plausible yet the chain of steps seems 
random. If the last step had produced 

d[n] = a[n] − 2a[n − 1] + 2a[n − 2] − a[n − 3], 

it would not immediately look wrong. We would like a representation 
where it would look wrong, perhaps not immediately but at least quickly. 
Block diagrams are one such representation. 
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Exercise 12. Although this section pointed out a disadvantage of 
difference equations, it is also important to appreci­
ate their virtues. Therefore, invent a verbal descrip­
tion (a story) to represent the single equation 

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3] 

and then a verbal description to represent the 
equivalent set of three equations. Now have fun 
showing, without converting to difference equa­
tions, that these descriptions are equivalent! 

3.2 Block diagrams to the rescue 

Block diagrams visually represent a system. To show how they work, here 
are a few difference equations with corresponding block diagrams: 

Delay 

1/2+ y[n] = (x[n] + x[n − 1])/2 
averaging filter 

+ 

Delay 

y[n] = y[n − 1] + x[n] 
account with 0% interest 

Pause to try 13. Draw the block diagram for the endowment ac­
count from Section 2.2. 

The endowment account is a bank account that pays 4% interest, so it needs 
a gain element in the loop, with gain equal to 1.04. The diagram is not 
unique. You can place the gain element before or after the delay. Here is 
one choice: 
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+ 

1.04Delay 

y[n] = 1.04 y[n − 1] + x[n] 
endowment account from Section 2.2 

Amazingly, all systems in this course can be built from only two actions 
and one combinator: 

A action 1: multiply by α 

Delay 

+ 

action 2: delay one tick


combinator: add inputs


3.2.1 Block diagram for the Fibonacci system 

To practice block diagrams, we translate (represent) the Fibonacci system 
into a block diagram. 

Pause to try 14. Represent the Fibonacci system of Section 1.1 using 
a block diagram. 

We could translate Fibonacci’s description (Section 1.1) directly into a block 
diagram, but we worked so hard translating the description into a differ­
ence equation that we start there. Its difference equation is 

f[n] = f[n − 1] + f[n − 2] + x[n], 

where the input signal x[n] is how many pairs of child rabbits enter the 
system at month n, and the output signal f[n] is how many pairs of rabbits 
are in the system at month n. In the block diagram, it is convenient to let 
input signals flow in from the left and to let output signals exit at the right 
– following the left-to-right reading common to many languages. 
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Exercise 13. Do signals-and-systems textbooks in Hebrew or 
Arabic, which are written right to left, put input sig­
nals on the right and output signals on the left? 

The Fibonacci system combines the input sample, the previous output sam­
ple, and the second-previous output sample. These three signals are there­
fore inputs to the plus element. The previous output sample is produced 
using a delay element to store samples for one time tick (one month) before 
sending them onward. The second-previous output sample is produced by 
using two delay elements in series. So the block diagram of the Fibonacci 
system is 

+ 

Delay 

DelayDelay 

f[n]x[n] 

3.2.2 Showing equivalence using block diagrams 

We introduced block diagrams in the hope of finding insight not easily 
visible from difference equations. So use block diagrams to redo the proof 
that 

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3] 

is equivalent to 

d[n] = c[n] − c[n − 1],


c[n] = b[n] − b[n − 1],


b[n] = a[n] − a[n − 1].


The system of equations is a cascade of three equations with the structure 

output = this input − previous input. 

The block diagram for that structure is 

-1 Delay 

+ 
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where the gain of −1 produces the subtraction. 

The cascade of three such structures has the block diagram 

-1 Delay 

+ 

-1 Delay 

+ 

-1 Delay 

+ 

This diagram has advantages compared to the set of difference equations. 
First, the diagram helps us describe the system compactly. Each stage in 
the cascade is structurally identical, and the structural identity is appar­
ent by looking at it. Whereas in the difference-equation representation, the 
common structure of the three equations is hidden by the varying signal 
names. Each stage, it turns out, is a discrete-time differentiator, the sim­
plest discrete-time analog of a continuous-time differentiator. So the block 
diagram makes apparent that the cascade is a discrete-time triple differen­
tiator. 

