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The world is too rich and complex for our minds to grasp it whole, for 
our minds are but a small part of the richness of the world. To cope with 
the complexity, we reason hierarchically. We divide the world into small, 
comprehensible pieces: systems. Systems are ubiquitous: a CPU, a memory 
chips, a motor, a web server, a jumbo jet, the solar system, the telephone 
system, or a circulatory system. Systems are a useful abstraction, chosen 
because their external interactions are weaker than their internal interac­
tions. That properties makes independent analysis meaningful. 

Systems interact with other systems via forces, messages, or in general via 
information or signals. ‘Signals and systems’ is the study of systems and 
their interaction. 

This book studies only discrete-time systems, where time jumps rather 
than changes continuously. This restriction is not as severe as its seems. 
First, digital computers are, by design, discrete-time devices, so discrete-
time signals and systems includes digital computers. Second, almost all 
the important ideas in discrete-time systems apply equally to continuous-
time systems. 

Alas, even discrete-time systems are too diverse for one method of analy­
sis. Therefore even the abstraction of systems needs subdivision. The par­
ticular class of so-called linear and time-invariant systems admits power­
ful tools of analysis and design. The benefit of restricting ourselves to such 
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systems, and the meaning of the restrictions, will become clear in subse­
quent chapters. 

1.1 Rabbits 

Here is Fibonacci’s problem [6, 10], a famous discrete-time, linear, time-
invariant system and signal: 

A certain man put a pair of rabbits in a place surrounded on all sides by a wall. 
How many pairs of rabbits can be produced from that pair in a year if it is 
supposed that every month each pair begets a new pair which from the second 
month on becomes productive? 

1.1.1 Mathematical representation 

This system consists of the rabbit pairs and the rules of rabbit reproduction. 
The signal is the sequence f where f[n] is the number of rabbit pairs at 
month n (the problem asks about n = 12). 

What is f in the first few months? 

In month 0, one rabbit pair immigrates into the system: f[0] =  1. Let’s 
assume that the immigrants are children. Then they cannot have their own 
children in month 1 – they are too young – so f[1] = 1. But this pair is an 
adult pair, so in month 2 the pair has children, making f[2] = 2. 

Finding f[3] requires considering the adult and child pairs separately (hier­
archical reasoning), because each type behaves according to its own repro­
duction rule. The child pair from month 2 grows into adulthood in month 
3, and the adult pair from month 2 begets a child pair. So in f[3] = 3: two 
adult and one child pair. 

The two adult pairs contribute two child pairs in month 4, and the one 
child pair grows up, contributing an adult pair. So month 4 has five pairs: 
two child and three adult pairs. To formalize this reasoning process, define 
two intermediate signals c and a: 

c[n] = number of child pairs at month n; 

a[n] = number of adult pairs at month n. 

The total number of pairs at month n is f[n] = c[n] + a[n]. Here is a table 
showing the three signals c, a, and f: 
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n 0 1 2 3 

c 1 0 1 1 

a 0 1 1 2 

f 1 1 2 3 

The arrows in the table show how new entries are constructed. An upward 
diagonal arrow represents the only means to make new children, namely 
from last month’s adults: 

a[n − 1] → c[n] or c[n] = a[n − 1]. 

A horizontal arrow represents one contribution to this month’s adults, that 
adults last month remain adults: a[n − 1] → a[n]. A downward diagonal 
arrow represents the other contribution to this month’s adults, that last 
month’s children grow up into adults: c[n−1] → a[n]. The sum of the two 
contributions is 

a[n] = a[n − 1] + c[n − 1]. 

What is the difference equation for f itself? 

To find the equation for f, one has at least two methods: logical deduction 
(Problem 1.1) or trial and error. Trial and error is better suited for finding 
results, and logical deduction is better suited for verifying them. Therefore, 
using trial and error, look for a pattern among addition samples of f: 

n 0 1 2 3 4 5 6 

c 1 0 1 1 2 3 5 

a 0 1 1 2 3 5 8 

f 1 1 2 3 5 8 13 

What useful patterns live in these data? 

One prominent pattern is that the signals c, a, and f look like shifted ver­
sions of each other: 

a[n] = f[n − 1];


c[n] = a[n − 1] = f[n − 2].


