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Filtering
 

Notion of a filter.
 

LTI systems 

• cannot create new frequencies. 

• can only scale magnitudes and shift phases of existing components. 

Example: Low-Pass Filtering with an RC circuit
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Lowpass Filter
 

Calculate the frequency response of an RC circuit. 
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KVL: vi(t) = Ri(t) + vo(t) 

C: i(t) = Cv̇o(t) 

Solving: vi(t) = RC v̇o(t) + vo(t) 

Vi(s) = (1 + sRC)Vo(s) 
Vo(s) 1 

H(s) = = 
Vi(s) 1 + sRC 
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Lowpass Filtering 

x(t) =

Let the input be a square wave. 
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Lowpass Filtering 

x(t) = 

Low frequency square wave: ω0 << 1/RC. 
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Lowpass Filtering 

x(t) = 

Higher frequency square wave: ω0 < 1/RC. 
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Lowpass Filtering 

x(t) = 

Still higher frequency square wave: ω0 = 1/RC. 
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Lowpass Filtering 

x(t) = 

High frequency square wave: ω0 > 1/RC. 
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Source-Filter Model of Speech Production
 

Vibrations of the vocal cords are “filtered” by the mouth and nasal
 

cavities to generate speech. 

buzz from
vocal cords

speech
throat and

nasal cavities
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Filtering
 

LTI systems “filter” signals based on their frequency content. 

Fourier transforms represent signals as sums of complex exponen­

tials.  ∞1 jωtdωx(t) = X(jω)e
2π −∞
 

Complex exponentials are eigenfunctions of LTI systems. 
jωt → H(jω)e jωt e 

LTI systems “filter” signals by adjusting the amplitudes and phases 

of each frequency component.  ∞  ∞1 1jωtdω jωtdωx(t) = X(jω)e → y(t) = H(jω)X(jω)e2π −∞ 2π −∞ 
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Filtering
 

Systems can be designed to selectively pass certain frequency bands.
 

Examples: low-pass filter (LPF) and high-pass filter (HPF). 
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Filtering Example: Electrocardiogram
 

An electrocardiogram is a record of electrical potentials that are 

generated by the heart and measured on the surface of the chest. 
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ECG and analysis by T. F. Weiss
 
12



Filtering Example: Electrocardiogram
 

In addition to electrical responses of heart, electrodes on the skin 

also pick up other electrical signals that we regard as “noise.” 

We wish to design a filter to eliminate the noise. 

filterx(t) y(t)
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Filtering Example: Electrocardiogram
 

We can identify “noise” using the Fourier transform. 
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Filtering Example: Electrocardiogram
 

Filter design: low-pass flter + high-pass filter + notch. 
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Electrocardiogram: Check Yourself
 

Which poles and zeros are associated with 

• the high-pass filter? 

• the low-pass filter? 

• the notch filter? 
s-plane

( )( )( )
222
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Electrocardiogram: Check Yourself
 

Which poles and zeros are associated with 

• the high-pass filter? 

• the low-pass filter? 

• the notch filter? 
s-plane

( )( )( )
222 high-passlow-pass

notch

notch
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Filtering Example: Electrocardiogram
 

Filtering is a simple way to reduce unwanted noise.
 

Unfiltered ECG 
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Fourier Transforms in Physics: Diffraction
 

A diffraction grating breaks a laser beam input into multiple beams.
 

Demonstration.
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Fourier Transforms in Physics: Diffraction
 

Multiple beams result from periodic structure of grating (period D). 
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λ

D

sin θ = λ

D

Viewed at a distance from angle θ, scatterers are separated by D sin θ. 

nλConstructive interference if D sin θ = nλ, i.e., if sin θ = D 
→ periodic array of dots in the far field 
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Fourier Transforms in Physics: Diffraction
 

CD demonstration.
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Check Yourself
 

CD demonstration. 

laser pointer

λ = 500 nm

CD
screen

3 feet

1 feet

What is the spacing of the tracks on the CD? 

1. 160 nm 2. 1600 nm 3. 16µm 4. 160µm 
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Check Yourself
 

What is the spacing of the tracks on the CD?
 

500 nm 
grating tan θ θ sin θ D = manufacturing spec. sin θ 

1CD 0.32 0.31 1613 nm 1600 nm3 

23



Check Yourself
 

Demonstration. 

laser pointer

λ = 500 nm

CD
screen

3 feet

1 feet

What is the spacing of the tracks on the CD? 2. 