Second, the block diagram helps rewrite the system, which we need to do 
to show that it is identical to the single difference equation. So follow a 
signal through the cascade. The signal reaches a fork three times (marked 
with a dot), and each fork offers a choice of the bottom or top branch. Three 
two-way branches means 23 or 8 paths through the system. Let’s examine 
a few of them. Three paths accumulate two delays: 

1. low road, low road, high road: 

-1 Delay 

+ 

-1 Delay 

+ 

-1 Delay 

+ 

2. low road, high road, low road:


-1 Delay 

+ 

-1 Delay 

+ 

-1 Delay 

+ 

3. high road, low road, low road:
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-1 Delay 

+ 

-1 Delay 

+ 

-1 Delay 

+ 

Besides the two delays, each path accumulates two gains of −1, making a 
gain of 1. So the sum of the three paths is a gain of 3 and a double delay. 

Exercise 14.	 Show the other five paths are: three paths with a 
single delay and a gain of −1, one path with three 
delays and a gain of −1, and one path that goes 
straight through (no gain, no delay). 

A block diagram representing those four groups of paths is 

−3 Delay 

3 Delay Delay 

−1 Delay Delay Delay 

+ 

The single difference equation 

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3]. 

also has this block diagram. 

The pictorial approach is an advantage of block diagrams because humans 
are sensory beings and vision is an important sense. Brains, over hun­
dreds of millions of years of evolution, have developed extensive hard­
ware to process sensory information. However, analytical reasoning and 
symbol manipulation originate with language, skill perhaps 100,000 years 
old, so our brains have much less powerful hardware in those domains. 
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Not surprisingly, computers are far more skilled than are humans at an­
alytical tasks like symbolic algebra and integration, and humans are far 
more skilled than are computers at perceptual tasks like recognizing faces 
or speech. When you solve problems, amplify your intelligence with a vi­
sual representation such as block diagrams. 

On the other side, except by tracing and counting paths, we do not know to 
manipulate block diagrams; whereas analytic representations lend them­
selves to transformation, an important property when redesigning sys­
tems. So we need a grammar for block diagrams. To find the rules of 
this grammar, we introduce a new representation for systems, the operator 
representation. This representation requires the whole-signal abstraction 
in which all samples of a signal combine into one signal. It is a subtle 
change of perspective, so we first discuss the value of abstraction in gen­
eral, then return to the abstraction. 

3.3 The power of abstraction 

Abstraction is a great tools of human thought. All language is built on 
it: When you use a word, you invoke an abstraction. The word, even an 
ordinary noun, stands for a rich, subtle, complex idea. Take cow and try 
to program a computer to distinguish cows from non-cows; then you find 
how difficult abstraction is. Or watch a child’s ability with language de­
velop until she learns that ‘red’ is not a property of a particular object but 
is an abstract property of objects. No one knows how the mind manages 
these amazing feats, nor – in what amounts to the same ignorance – can 
anyone teach them to a computer. 

Abstraction is so subtle that even Einstein once missed its value. Ein­
stein formulated the theory of special relativity [7] with space and time 
as separate concepts that mingle in the Lorentz transformation. Two years 
later, the mathematician Hermann Minkowski joined the two ideas into 
the spacetime abstraction: 

The views of space and time which I wish to lay before you have sprung from 
the soil of experimental physics, and therein lies their strength. They are radical. 
Henceforth space by itself, and time by itself, are doomed to fade away into 
mere shadows, and only a kind of union of the two will preserve an independent 
reality. 
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See the English translation in [11] or the wonderful textbook Spacetime 
Physics [1], whose first author recently retired from the MIT physics de­
partment. Einstein thought that spacetime was a preposterous invention 
of mathematicians with time to kill. Einstein made a mistake. It is per­
haps the fundamental abstraction of modern physics. The moral is that 
abstraction is powerful but subtle. 

Exercise 15. Find a few abstractions in chemistry, biology, physics, 
and programming. 

If we lack Einstein’s physical insight, we ought not to compound the ab­
sence with his mistake. So look for and create abstractions. For example, 
in a program, factor out common code into a procedure and encapsulate 
common operations into a class. In general, organize knowledge into ab­
stractions or chunks [15]. 

3.4 Operations on whole signals 

For signals and systems, the whole-signal abstraction increases our ability 
to analyze and build systems. The abstraction is take all samples of a sig­
nal and lump them together, operating on the entire signal at once and as 
one object. We have not been thinking that way because most of our repre­
sentations hinder this view. Verbal descriptions and difference equations 
usually imply a sample-by-sample analysis. For example, for the Fibonacci 
recurrence in Section 2.3.2, we found the zeroth sample f[0], used f[0] to 
find f[1], used f[0] and f[1] to find f[2], found a few more samples, then got 
tired and asked a computer to carry on. 

