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Sampling
 

Conversion of a continuous-time signal to discrete time.
 

t

x(t)
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n

x[n]
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We have used sampling a number of times before.
 

Today: new insights from Fourier representations.
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Sampling
 

Sampling allows the use of modern digital electronics to process, 

record, transmit, store, and retrieve CT signals. 

• audio: MP3, CD, cell phone 

• pictures: digital camera, printer 

• video: DVD 

• everything on the web 
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Sampling
 

Sampling is pervasive.
 

Example: digital cameras record sampled images.
 

x

y I(x, y)

m

n I[m,n]
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Sampling
 

Photographs in newsprint are “half-tone” images. Each point is 

black or white and the average conveys brightness. 
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Sampling
 

Zoom in to see the binary pattern.
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Sampling
 

Even high-quality photographic paper records discrete images. When 

AgBr crystals (0.04 − 1.5µm) are exposed to light, some of the Ag 

is reduced to metal. During “development” the exposed grains are 

completely reduced to metal and unexposed grains are removed. 
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Images of discrete grains in photographic paper removed due to copyright restrictions.



Sampling
 

Every image that we see is sampled by the retina, which contains ≈ 

100 million rods and 6 million cones (average spacing ≈ 3µm) which 

act as discrete sensors. 
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http://webvision.med.utah.edu/imageswv/sagschem.jpeg

Courtesy of Helga Kolb, Eduardo Fernandez, and Ralph Nelson. Used with permission.

http://webvision.med.utah.edu/imageswv/sagschem.jpeg


Check Yourself
 

Your retina is sampling this slide, which is composed of 1024×768 

pixels. 

Is the spatial sampling done by your rods and cones ade­

quate to resolve individual pixels in this slide? 
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Check Yourself
 

The spacing of rods and cones limits the angular resolution of your 

retina to approximately 

rod/cone spacing 3 × 10−6 m 
θeye = ≈ ≈ 10−4 radians 

diameter of eye 3 cm 

The angle between pixels viewed from the center of the classroom 

is approximately 

screen size / 1024 3 m/1024 ≈ ≈ 3 × 10−4 radiansθpixels = 
distance to screen 10 m 

Light from a single pixel falls upon multiple rods and cones. 
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Sampling
 

How does sampling affect the information contained in a signal?
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Sampling
 

We would like to sample in a way that preserves information, which 

may not seem possible. 

t

x(t)

Information between samples is lost. Therefore, the same samples 

can represent multiple signals. 

t

cos 7π
3 n? cos π3n?
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Sampling and Reconstruction
 

To determine the effect of sampling, compare the original signal x(t) 

to the signal xp(t) that is reconstructed from the samples x[n]. 

Uniform sampling (sampling interval T ). 

t
n

x[n] = x(nT )

Impulse reconstruction. 

t
n

xp(t) =
∑
n

x[n]δ(t− nT )
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Reconstruction
 

Impulse reconstruction maps samples x[n] (DT) to xp(t) (CT). 

∞
xp(t) = x[n]δ(t − nT ) 

n=−∞ 

0 

∞
= x(nT )δ(t − nT ) 

n=−∞ 

0 

∞
= x(t)δ(t − nT ) 

n=−∞ 

0 

∞
= x(t) δ(t − nT ) 

0 

n=−∞ ,,
≡ p(t) 

- "
 
Resulting reconstruction xp(t) is equivalent to multiplying x(t) by 

impulse train. 
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Sampling
 

Multiplication by an impulse train in time is equivalent to convolution 

by an impulse train in frequency. 

→ generates multiple copies of original frequency content. 

ω

X(jω)

−W W

1

ω

P (jω)

−ωs ωs

2π
T

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)

−ωs ωs= 2π
T

1
T
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Check Yourself
 

What is the relation between the DTFT of x[n] = x(nT ) 

and the CTFT of xp(t) =
 

x[n]δ(t − nT ) for X(jω) below. 

ω

X(jω)

−W W

1

1. Xp(jω) = X(e jΩ)|Ω=ω 

2. Xp(jω) = X(e jΩ)|Ω= ω 
T 

3. Xp(jω) = X(e jΩ)|Ω=ωT 

4. none of the above 
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Check Yourself
 

DTFT
 
∞

x[n]e 
n=−∞ 

(t) 

0 
X(e
jΩ) = 

CTFT of xp

−jΩn 

∞
−jωtdtXp(jω) = x[n]δ(t − nT )e 

−∞ n=−∞ 

0 ∞ 

 ∞∞
−jωtdt= x[n] δ(t − nT )e 

−∞n=−∞ 

0 

∞
−jωnT = x[n]e 

n=−∞ 

0 

= X(ejΩ) 
Ω=ωT 
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Check Yourself
 

Xp(jω) = X(e jΩ) 

ω

X(jω)

−W W

1

Ω=ωT 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)

−ωs ωs= 2π
T

1
T

Ω

X(ejΩ) = Xp(jω)
∣∣
ω=Ω

T

−2π 2π

1
T
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Check Yourself
 

What is the relation between the DTFT of x[n] = x(nT ) 

and the CTFT of xp(t) = x[n]δ(t − nT ) for X(jω) below. 