Since f[n] = a[n] + c[n], 
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f[n] = f[n − 1] + f[n − 2]. 

with initial conditions f[0] = f[1] = 1. 

This mathematical description, or representation, clarifies a point that is 
not obvious in the verbal description: that the number of rabbit pairs in 
any month depends on the number in the two preceding months. This 
difference equation is said to be a second-order difference equation. Since 
its coefficients are all unity, and the signs are positive, it is the simplest 
second-order difference equation. Yet its behavior is rich and complex. 

Problem 1.1 Verifying the conjecture 

Use the two intermediate equations 

c[n] = a[n − 1], 

a[n] = a[n − 1] + c[n − 1]; 

and the definition f[n] = a[n] + c[n] to confirm the conjecture 

f[n] = f[n − 1] + f[n − 2]. 

1.1.2 Closed-form solution 

The rabbit difference equation is an implicit recipe that computes new val­
ues from old values. But does it have a closed form: an explicit formula 
for f[n] that depends on n but not on preceding samples? As a step to­
ward finding a closed form, let’s investigate how f[n] behaves as n be­
comes large. 

Does f[n] grow like a polynomial in n, like a logarithmic function of n, or like an 
exponential function of n? 

Deciding among these options requires more data. Here are many values 
of f[n] (starting with month 0): 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .  
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The samples grow quickly. Their growth 
is too rapid to be logarithmic, unless f[n] 
is an unusual function like (log n)20. Their 
growth is probably also too rapid for f[n] 
to be a polynomial in n, unless f[n] is n 
a high-degree polynomial. A likely al­
ternative is exponential growth. To test 
that hypothesis, use pictorial reasoning by plotting ln f[n] versus n. The 
plotted points oscillate above and below a best-fit straight line. Therefore 
ln f[n] grows almost exactly linearly with n, and f[n] is approximately an 
exponential function of n: 

f[n] ≈ Azn, 

where z and A are constants. 

ln
 f

 [n
] 

How can z be estimated from f[n] data? 
n f[n]/f[n − 1] 

10 1.6181818181818 

best-fit line as n grows, the exponential approx-
Because the plotted points fall ever closer to the 

20 1.6180339985218 

imation f[n] ≈ Azn becomes more exact as n 30 1.6180339887505 

40 1.6180339887499grows. If the approximation were exact, then f[n]/f[n− 
1] would always equal z, so  f[n]/f[n−1] becomes 50 1.6180339887499 

an ever closer approximation to z as n increases.

These ratios seem to converge to z = 1.6180339887499.

Its first few digits 1.618 might be familiar. For a memory amplifier, feed

the ratio to the online Inverse Symbolic Calculator (ISC). Given a number,

it guesses its mathematical source. When given the Fibonacci z, the In­

verse Symbolic Calculator suggests two equivalent forms: that z is a root
√ 
of 1 − x − x2 or that it is φ ≡ (1 + 5)/2. The constant φ is the famous 
golden ratio [5]. 

Therefore, f[n] ≈ Aφn . To find the constant of 
n f[n]/f[n − 1]

proportionality A, take out the big part by di­
viding f[n] by φn . These ratios hover around 
0.723 . . ., so perhaps A is 

√ 
3 − 1. Alas, exper­

10 

20 

0.72362506926472 

0.72360679895785 

iments with larger values of n strongly suggest 
that the digits continue 0.723606 . . .  whereas 

√ 
3− 

30 

40 

0.72360679775006 

0.72360679774998 

1 = 0.73205 . . .. A bit of experimentation or 50 0.72360679774998 

the Inverse Symbolic Calculator suggests that √ 
0.72360679774998 probably originates from φ/ 5. 
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√ 
This conjecture has the merit of reusing the 5 already contained in the de­
finition of φ, so it does not introduce a new arbitrary number. With that 
conjecture for A, the approximation for f[n] becomes 

φn+1 

f[n] ≈ √ . 
5 

How accurate is this approximation? 