Block diagrams, the third representation, seem to imply a sample-by-sample 
analysis because the delay element holds on to samples, spitting out the 
sample after one time tick. But block diagrams live in both worlds and can 
also represent operations on whole signals. Just reinterpret the elements in 
the whole-signal view, as follows: 
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A action 1: multiply whole signal by α 

Delay 

+ 

action 2: shift whole signal right one tick


combinator: add whole signals


To benefit from the abstraction, compactly represent the preceding three 
elements. When a signal is a single object, the gain element acts like ordi­
nary multiplication, and the plus element acts like addition of numbers. If 
the delay element could also act like an arithmetic operation, then all three 
elements would act in a familiar way, and block diagrams could be ma­
nipulated using the ordinary rules of algebra. In order to bring the delay 
element into this familiar framework, we introduce the operator represen­
tation. 

3.4.1 Operator representation 

In operator notation, the symbol R stands for the right-shift operator. It 
takes a signal and shifts it one step to the right. Here is the notation for a 
system that delays a signal X by one tick to produce a signal Y: 

Y = R{X}. 

Now forget the curly braces, to simplify the notation and to strengthen the 
parallel with ordinary multiplication. The clean notation is 

Y = RX. 

Pause to try 15. Convince yourself that right-shift operator R, rather 
than the left-shift operator L, is equivalent to a de­
lay. 

Let’s test the effect of applying R to the fundamental signal, the impulse. 
The impulse is 

I = 1, 0, 0, 0, . . .  

Applying R to it gives 
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RI = 0, 1, 0, 0, . . .  

which is also the result of delaying the signal by one time tick. So R rather 
than L represents the delay operation. In operator notation, the block-
diagram elements are: 

α action 1 (gain) multiply whole signal by α 
R action 2 (delay) shift whole signal right one tick 
+ combinator add whole signals 

3.4.2 Using operators to rewrite difference equations 

Let’s try operator notation on the first example of the chapter: rewriting 
the single difference equation 

d[n] = a[n] − 3a[n − 1] + 3a[n − 2] − a[n − 3] 

into the system of three difference equations 

d[n] = c[n] − c[n − 1],


c[n] = b[n] − b[n − 1],


b[n] = a[n] − a[n − 1].


To turn the sample-by-sample notation into whole-signal notation, turn 
the left side of the long equation into the whole signal D, composed of the 
samples d[0], d[1], d[2], . . .. Turn the samples on the right side into whole 
signals as follows: 

a[n] → A,


a[n − 1] → RA,


a[n − 2] → RRA,


a[n − 3] → RRRA.


Now import compact notation from algebra: If R acts like a variable or 
number then RR can be written R2. Using exponent notation, the transla­
tions are: 

a[n] → A,


a[n − 1] → RA,


a[n − 2] → R2A,


a[n − 3] → R3A.
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With these mappings, the difference equation turns into the compact form 

D = (1 − 3R + 3R2 − R3)A. 

To show that this form is equivalent to the system of three difference equa­
tions, translate them into an operator expression connecting the input sig­
nal A and the output signal D. 

Pause to try 16. What are the operator versions of the three differ­
ence equations? 

The system of equations turns into these operator expressions 

d[n] = c[n] − c[n − 1] → D = (1 − R)C, 

c[n] = b[n] − b[n − 1] → C = (1 − R)B, 

b[n] = a[n] − a[n − 1] → B = (1 − R)A. 

Eliminate B and C to get 

D = (1 − R)(1 − R)(1 − R)A = (1 − R)3A. 

Expanding the product gives 

D = (1 − 3R + 3R2 − R3)A, 

which matches the operator expression corresponding to the single dif­
ference equation. The operator derivation of the equivalence is simpler 
than the block-diagram rewriting, and much simpler than the difference-
equation manipulation. 

Now extend the abstraction by dividing out the input signal: 

D 
= 1 − 3R + 3R2 − R3. 

A 

The operator expression on the right, being independent of the input and 
output signals, is a characteristic of the system alone and is called the sys­
tem functional. 

The moral of the example is that operators help you efficiently analyze 
systems. They provide a grammar for combining, for subdividing, and in 
general for rewriting systems. It is a familiar grammar, the grammar of 
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algebraic expressions. Let’s see how extensively operators follow these. In 
the next section we stretch the analogy and find that it does not break. 

Exercise 16. What is the result of applying 1 − R to the signal 
1, 2, 3, 4, 5, . . .? 

Exercise 17. What is the result of applying (1 − R)2 to the signal 
1, 4, 9, 16, 25, 36, . . .? 

