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Filtering

Notion of a filter.

LTI systems
e cannot create new frequencies.
e can only scale magnitudes and shift phases of existing components.

Example: Low-Pass Filtering with an RC circuit




Lowpass Filter

Calculate the frequency response of an RC circuit.
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Lowpass Filtering

Let the input be a square wave.
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Lowpass Filtering

Low frequency square wave: wy << 1/RC.
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Lowpass Filtering

Higher frequency square wave: wg < 1/RC.
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Lowpass Filtering

Still higher frequency square wave: wy = 1/RC.
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Lowpass Filtering

High frequency square wave: wg > 1/RC.
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Source-Filter Model of Speech Production

Vibrations of the vocal cords are ‘filtered” by the mouth and nasal
cavities to generate speech.

buzz from throat and
vocal cords nasal cavities
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Filtering

LTI systems “filter” signals based on their frequency content.

Fourier transforms represent signals as sums of complex exponen-
tials.
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x(t) = 27r/ X (jw)el* dw
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Complex exponentials are eigenfunctions of LTI systems.

eI¥t — H(jw)elvt

LTI systems ‘“filter” signals by adjusting the amplitudes and phases
of each frequency component.

x(t) = Dy / X(jw)etdw — y(t) / H(jw)X (jw)e!“ dw
m



Filtering

Systems can be designed to selectively pass certain frequency bands.
Examples: low-pass filter (LPF) and high-pass filter (HPF).
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Filtering Example: Electrocardiogram

An electrocardiogram is a record of electrical potentials that are
generated by the heart and measured on the surface of the chest.
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Filtering Example: Electrocardiogram

In addition to electrical responses of heart, electrodes on the skin
also pick up other electrical signals that we regard as ‘“noise.”

We wish to design a filter to eliminate the noise.

x(t) —»| filter > y(t)




Filtering Example: Electrocardiogram

We can identify “noise” using the Fourier transform.
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Filtering Example: Electrocardiogram

Filter design: low-pass flter 4+ high-pass filter + notch.

1 -
§ 0.1 A
3
T 0.01 A
0001 T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIII|
0.01 0.1 1 10 100

f:% [Hz]



Electrocardiogram: Check Yourself

Which poles and zeros are associated with
e the high-pass filter?
e the low-pass filter?

e the notch filter?
s-plane
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Electrocardiogram: Check Yourself

Which poles and zeros are associated with

e the high-pass filter?
s-plane
notchG)

e the low-pass filter?
Iow—passm ﬁg high-pass

e the notch filter?
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Filtering Example: Electrocardiogram

Filtering is a simple way to reduce unwanted noise.
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Fourier Transforms in Physics: Diffraction

A diffraction grating breaks a laser beam input into multiple beams.

Demonstration.



Fourier Transforms in Physics: Diffraction

Multiple beams result from periodic structure of grating (period D).

A\

Viewed at a distance from angle 0, scatterers are separated by Dsin6.

Constructive interference if Dsinf = n), i.e., if sinf = %
— periodic array of dots in the far field
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Fourier Transforms in Physics: Diffraction

CD demonstration.

21



Check Yourself

s

CD demonstration.
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1. 160nm 2. 1600 nm 3. 16um 4. 160pum
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Check Yourself

What is the spacing of the tracks on the CD?

_ 500 nm
- siné

grating tan 6 0 sin @ D manufacturing spec.

CD % 0.32 0.31 1613 nm 1600 nm
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Check Yourself

-

Demonstration.
3 feet

1 feet
laser pointer

A =500 nm
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screen

[ What is the spacing of the tracks on the CD? 2.

1. 160nm 2. 1600 nm 3. 16um 4. 160pum
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Fourier Transforms in Physics: Diffraction

DVD demonstration.
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Check Yourself

p
DVD demonstration.
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Check Yourself

What is spacing of tracks on DVD divided by that for CD?

500 nm
grating tan 6 0 sin @ D=— 0 manufacturing spec.
Sin
CD % 0.32 0.31 1613 nm 1600 nm
DVD 1 0.78 0.71 704 Nnm 740 nm
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Check Yourself

p
DVD demonstration.

1 feet
1 feet
laser pointer )|
A =500nm -
DVD
screen

[ What is track spacing on DVD divided by that for CD? 3 j

4. X

1. 4x 2. 2x 3.

N —
X
=

28



Fourier Transforms in Physics: Diffraction

Macroscopic information in the far field provides microscopic (invis-
ible) information about the grating.

S1n D
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Fourier Transforms in Physics: Crystallography

What if the target is more complicated than a grating?

target

image?
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Fourier Transforms in Physics: Crystallography

Part of image at angle 8 has contributions for all parts of the target.

g |
!

target

image?

31



Fourier Transforms in Physics: Crystallography

The phase of light scattered from different parts of the target un-
dergo different amounts of phase delay.

Phase at a point z is delayed (i.e., negative) relative to that at 0:

zsin 6

A
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Fourier Transforms in Physics: Crystallography

Total light F(0) at angle 6 is integral of light scattered from each
part of target f(z), appropriately shifted in phase.

F(6) - / Fla) e 275 gy

Assume small angles so sinf ~ 6.

Let w= 27r§, then the pattern of light at the detector is
F(w):/f(x) eIV dy;

which is the Fourier transform of f(z)!

33



Fourier Transforms in Physics: Diffraction

Fourier transform relation between structure of object and far-field
intensity pattern.

grating =~ impulse train with pitch D
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Impulse Train

The Fourier transform of an impulse train is an impulse train.

() = i 5(t — kT)
k=—

SEEEEEEE




Two Dimensions

Demonstration: 2D grating.
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An Historic Fourier Transform

Taken by Rosalind Franklin, this image sparked Watson and Crick's
insight into the double helix.

Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Franklin, R., and R. G. Gosling. "Molecular Configuration
in Sodium Thymonucleate." Nature 171 (1953): 740-741. (c) 1953.
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An Historic Fourier Transform

This is an x-ray crystallographic image of DNA, and it shows the
Fourier transform of the structure of DNA.

Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Franklin, R., and R. G. Gosling. "Molecular Configuration
in Sodium Thymonucleate." Nature 171 (1953): 740-741. (c) 1953.
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An Historic Fourier Transform

High-frequency bands indicate repeating structure of base pairs.

Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Franklin, R., and R. G. Gosling. "Molecular Configuration
in Sodium Thymonucleate." Nature 171 (1953): 740-741. (c) 1953.
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An Historic Fourier Transform

Low-frequency bands indicate a lower frequency repeating structure.

>

Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Franklin, R., and R. G. Gosling. "Molecular Configuration
in Sodium Thymonucleate." Nature 171 (1953): 740-741. (c) 1953.
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An Historic Fourier Transform

Tilt of low-frequency bands indicates tilt of low-frequency repeating
structure: the double helix!

Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Franklin, R., and R. G. Gosling. "Molecular Configuration
in Sodium Thymonucleate." Nature 171 (1953): 740-741. (c) 1953.
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Simulation

Easy to calculate relation between structure and Fourier transform.
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Fourier Transform Summary

Represent signals by their frequency content.

Key to “filtering,” and to signal-processing in general.

Important in many physical phenomenon: x-ray crystallography.
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