To test the approximation, take out the big 
n r[n]/r[n − 1]

part by computing the residual: 
√ 2 −0.61803398874989601 

r[n] = f[n] − φn+1/ 5. 3 −0.61803398874989812 

4 −0.61803398874988624 
The residual decays rapidly, perhaps expo­ 5 −0.61803398874993953 
nentially. Then r has the general form 6 −0.61803398874974236 

r[n] ≈ Byn , 
7 −0.61803398875029414 

8 −0.61803398874847626 

where y and B are constants. To find y, 9 −0.61803398875421256 

compute the ratios r[n]/r[n − 1]. They con­ 10 −0.61803398873859083 

verge to −0.61803 . . ., which is almost ex-
nactly 1 − φ or −1/φ. Therefore r[n] ≈ B(−1/φ) . 

What is the constant of proportionality B? 

nTo compute B, divide r[n] by (−1/φ) . These values, if n is not too large 
(Problem 1.2), almost instantly settles on 0.27639320225. With luck, this √ 
number can be explained using φ and 5. A few numerical experiments 
suggest the conjecture 

1 1 
B = √ × . 

5 φ 

The residual becomes � �n+1
1 1 

r[n] = −√ × − . 
5 φ 

The number of rabbit pairs is the sum of the approximation Azn and the 
residual Byn: 

f[n] =  √ 
1 

φn+1 − (−φ)−(n+1) . 
5 
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How bizarre! The Fibonacci signal f splits into two signals in at least two 
ways. First, it is the sum of the adult-pairs signal a and the child-pairs 
signal c. Second, it is the sum f1 + f2 where f1 and f2 are defined by 

1 
f1[n] ≡ √ φn+1; 

5 
1 

f2[n] ≡ −√ (−1/φ)n+1. 
5 

The equivalence of these decompositions would have been difficult to pre­
dict. Instead, many experiments and guesses were needed to establish 
the equivalence. Another kind of question, also hard to answer, arises by 
changing merely the plus sign in the Fibonacci difference equation into a 
minus sign: 

g[n] = g[n − 1] − g[n − 2]. 

With corresponding initial conditions, namely g[0] = g[1] = 1, the signal g 
runs as follows (staring with n = 0): 

1, 1, 0, −1, −1, 0, 1, 1, 0, −1, −1,  0, . . . .  
one period 

Rather than growing approximately exponentially, this sequence is exactly 
periodic. Why? Furthermore, it has period 6. Why? How can this period 
be predicted without simulation? 

A representation suited for such questions is introduced in ??. For now, 
let’s continue investigating difference equations to represent systems. 

Problem 1.2 Actual residual 

ln
 r

[n
] 

n 

Here is a semilog graph of the absolute resid­
ual |r[n]| computed numerically up to n = 
80. (The absolute residual is used because 
the residual is often negative and would 
have a complex logarithm.) It follows the 
predicted exponential decay for a while, but 
then misbehaves. Why? 

1.2 Leaky tank 

In the Fibonacci system, the rabbits changed their behavior – grew up or 
had children – only once a month. The Fibonacci system is a discrete-time 
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system. These systems are directly suitable for computational simulation 
and analysis because digital computers themselves act like discrete-time 
systems. However, many systems in the world – such as piano strings, 
earthquakes, microphones, or eardrums – are naturally described as continuous-
time systems. 

To analyze continuous-time systems using discrete-time 
tools requires approximations. These approximations are 
illustrated in the simplest interesting continuous-time sys­
tem: a leaky tank. Imagine a bathtub or sink filled to a 
height h with water. At time t = 0, the drain is opened 
and water flows out. What is the subsequent height of 
the water? 

At t = 0, the water level and therefore the pressure is at its highest, so the 
water drains most rapidly at t = 0. As the water drains and the level falls, 
the pressure and the rate of drainage also fall. This behavior is captured by 
the following differential equation: 

h 

leak 

dh 
= −f(h),

dt 

where f(h) is an as-yet-unknown function of the height. 

Finding f(h) requires knowing the geometry of the tub and piping and 
then calculating the flow resistance in the drain and piping. The simplest 
model for resistance is a so-called linear leak: that f(h) is proportional to 
h. Then the differential equation simplifies to 

dh ∝ −h. 
dt 

What are the dimensions of the missing constant of proportionality? 

The derivative on the left side has dimensions of speed (height per time), 
so the missing constant has dimensions of inverse time. Call the constant 
1/τ, where τ is the time constant of the system. Then 

dh h 
= −  . 

dt τ 



� � 

� � 

� � 

9 1 Difference equations 

An almost-identical differential equation describes the 
voltage V on a capacitor discharging across a resistor: 

dV 1 
= −  V. 

dt RC 

It is the leaky-tank differential equation with time con­
stant τ = RC. 

