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Fourier Representations  

Fourier series represent signals in terms of sinusoids. 

→ leads to a new representation for systems as filters. 
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Fourier Series  

Representing signals by their harmonic components. 
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Musical Instruments  

Harmonic content is natural way to describe some kinds of signals.  

Ex: musical instruments (http://theremin.music.uiowa.edu/MIS ) 
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Musical Instruments  

Harmonic content is natural way to describe some kinds of signals.  
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Harmonics  

Harmonic structure determines consonance and dissonance. 
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Harmonic Representations  

What signals can be represented by sums of harmonic components? 

ω
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T= 2π
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Only periodic signals: all harmonics of ω0 are periodic in T = 2π/ω0. 8



Harmonic Representations  

Is it possible to represent ALL periodic signals with harmonics?  
What about discontinuous signals?  

2π
ω0

t

2π
ω0

t

Fourier claimed YES — even though all harmonics are continuous!  

Lagrange ridiculed the idea that a discontinuous signal could be  
written as a sum of continuous signals.  

We will assume the answer is YES and see if the answer makes sense.  
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Separating harmonic components  

Underlying properties. 

1. Multiplying two harmonics produces a new harmonic with the 
same fundamental frequency: 

jkω0t jlω0t j(k+l)ω0t e × e = e . 

2. The integral of a harmonic over any time interval with length 
equal to a period T is zero unless the harmonic is at DC:  t0+T  0, k = 0  

jkω0tdt ≡ jkω0tdt =e e 
t0 T T, k = 0 

= Tδ[k] 
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Separating harmonic components  

Assume that x(t) is periodic in T and is composed of a weighted sum 
of harmonics of ω0 = 2π/T . 

∞
jω0kt x(t) = x(t + T ) = ake 

Then 
∞

−∞=k

f 

f 

x(t)e  −jlω0tdt = jω0kt −jω0ltdteake 
T T k=−∞ 

∞f
jω0(k−l)tdt=  ak e 

Tk=−∞ 
∞

= akTδ[k − l] = Tal 
k=−∞ 

Therefore 

f 

1 1 −j 2π ktak = x(t)e −jω0ktdt = x(t)e T dt 
T TT T 
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Fourier Series  

Determining harmonic components of a periodic signal.  

1 2π−j ktx(t)e  (“analysis” equation)  ak = dt T
T T 

∞f 2πj kt x(t)= x(t + T ) =  (“synthesis” equation)  Take 
k=−∞ 
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Let ak represent the Fourier series coefficients of the following 
square wave. 
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Check Yourself  

How many of the following statements are true? 

1. ak = 0 if k is even 
2. ak is real-valued 
3. |ak| decreases with k2 

4. there are an infinite number of non-zero ak 
5. all of the above 
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Check Yourself  

Let ak represent the Fourier series coefficients of the following square 
wave. 
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ak = x(t)e −j 2π 
T ktdt = − 
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e −j2πktdt + 
1 
2 

1 
2 

0 
e −j2πktdt 

T 

1 jπk − e −jπk = 2 − e 
j4πk ⎧  ⎨ 1  ; if k is odd = jπk ⎩ 0 ; otherwise 
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Check Yourself  

Let ak represent the Fourier series coefficients of the following square 
wave.  1 ; if k is odd 

ak = jπk  
0 ; otherwise  

How many of the following statements are true? √ 
1. ak = 0 if k is even 
2. ak is real-valued X 
3. |ak| decreases with k2 X √ 
4. there are an infinite number of non-zero ak 
5. all of the above X 
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Let ak represent the Fourier series coefficients of the following 
square wave. 

t
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Check Yourself  

How many of the following statements are true? 2 

√ 
1. ak = 0 if k is even 
2. ak is real-valued X  
3. |ak| decreases with k2 X  √ 
4. there are an infinite number of non-zero ak 
5. all of the above X  
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Fourier Series Properties  

If a signal is differentiated in time, its Fourier coefficients are multi­

plied by j 2π k.T 

Proof: Let 
∞f 2π 

x(t) = x(t + T ) = ake 
k=−∞ 

j kt T

then   f∞ 2π 2π 
ẋ(t) = ẋ(t + T ) = j  j kt k ak e T

T  
k=−∞
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Let bk represent the Fourier series coefficients of the following 
triangle wave. 

t
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Check Yourself  

How many of the following statements are true? 