ω

X(jω)

−W W

1

1. Xp(jω) = X(e jΩ)|Ω=ω 

2. Xp(jω) = X(e jΩ)|Ω= ω 
T 

3. Xp(jω) = X(e jΩ)|Ω=ωT 

4. none of the above 
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Sampling
 

The high frequency copies can be removed with a low-pass filter 

(also multiply by T to undo the amplitude scaling). 

Impulse reconstruction followed by ideal low-pass filtering is called 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)

1
T

−ωs2
ωs
2

T

bandlimited reconstruction. 
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The Sampling Theorem
 

If signal is bandlimited → sample without loosing information. 

If x(t) is bandlimited so that 

X(jω) = 0 for |ω| > ωm 

then x(t) is uniquely determined by its samples x(nT ) if 
2π 

ωs = > 2ωm. 
T 

The minimum sampling frequency, 2ωm, is called the “Nyquist rate.” 
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−ωs
2

ωs
2

ω
T

x[n] xr(t)
Impulse

Reconstruction

xp(t) =∑
x[n]δ(t− nT )

LPF

Summary
 

Three important ideas. 

Sampling 

x(t) → x[n] = x(nT ) 

  2π 
Bandlimited Reconstruction ωs = 

T

ωsSampling Theorem: If X(jω) = 0 ∀ |ω| > then xr(t) = x(t).2 
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Check Yourself
 

We can hear sounds with frequency components between 20 Hz 

and 20 kHz. 

What is the maximum sampling interval T that can be used 

to sample a signal without loss of audible information? 

1. 100 µs 2. 50 µs 

3. 25 µs 4. 100π µs 

5. 50π µs 6. 25π µs 
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Check Yourself
 

ωs 2π2πfm = ωm < = 2 2T 
1 1 

T < = = 25 µs2fm 2 × 20 kHz 
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Check Yourself
 

We can hear sounds with frequency components between 20 Hz 

and 20 kHz. 

What is the maximum sampling interval T that can be used 

to sample a signal without loss of audible information? 

1. 100 µs 2. 50 µs 

3. 25 µs 4. 100π µs 

5. 50π µs 6. 25π µs 
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CT Model of Sampling and Reconstruction
 

Sampling followed by bandlimited reconstruction is equivalent to 

multiplying by an impulse train and then low-pass filtering. 

−ωs
2

ωs
2

ω
T

×x(t)

p(t)

xr(t)
xp(t)

LPF

t

p(t) = ”sampling function”

0 T
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Aliasing
 

What happens if X contains frequencies |ω| > 
π 
T 
? 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)

−ωs
2

ωs
2

1
T

ω

P (jω)

−ωs ωs

2π
T

ω

X(jω)
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Aliasing
 

What happens if X contains frequencies |ω| > 
π 
T 
? 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)

−ωs
2

ωs
2

1
T

ω

P (jω)

−ωs ωs

2π
T

ω

X(jω)
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Aliasing
 

What happens if X contains frequencies |ω| > 
π 
T 
? 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)

−ωs
2

ωs
2

1
T

ω

P (jω)

−ωs ωs

2π
T

ω

X(jω)
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Aliasing
 

What happens if X contains frequencies |ω| > 
π 
T 
? 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)

−ωs
2

ωs
2

1
T

ω

P (jω)

−ωs ωs

2π
T

ω

X(jω)
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Aliasing
 

The effect of aliasing is to wrap frequencies.
 

ω
−ωs

2
ωs
2

1
T

ω

ω

X(jω)

Input frequency

Output frequency

ωs
2

ωs
2
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Aliasing
 

The effect of aliasing is to wrap frequencies.
 

ω
−ωs

2
ωs
2

1
T

ω

ω

X(jω)

Input frequency

Output frequency

ωs
2

ωs
2
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Aliasing
 

The effect of aliasing is to wrap frequencies.
 

ω
−ωs

2
ωs
2

1
T

ω

ω

X(jω)

Input frequency

Output frequency

ωs
2
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2
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Aliasing
 

The effect of aliasing is to wrap frequencies.
 

ω
−ωs

2
ωs
2

1
T

ω

ω

X(jω)

Input frequency

Output frequency

ωs
2

ωs
2
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Check Yourself
 

A periodic signal, period of 0.1 ms, is sampled at 44 kHz. 