R 

C 

V 

Problem 1.3 Kirchoff’s laws 

Use Kirchoff’s laws to verify this differential equation. 

Approximating the continuous-time differential equation as a discrete-time 
system enables the system to be simulated by hand and computer. In a 
discrete-time system, time advances in lumps. 

If the lump size, also known as the timestep, is T , then h[n] is the discrete-
time approximation of h(nT). Imagine that the system starts with h[0] =  
h0. What is h[1]? In other words, what is the discrete-time approximation 
for h(T)? The leaky-tank equation says that 

dh h 
= −  . 

dt τ 

At t = 0 this derivative is −h0/τ. If  dh/dt stays fixed for a whole timestep 
– a slightly dubious but simple assumption – then the height falls by ap­
proximately h0T/τ in one timestep. Therefore 

T T 
h[1] = h0 − h0 = 1 − h[0]. 

τ τ 

Using the same assumptions, what is h[2] and, in general, h[n]? 

The reasoning to compute h[1] from h[0] applies when computing h[2] 
from h[1]. The derivative at n = 1 – equivalently, at t = T – is  −h[1]/τ. 
Therefore between n = 1 and n = 2 – equivalently, between t = T and 
t = 2T – the height falls by approximately −h[1]T/tau, 

T T 
h[2] = h1 − h1 = 1 − h[1]. 

τ τ 

This pattern generalizes to a rule for finding every h[n]: 

T 
h[n] =  1 − h[n − 1]. 

τ 
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This implicit equation has the closed-form solution 
n

T 
h[n] = h0 1 − . 

τ 

How closely does this solution reproduce the behavior of the original, continuous-
time system? 

The original, continuous-time differential equation dh/dt = −htau is 
solved by 

h(t) = h0e −t/τ. 

At the discrete times t = nT , this solution becomes 
n


h(t) = h0e −nT/τ = h0 e −T/τ .


The discrete-time approximation replaces e−T/τ with 1 − T/τ. That differ­
ence is the first two terms in the Taylor series for e−T/τ: � �2 � �3 

e −T/τ = 1 − 
T 

+ 
1 T 

− 
1 T 

+ . . . .  
τ 2 τ 6 τ 

Therefore the discrete-time approximation is accurate when the higher-
order terms in the Taylor series are small – namely, when T/τ � 1. 

This method of solving differential equations by replacing them with discrete-
time analogs is known as the Euler approximation, and it can be used to 
solve equations that are very difficult or even impossible to solve analyti­
cally. 

Problem 1.4 Which is the approximate solution? 

n 

Here are unlabeled graphs showing the discrete-time sam­
ples h[n] and the continuous-time samples h(nT), for n = 
0 . . . 6. Which graph shows the discrete-time signal? 

Problem 1.5 Large timesteps 

Sketch the discrete-time samples h[n] in three cases: (a.) T = 
τ/2 (b.) T = τ (c.) T = 2τ (d.) T = 3τ 

Problem 1.6 Tiny timesteps 

Show that as T → 0, the discrete-time solution 
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T n 

h[n] = h0 1 − . 
τ 

approaches the continuous-time solution 

h(t) = h0e −nT/τ. 

How small does T have to be, as a function of n, in order that the two solutions 
approximately match? 

1.3 Fall of a fog droplet 

The leaky tank (Section 1.2) is a first-order system, and its differential equa­
tion and difference equation are first-order equations. However, the phys­
ical world is often second order because Newton’s second law of motion, 
F = ma, contains a second derivative. 

For such systems, how applicable is the Euler approximation? To illustrate 
the issues that arise in applying the Euler approximation to second-order 
systems, let’s simulate the fall of a fog droplet acted on by gravity (F = mg) 
and air resistance. A fog droplet is small enough that its air resistance is 
proportional to velocity rather than to the more usual velocity squared. 
Then the net downward force on the droplet is mg − bv, where v is its 
velocity and b is a constant that measures the strength of the drag. In terms 
of position x, with the positive direction as downward, Newton’s second 
law becomes 

d2x dx 
m = mg − b . 

dt2 dt 

Dividing both sides by m gives 

d2x b dx 
= g − . 

dt2 m dt 

What are the dimensions of b/m? 