1. 160 nm 2. 1600 nm 3. 16µm 4. 160µm 
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Fourier Transforms in Physics: Diffraction
 

DVD demonstration.
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Check Yourself
 

DVD demonstration. 

laser pointer

λ = 500 nm

DVD
screen

1 feet

1 feet

What is track spacing on DVD divided by that for CD? 

1. 4× 2. 2× 3. 1
2× 4. 1

4× 
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Check Yourself
 

What is spacing of tracks on DVD divided by that for CD?
 

500 nm 
grating tan θ θ sin θ D = manufacturing spec. sin θ 

1CD 0.32 0.31 1613 nm 1600 nm3 

DVD 1 0.78 0.71 704 nm 740 nm 
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Check Yourself
 

DVD demonstration. 

laser pointer

λ = 500 nm

DVD
screen

1 feet

1 feet

What is track spacing on DVD divided by that for CD? 3 

1. 4× 2. 2× 3. 1
2× 4. 1

4× 
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Fourier Transforms in Physics: Diffraction
 

Macroscopic information in the far field provides microscopic (invis­

ible) information about the grating.
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Fourier Transforms in Physics: Crystallography
 

What if the target is more complicated than a grating?
 

target

image?
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Fourier Transforms in Physics: Crystallography
 

Part of image at angle θ has contributions for all parts of the target.
 

target

image?

θ
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Fourier Transforms in Physics: Crystallography
 

The phase of light scattered from different parts of the target un­

dergo different amounts of phase delay. 

θ
x sin θ

x

Phase at a point x is delayed (i.e., negative) relative to that at 0: 
x sin θ 

φ = −2π 
λ 
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Fourier Transforms in Physics: Crystallography
 

Total light F (θ) at angle θ is integral of light scattered from each 

part of target f(x), appropriately shifted in phase. 

−j2π x sin θ
 
F (θ) = f(x) e λ dx
 

Assume small angles so sin θ ≈ θ.
 

Let ω = 2π θ , then the pattern of light at the detector is
 λ
 

−jωxdx
F (ω) = f(x) e 

which is the Fourier transform of f(x) ! 
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Fourier Transforms in Physics: Diffraction
 

Fourier transform relation between structure of object and far-field 

intensity pattern. 

· · ·· · ·

grating ≈ impulse train with pitch D

t
0 D

· · ·· · ·

far-field intensity ≈ impulse train with reciprocal pitch ∝ λ
D

ω
0 2π

D
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Impulse Train
 

The Fourier transform of an impulse train is an impulse train.
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Two Dimensions
 

Demonstration: 2D grating.
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An Historic Fourier Transform
 

Taken by Rosalind Franklin, this image sparked Watson and Crick’s
 

insight into the double helix.
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Franklin, R., and R. G. Gosling. "Molecular Configuration
in Sodium Thymonucleate." Nature 171 (1953): 740-741. (c) 1953.



An Historic Fourier Transform
 

This is an x-ray crystallographic image of DNA, and it shows the
 

Fourier transform of the structure of DNA. 
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Franklin, R., and R. G. Gosling. "Molecular Configuration
in Sodium Thymonucleate." Nature 171 (1953): 740-741. (c) 1953.



An Historic Fourier Transform
 

High-frequency bands indicate repeating structure of base pairs. 

b
1/b
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Franklin, R., and R. G. Gosling. "Molecular Configuration
in Sodium Thymonucleate." Nature 171 (1953): 740-741. (c) 1953.



An Historic Fourier Transform
 

Low-frequency bands indicate a lower frequency repeating structure.
 

h 1/h
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Franklin, R., and R. G. Gosling. "Molecular Configuration
in Sodium Thymonucleate." Nature 171 (1953): 740-741. (c) 1953.



An Historic Fourier Transform
 

Tilt of low-frequency bands indicates tilt of low-frequency repeating
 

structure: the double helix! 

θ

θ
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Franklin, R., and R. G. Gosling. "Molecular Configuration
in Sodium Thymonucleate." Nature 171 (1953): 740-741. (c) 1953.



Simulation
 

Easy to calculate relation between structure and Fourier transform.
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Fourier Transform Summary
 

Represent signals by their frequency content.
 

Key to “filtering,” and to signal-processing in general.
 

Important in many physical phenomenon: x-ray crystallography.
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