3.5 Feedback connections 

The system with (1 − R)3 as its system functional used only feedforward 
connections: The output could be computed directly from a fixed number 
of inputs. However, many systems – such as Fibonacci or bank accounts 
– contain feedback, where the output depends on previous values of the 
output. Feedback produces new kinds of system functionals. Let’s test 
whether they also obey the rules of algebra. 

3.5.1 Accumulator 

Here is the difference equation for the simplest feedback system, an accu­
mulator: 

y[n] = y[n − 1] + x[n]. 

It is a bank account that pays no interest. The output signal (the balance) 
is the sum of the inputs (the deposits, whether positive or negative) up to 
and including that time. The system has this block diagram: 

+ 

Delay 

Now combine the visual virtues of block diagrams with the compactness 
and symbolic virtues of operators by using R instead of ‘Delay’. The oper­
ator block diagram is 
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X + 

R 

Y 

Pause to try 17. What is its system functional? 

Either from this diagram or from the difference equation, translate into 
operator notation: 

Y = RY + X. 

Collect the Y terms on one side, and you find end up with the system func­
tional: 

Y 1 
= . 

X 1 − R 

It is the reciprocal of the differentiator. 

This operator expression is the first to include R in the denominator. One 
way to interpret division is to compare the output signal produced by the 
difference equation with the output signal produced by the system func­
tional 1/(1 − R). For simplicity, test the equivalence using the impulse 

I = 1, 0, 0, 0, . . .  

as the input signal. So x[n] is 1 for n = 0 and is 0 otherwise. Then the 
difference equation 

y[n] = y[n − 1] + x[n] 

produces the output signal 

Y = 1, 1, 1, 1, . . . .  

Exercise 18. Check this claim. 

The output signal is the discrete-time step function θ. Now apply 1/(1−R)

to the impulse I by importing techniques from algebra or calculus. Use
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synthetic division, Taylor series, or the binomial theorem to rewrite 1/(1 − 
R) as 

= 1 + R + R2 + R3 + · · · . 
1 − R 

To apply 1/(1 − R) to the impulse, apply the each of terms 1, R, R2 , . . . to 
the impulse I: 

1I = 1, 0, 0, 0, 0, 0, 0, . . . ,  

RI = 0, 1, 0, 0, 0, 0, 0, . . . , 


R2I = 0, 0, 1, 0, 0, 0, 0, . . . , 


R3I = 0, 0, 0, 1, 0, 0, 0, . . . , 


R4I = 0, 0, 0, 0, 1, 0, 0, . . . , 


. . .  

Add these signals to get the output signal Y. 

Pause to try 18. What is Y? 

For n � 0, the y[n] sample gets a 1 from the RnI term, and from no other 
term. So the output signal is all 1’s from n = 0 onwards. The signal with 
those samples is the step function: 

Y = 1, 1, 1, 1, . . . .  

Fortunately, this output signal matches the output signal from running the 
difference equation. So, for an impulse input signal, these operator expres­
sions are equivalent: 

1 
and 1 + R + R2 + R3 + · · · . 

1 − R 

Exercise 19. If you are mathematically inclined, convince your­
self that verifying the equivalence for the impulse 
is sufficient. In other words, we do not need to try 
all other input signals. 
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The moral is that the R operator follows the rules of algebra and calculus. 
So have courage: Use operators to find results, and do not worry. 

3.5.2 Fibonacci 

Taking our own advice, we now analyze the Fibonacci system using oper­
ators. The recurrence is: 

output = delayed output + twice-delayed output + input. 

Pause to try 19. Turn this expression into a system functional. 

The output signal is F, and the input signal is X. The delayed output is RX, 
and the twice-delayed output is RRX or R2X. So  

F = RF + R2F + X. 

Collect all F terms on one side: 

F − RF − R2F = X. 

Then factor the F: 

(1 − R − R2)F = X. 

Then divide both sides by the R expression: 

1 
F = X. 

1 − R − R2 

So the system functional is 

1 
. 

1 − R − R2 
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Exercise 20.	 Using maxima or otherwise, find the Taylor se­
ries for 1/(1 − R − R2). What do you notice 
about the coefficients? Coincidence? maxima (max­
ima.sourceforge.net) is a powerful symbolic algebra 
and calculus system. It descends from Macsyma, 
which was created at MIT in the 1960’s. maxima is 
free software (GPL license) and is available for most 
platforms. 

3.6 Summary 

Including the two system representations discussed in this chapter, you 
have four representation for discrete-time systems: 

1. verbal descriptions, 

2. difference equations, 

3. block diagrams, and 

4. operator expressions. 

In the next chapter, we use the operator representation to decompose, and 
design systems. 
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