The constant b/m turns the velocity dx/dt into an acceleration, so b/m has 
dimensions of inverse time. Therefore rewrite it as 1/τ, where τ ≡ m/b is 
a time constant. Then 

d2x 1 dx 
= g − . 

dt2 τ dt 
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What is a discrete-time approximation for the second derivative? 

In the leaky-tank equation, 

dh h 
= −  ,

dt τ 

the first derivative at t = nT had the Euler approximation (h[n + 1] −  
h[n])/T and h(t = nT) became h[n]. The second derivative d2x/dt2 is the 
limit of a difference of two first derivatives. Using the Euler approximation 
procedure, approximate the first derivatives at t = nT and t = (n + 1)T : 

dx � x[n + 1] − x[n] � ≈ ;
dt t=nT T 

dx � x[n + 2] − x[n + 1] � ≈ . 
dt t=(n+1)T T 

Then 

d2x � 1 
� 

x[n + 2] − x[n + 1] x[n + 1] − x[n] 
� � ≈ − . 

dt2 t=nT T T T 

This approximation simplifies to 

d2x � 1 � ≈ (x[n + 2] − 2x[n + 1] + x[n]) . 
dt2 t=nT T2 

The Euler approximation for the continuous-time equation of motion is 
then 

1 1 x[n + 1] − x[n]
(x[n + 2] − 2x[n + 1] + x[n]) = g − 

T2 τ T 

or 

T 
x[n + 2] − 2x[n + 1] + x[n] = gT2 − (x[n + 1] − x[n]). 

τ 

Our old friend from the leaky tank, the ratio T/τ, has reappeared in this 
problem. To simplify the subsequent equations, define α ≡ T/τ. Then 
after collecting the like terms, the difference equation for the falling fog 
droplet is 

x[n + 2] = (2 − α)x[n + 1] − (1 − α)x[n] + gT2. 
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As expected, this difference equation is second order. Like the previous 
second-order equation, the Fibonacci equation, it needs two initial values. 
Let’s try x[−1] = x[0] = 0. Physically, the fog droplet starts from rest at the 
reference height 0, and at t = 0 starts feeling the gravitational force mg. 

For a typical fog droplet with radius 10 μm, the physical parameters are: 

m ∼ 4.2 · 10−12 kg;


b ∼ 2.8 · 10−9 kg s−1;


τ ∼ 1.5 · 10−3 s−1.


Relative to τ, the timestep T should be small, oth­

erwise the simulation error will large. A timestep

such as 0.1 ms is a reasonable compromise be-
 x

[n
](

μ
m

)

20 

10 

tween keeping reducing the error and speeding 0 
up the simulation. Then the dimensionless ratio 0  10  20  

n 

α is 0.0675. A simulation using these parameters 
shows x initially rising faster than linearly, probably quadratically, then 
rising linearly at a rate of roughly 1.5 μm per timestep or 1.5 cm s−1 . 

This simulation result explains the longevity of fog. Fog is, roughly speak­
ing, a cloud that has sunk to the ground. Imagine that this cloud reaches 
up to 500 m (a typical cloud thickness). Then, to settle to the ground, the 
cloud requires 

500 m 
tfall ∼ ∼ 9 hours. 

1.5 cm s−1 

In other words, fog should last overnight – in agreement with experience! 

Counting timesteps How many timesteps would the fog-droplet simulation re­
quire (with T = 0.1 ms) in order for the droplet to fall 500 m in the simulation? 
How long would your computer, or another easily available computer, require to 
simulate that many timesteps? 

Problem 1.7 Terminal velocity 

By simulating the fog equation 

x[n + 2] = (2 − α)x[n + 1] − (1 − α)x[n] + gT2 . 

with several values of T and therefore α, guess a relation between g, T , α, and the 
terminal velocity of the particle. 



� 

� 

� � 

� � 

14 1.4 Springs 

1.4 Springs 

Now let’s extend our simulations to the most important second-order sys­
tem: the spring. Springs are a model for a vast number of systems in the 
natural and engineered worlds: planetary orbits, chemical bonds, solids, 
electromagnetic radiation, and even electron–proton bonds. Since color re­
sults from electromagnetic radiation meeting electron–proton bonds, grass 
is green and the sky is blue because of how springs interact with springs. 