To what frequency does the third harmonic alias? 

1. 18 kHz 

2. 16 kHz 

3. 14 kHz 

4. 8 kHz 

5. 6 kHz 

0. none of the above 
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Check Yourself 

Input frequency (kHz)

Output frequency (kHz)

22 44 66 88

22

44

88
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Check Yourself 

Input frequency (kHz)

Output frequency (kHz)

22 44 66 88

22

44

88

Harmonic Alias 

10 kHz 10 kHz 

20 kHz 20 kHz 

30 kHz 44 kHz-30 kHz =14 kHz 
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Check Yourself
 

A periodic signal, period of 0.1 ms, is sampled at 44 kHz. 

To what frequency does the third harmonic alias? 3 

1. 18 kHz 

2. 16 kHz 

3. 14 kHz 

4. 8 kHz 

5. 6 kHz 

0. none of the above 
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Check Yourself 

Input frequency (kHz)

Output frequency (kHz)

22 44 66 88

22

44

88

Harmonic Alias 

10 kHz 10 kHz 

20 kHz 20 kHz 

30 kHz 44 kHz-30 kHz =14 kHz 

40 kHz 44 kHz-40 kHz = 4 kHz 

50 kHz 50 kHz-44 kHz = 6 kHz 

60 kHz 60 kHz-44 kHz =16 kHz 

70 kHz 88 kHz-70 kHz =18 kHz 

80 kHz 88 kHz-80 kHz = 8 kHz 
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Check Yourself
 

Scrambled harmonics.
 

ω

ω
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Aliasing
 

High frequency components of complex signals also wrap.
 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)

−ωs
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1

41



Aliasing
 

High frequency components of complex signals also wrap.
 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)
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Aliasing
 

High frequency components of complex signals also wrap.
 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)
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Aliasing
 

High frequency components of complex signals also wrap.
 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)
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Aliasing
 

Aliasing increases as the sampling rate decreases.
 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)
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Aliasing
 

Aliasing increases as the sampling rate decreases.
 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)
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Aliasing
 

Aliasing increases as the sampling rate decreases.
 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)
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Aliasing
 

Aliasing increases as the sampling rate decreases.
 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)
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Aliasing Demonstration
 

Sampling Music
 

2π 
ωs = = 2πfs

T 

• fs = 44.1 kHz 

• fs = 22 kHz 

• fs = 11 kHz 

• fs = 5.5 kHz 

• fs = 2.8 kHz 

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto 

Nathan Milstein, violin 
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Aliasing
 

Aliasing increases as the sampling rate decreases.
 

ω

Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)
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Aliasing
 

Aliasing increases as the sampling rate decreases.
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Aliasing
 

Aliasing increases as the sampling rate decreases.
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Aliasing
 

Aliasing increases as the sampling rate decreases.
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Anti-Aliasing Filter
 

To avoid aliasing, remove frequency components that alias before 

sampling. 

−ωs
2

ωs
2

ω
1

×
−ωs

2
ωs
2

ω
T

x(t)

p(t)

xr(t)
xp(t)

Reconstruction
Filter

Anti-aliasing
Filter
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Aliasing
 

Aliasing increases as the sampling rate decreases.
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Aliasing
 

Aliasing increases as the sampling rate decreases.
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Xp(jω) = 1
2π (X(j · ) ∗ P (j · ))(ω)

−ωs
2

ωs
2

1
T

ω

P (jω)

−ωs ωs

2π
T

ω

Anti-aliased X(jω)

56



Aliasing
 

Aliasing increases as the sampling rate decreases.
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Aliasing
 

Aliasing increases as the sampling rate decreases.
 

ω
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Anti-Aliasing Demonstration
 

Sampling Music
 

2π 
ωs = = 2πfs

T 

• fs = 11 kHz without anti-aliasing 

• fs = 11 kHz with anti-aliasing 

• fs = 5.5 kHz without anti-aliasing 

• fs = 5.5 kHz with anti-aliasing 

• fs = 2.8 kHz without anti-aliasing 

• fs = 2.8 kHz with anti-aliasing 

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto 

Nathan Milstein, violin 
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Sampling: Summary
 

Effects of sampling are easy to visualize with Fourier representations. 

Signals that are bandlimited in frequency (e.g., −W <ω <W ) can be 

sampled without loss of information. 

The minimum sampling frequency for sampling without loss of in­

formation is called the Nyquist rate. The Nyquist rate is twice the 

highest frequency contained in a bandlimited signal. 

Sampling at frequencies below the Nyquist rate causes aliasing. 

Aliasing can be eliminated by pre-filtering to remove frequency com­

ponents that would otherwise alias. 
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