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Fourier Representations

Fourier series represent signals in terms of sinusoids.

— leads to a new representation for systems as filters.



Fourier Series

Representing signals by their harmonic components.
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Musical Instruments

Harmonic content is natural way to describe some kinds of signals.

Ex: musical instruments (http://theremin.music.uiowa.edu/MIS.html)
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Musical Instruments
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Musical Instruments

Harmonic content is natural way to describe some kinds of signals.

Ex: musical instruments (http://theremin.music.uiowa.edu/MIS.html)
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Harmonics

Harmonic structure determines consonance and dissonance.
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Harmonic Representations

What signals can be represented by sums of harmonic components?
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Only periodic signals: all harmoniscs of wp are periodic in T = 27 /wy.



Harmonic Representations

Is it possible to represent ALL periodic signals with harmonics?

What about discontinuous signals?
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Fourier claimed YES — even though all harmonics are continuous!

Lagrange ridiculed the idea that a discontinuous signal could be
written as a sum of continuous signals.

We will assume the answer is YESgand see if the answer makes sense.



Separating harmonic components

Underlying properties.

1. Multiplying two harmonics produces a new harmonic with the
same fundamental frequency:
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2. The integral of a harmonic over any time interval with length
equal to a period T is zero unless the harmonic is at DC:
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Separating harmonic components

Assume that z(¢) is periodic in T and is composed of a weighted sum
of harmonics of wy = 27r/T
z(t) =zt +T) Z age w0kt
k=—0c0

Then

oo
/$(t)€_]lw0tdt:/ Z Cbkejwokte_jwoltdt
T Tk—
Z ak/ejwok Dt gy

k=—o00
oo

= Y @T6k -1 =Taq

k=—00

Therefore

1 ; 1
a = 7 /Tx(t)ejwoktdt =7 /Tx(t)ej T g



Fourier Series

Determining harmonic components of a periodic signal.
1 _JQIkt g H " H
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Check Yourself

Let a; represent the Fourier series coefficients of the following
square wave.

1
2

[ How many of the following statements are true? j

ap =0 if k is even

aj, is real-valued

lag,| decreases with k2

there are an infinite number of non-zero ay
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Check Yourself

Let a represent the Fourier series coefficients of the following square
wave.
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Check Yourself

Let a represent the Fourier series coefficients of the following square
wave.
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Check Yourself

Let a; represent the Fourier series coefficients of the following
square wave.
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Fourier Series Properties

If a signal is differentiated in time, its Fourier coefficients are multi-
plied by j%Fk.

Proof: Let
s .27
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Check Yourself

Let b, represent the Fourier series coefficients of the following
triangle wave.
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Check Yourself

The triangle waveform is the integral of the square wave.
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Therefore the Fourier coefficients of the triangle waveform are ——

j2rk
times those of the square wave.

1 1 1
by, = - . k odd
B Gkr  jomk T 2k2R2

19



Check Yourself

Let b, represent the Fourier series coefficients of the following tri-

angle wave.
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Check Yourself

Let b, represent the Fourier series coefficients of the following
triangle wave.
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: triangle waveform
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: triangle waveform
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: triangle waveform
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: triangle waveform
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: triangle waveform
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: triangle waveform
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: triangle waveform
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: triangle waveform
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Fourier series representations of functions with discontinuous slopes
converge toward functions with discontinuous slopes.

30



Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: square wave
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: square wave
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: square wave
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: square wave
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: square wave
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: square wave
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: square wave
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: square wave
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Fourier Series

One can visualize convergence of the Fourier Series by incrementally
adding terms.

Example: square wave
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Fourier Series

Partial sums of Fourier series of discontinuous functions “ring"” near
discontinuities: Gibb's phenomenon.
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This ringing results because the magnitude of the Fourier coefficients
is only decreasing as ¢ (Whlle they decreased as > for the triangle).

You can decrease (and even eliminate the ringing) by decreasing the
magnitudes of the Fourier coefficients at higher frequencies.
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Fourier Series: Summary

Fourier series represent periodic signals as sums of sinusoids.
e valid for an extremely large class of periodic signals
e valid even for discontinuous signals such as square wave

However, convergence as # harmonics increases can be complicated.
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Filtering

The output of an LTI system is a “filtered” version of the input.

Input: Fourier series —> sum of complex exponentials.
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Complex exponentials: eigenfunctions of LTI systems.
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Output: same eigenfunctions, amplitudes/phases set by system.
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Filtering

Notion of a filter.

LTI systems
e cannot create new frequencies.
e can scale magnitudes and shift phases of existing components.

Example: Low-Pass Filtering with an RC circuit
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Lowpass Filter

Calculate the frequency response of an RC circuit.
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KVL:  v(t) = Ri(t) +vo(t)
C: i(t) = Ciolt)
Solving: wv;(t) = RC(t) 4+ vo(t)
Vi(s) = (1+sRC)Vy(s)
~ Vo(s) 1
Hs) =35 = T5sre
e
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Lowpass Filtering

Let the input be a square wave.
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Lowpass Filtering

Low frequency square wave: wy << 1/RC.
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Lowpass Filtering

Higher frequency square wave: wg < 1/RC.
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Lowpass Filtering

Still higher frequency square wave: wy = 1/RC.
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Lowpass Filtering

High frequency square wave: wg > 1/RC.
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Fourier Series: Summary

Fourier series represent signals by their frequency content.

Representing a signal by its frequency content is useful for many
signals, e.g., music.

Fourier series motivate a new representation of a system as a filter.
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