The simplest spring system is a mass connected to a spring 
and free to oscillate in just one dimension. Its differential 
equation is 

d2x 
m + kx = 0,

dt2 

where x is the block’s displacement from the equilibrium position, m is the 
block’s mass, and k is the spring constant. Dividing by m gives 

d2x k 
+ x = 0. 

dt2 m 

Defining the angular frequency ω ≡ k/m gives the clean equation: 

d2x 
+ ω2x = 0. 

dt2 

Now divide time into uniform steps of duration T , and replace the second 
derivative d2x/dt2 with a discrete-time approximation: 

d2x � x[n + 2] − 2x[n + 1] + x[n] � ≈ ,
dt2 t=nT T2 

where as usual the sample x[n] corresponds to the continuous-time signal 
x(t) at t = nT . Then 

x[n + 2] − 2x[n + 1] + x[n]
+ ω2x[n] = 0 

T2 

or after collecting like terms, 

x[n + 2] = 2x[n + 1] −  1 + (ωT)2 x[n]. 

Defining α ≡ ωT , 

x[n + 2] = 2x[n + 1] −  1 + α2 x[n]. 

k 
m 

x 
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This second-order difference equation needs two initial values. A simple 
pair is x[0] = x[1] = x0. This choice corresponds to pulling the mass right-
wards by x0, then releasing it at t = T . What happens afterward? 

To simulate the system numerically, one should 
choose T to make α small. As a reasonable small 
α, try 100 samples per oscillation period: α = 

name: dummy 

file: shm-forward 
2π/100 or roughly 0.06. Alas, the simulation pre-

state: unknown 
dicts that the oscillations grow to infinity. 

What went wrong? 

Perhaps α, even  at  0.06, is too large. Here are two simulations with smaller 
values of α: 

x x 

t t 

α ≈ 0.031 α ≈ 0.016 

These oscillations also explode. The only difference seems to be the rate of 
growth (Problem 1.8). 

Problem 1.8 Tiny values of α 

Simulate 

x[n + 2] = 2x[n + 1] −  
� 
1 + α2

� 
x[n] 

using very small values for α. What happens? 

An alternative explanation is that the discrete-time approximation of the 
derivative caused the problem. If so, it would be surprising, because the 
same approximation worked when simulating the fall of a fog droplet. But 
let’s try an alternative definition: Instead of defining 

dx � x[n + 1] − x[n] � ≈ ,
dt t=nT T 

try the simple change to 

dx x[n] − x[n − 1]≈ . 
dt T 



Using the same procedure for the second derivative, 

 
d2x � x[n] − 2x[n − 1] + x[n − 2] �

 ≈ . 
dt2 �t=nT T2 

The discrete-time spring equation is then x 

(1 + α2)x[n] = 2x[n − 1] − x[n − 2], 
t 

or 

2x[n − 1] − x[n − 2] 
x[n] =  . 

1 + α2 

Using the same initial conditions x[0] = x[1] = 1, what is the subsequent 
time course? The bad news is that these oscillations decay to zero! 

However, the good news is that changing the de- x 

rivative approximation can significantly affect the 
behavior of the discrete-time system. Let’s try a t 

symmetric second derivative: 

2  
d x � x[n + 1] − 2x[n] + x[n − 1] ��  . 
dt2 2 t=nT 

≈
T

Then the difference equation becomes 

x[n + 2] = (2 − α2)x[n + 1] − x[n]. 

Now the system oscillates stably, just as a spring without energy loss or 
input should behave. 

Why did the simple change to a symmetric second derivative solve the 
problem of decaying or growing oscillations? The representation of the 
alternative discrete-time systems as difference equations does not help an­
swer that question. Its answer requires the two most important ideas in 
signals and systems: operators (??) and modes (??). 

Problem 1.9 Different initial conditions 

Here are the x  subsequent samples using the symmet­
ric second derivative and initial conditions x[0] = 0 , 
x[1] = x 0. The amplitude is, however, much larger 

t 
than x0. Is that behavior physically reasonable? If 
yes, explain why. If not, explain what should happen. 
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