1. bk = 0 if k is even 
2. bk is real-valued 
3. |bk| decreases with k2 

4. there are an infinite number of non-zero bk 
5. all of the above 
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Check Yourself  

The triangle waveform is the integral of the square wave. 
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Therefore the Fourier coefficients of the triangle waveform are 
1 

j2πk 
times those of the square wave. 

1 1 −1 = × = ; k odd bk jkπ j2πk 2k2π2 
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Check Yourself  

Let bk represent the Fourier series coefficients of the following tri­
angle wave. 

−1 
bk = ; k odd 

2k2π2 

How many of the following statements are true? √ 
1. bk = 0 if k is even √ 
2. bk is real-valued √ 
3. |bk| decreases with k2 

√ 
4. there are an infinite number of non-zero bk√ 
5. all of the above 
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Let bk represent the Fourier series coefficients of the following 
triangle wave. 

t
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Check Yourself  

How many of the following statements are true? 5 

√ 
1. bk = 0 if k is even √ 
2. bk is real-valued √ 
3. |bk| decreases with k2 

√ 
4. there are an infinite number of non-zero bk√ 
5. all of the above 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: triangle waveform 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: triangle waveform 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: triangle waveform 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: triangle waveform 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: triangle waveform 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: triangle waveform 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: triangle waveform 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: triangle waveform 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally 
adding terms. 

Example: triangle waveform 
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Fourier series representations of functions with discontinuous slopes 
converge toward functions with discontinuous slopes. 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: square wave 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: square wave 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: square wave 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: square wave 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: square wave 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: square wave 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: square wave 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: square wave 
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Fourier Series  

One can visualize convergence of the Fourier Series by incrementally  
adding terms. 

Example: square wave 
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Fourier Series  

Partial sums of Fourier series of discontinuous functions “ring” near 
discontinuities: Gibb’s phenomenon. 

This ringing results because the magnitude of the Fourier coefficients 

t

1
2

−1
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0 1

9%

1is only decreasing as k 
1 (while they decreased as 

k2 for the triangle). 

You can decrease (and even eliminate the ringing) by decreasing the 
magnitudes of the Fourier coefficients at higher frequencies. 
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Fourier Series: Summary  

Fourier series represent periodic signals as sums of sinusoids. 

• valid for an extremely large class of periodic signals 

• valid even for discontinuous signals such as square wave  

However, convergence as # harmonics increases can be complicated.  
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Filtering  

The output of an LTI system is a “filtered” version of the input. 

Input: Fourier series → sum of complex exponentials. 
∞

x(t) = x(t + T ) = ake 
k=−∞ 

f 
j 2π kt T

Complex exponentials: eigenfunctions of LTI systems.  
2πkt → H(j k)e j

2 2π πj kt T Te  
T  

Output: same eigenfunctions, amplitudes/phases set by system. 
∞ ∞ff 2π 2 2π πj kt → y(t) = akH(j k)e  j kt x(t) =  T Take 

T  
k=−∞ k=−∞ 
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Filtering  

Notion of a filter.  

LTI systems 
• cannot create new frequencies. 
• can scale magnitudes and shift phases of existing components. 

Example: Low-Pass Filtering with an RC circuit  
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Lowpass Filter  

Calculate the frequency response of an RC circuit. 

+
−

vi

+

vo

−

R

C

KVL: vi(t) = Ri(t) + vo(t) 
C: i(t) = Cv̇o(t) 
Solving: vi(t) = RC v̇o(t) + vo(t) 

Vi(s) = (1 + sRC)Vo(s) 
Vo(s) 1 

H(s) = = 
Vi(s) 1 + sRC 
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Lowpass Filtering 

x(t) = 

Let the input be a square wave. 
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Lowpass Filtering 

x(t) = 

Low frequency square wave: ω0 << 1/RC. 
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Lowpass Filtering 

x(t) = 

Higher frequency square wave: ω0 < 1/RC. 
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Lowpass Filtering 

x(t) = 

Still higher frequency square wave: ω0 = 1/RC. 
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Lowpass Filtering 

x(t) = 

High frequency square wave: ω0 > 1/RC. 
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Fourier Series: Summary  

Fourier series represent signals by their frequency content.  

Representing a signal by its frequency content is useful for many  
signals, e.g., music.  

Fourier series motivate a new representation of a system as a filter.  
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