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Mid-term Examination #2
 

Wednesday, October 26, 7:30-9:30pm,   

No recitations on the day of the exam. 

Coverage: Lectures 1–12 

Recitations 1–12 

Homeworks 1–7 

Homework 7 will not be collected or graded. Solutions will be posted. 

Closed book: 2 pages of notes (81
2 × 11 inches; front and back). 

No calculators, computers, cell phones, music players, or other aids. 

Designed as 1-hour exam; two hours to complete. 

Review sessions during open office hours. 

Conflict? Contact  before Friday, Oct. 21, 5pm. 
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Review: Frequency Response
 

Complex exponentials are eigenfunctions of LTI systems. 

H(s)es0t H(s0) es0t

H(s0) can be determined graphically using vectorial analysis. 

H(s0) = K 
(s0 − z0)(s0 − z1)(s0 − z2) · · · 
(s0 − p0)(s0 − p1)(s0 − p2) · · · 

z0
z0

s0 − z0
s0

s-planes0

Response of an LTI system to an eternal cosine is an eternal cosine: 

same frequency, but scaled and shifted. 

H(s)cos(ω0t) |H(jω0)| cos
(
ω0t+ ∠H(jω0)

)
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Frequency Response: H(s)|s←jω 
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Frequency Response: H(s)|s←jω 
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Frequency Response: H(s)|s←jω 
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Poles and Zeros
 

Thinking about systems as collections of poles and zeros is an im­

portant design concept. 

• simple: just a few numbers characterize entire system 

• powerful: complete information about frequency response 

Today: poles, zeros, frequency responses, and Bode plots. 
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Asymptotic Behavior: Isolated Zero
 

The magnitude response is simple at low and high frequencies. 
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Asymptotic Behavior: Isolated Zero
 

Two asymptotes provide a good approxmation on log-log axes.
 

H(s) = s − z1 
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ω→∞ 
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Asymptotic Behavior: Isolated Pole
 

The magnitude response is simple at low and high frequencies. 
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Asymptotic Behavior: Isolated Pole
 

Two asymptotes provide a good approxmation on log-log axes.
 

9 
H(s) = 

s − p1 

9lim |H(jω)| = 
ω→0 |p1| 

9lim |H(jω)| = 
ω→∞ ω 11



Check Yourself
 

Compare log-log plots of the frequency-response magnitudes of 

the following system functions: 

H1(s) = 
1 

s + 1 
and H2(s) = 

1 
s + 10 

The former can be transformed into the latter by 

1. shifting horizontally 

2. shifting and scaling horizontally 

3. shifting both horizontally and vertically 

4. shifting and scaling both horizontally and vertically 

5. none of the above 
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Check Yourself
 

Compare log-log plots of the frequency-response magnitudes of the 

following system functions: 

1 1 
H1(s) = 

s + 1 
and H2(s) = 

s + 10 

−2 −1 0 1 2

0

−1

−2
logω

−1

|H1(jω)|

|H2(jω)|

log |H(jω)|
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Check Yourself
 

Compare log-log plots of the frequency-response magnitudes of 

the following system functions: 

H1(s) = 
1 

s + 1 
and H2(s) = 

1 
s + 10 

The former can be transformed into the latter by 3 

1. shifting horizontally 

2. shifting and scaling horizontally 

3. shifting both horizontally and vertically 

4. shifting and scaling both horizontally and vertically 

5. none of the above 

no scaling in either vertical or horizontal directions !
 

14



Asymptotic Behavior of More Complicated Systems
 

Constructing H(s0). 

QQ 
(s0 − zq) ← product of vectors for zeros 

q=1 
H(s0) = K 

PQ 
(s0 − pp) ← product of vectors for poles 

p=1 

z1 p1

s0 − z1 s0 − p1

σ

ω
s-planes0
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Asymptotic Behavior of More Complicated Systems
 

The magnitude of a product is the product of the magnitudes. 

Q Q

(s0 − zq) s0 − zq

q=1 q=1
P P

  

p=1 p=1

  Q
Q

Q
Q|H(s0)| =

            

K
 

(s0 − pp)

            

= |K|
   
s0 − pp

  


z1 p1

s 0
−
z 1

s0 −
p1

σ

ω
s-planes0
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Bode Plot
 

The log of the magnitude is a sum of logs. 

Q Q

(s0 − zq) s0 − zq 
q=1 q=1 

P P

p=1 p=1 

Q
Q

Q
Q|H(s0)| = K
 = |K|
 

(s0 − pp) s0 − pp 

Q PQ 
log |H(jω)| = log |K| + log jω − zq − log jω − pp 

q=1 p=1 

Q 
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Asymptotic Behavior: Isolated Zero
 

The angle response is simple at low and high frequencies. 
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Asymptotic Behavior: Isolated Zero
 

Three straight lines provide a good approxmation versus log ω.
 

H(s) = s − z1 
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Asymptotic Behavior: Isolated Pole
 

The angle response is simple at low and high frequencies. 
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Asymptotic Behavior: Isolated Pole
 

Three straight lines provide a good approxmation versus log ω.
 

9 
H(s) = 

s − p1 

lim ∠H(jω) = 0 
ω→0 

lim ∠H(jω) = −π/2 
ω→∞ 
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Bode Plot
 

The angle of a product is the sum of the angles. 
Q

(s0 − zq) 
q=1 

Q

P
q=1 

p=1 

z1 p1

∠(s0 − z1) ∠(s0 − p1)
σ

ω
s-planes0

Q
⎞ Q

Q
⎛ ⎜⎜⎜⎜⎜⎜⎝ 

 
 
  
 

∠H(s0) = ∠ = ∠K +
 ∠
 ∠
K
 s0 − zq − s0 − pp

(s0 − pp) 

⎟⎟⎟⎟⎟⎟⎠
 

PQ
p=1 

The angle of K can be 0 or π for systems described by linear differ­

ential equations with constant, real-valued coefficients. 
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From Frequency Response to Bode Plot
 

The magnitude of H(jω) is a product of magnitudes. 
Q

jω − zq 
q=1 

P

p=1 

Q
Q|H(jω)| = |K|
 

jω − pp 

The log of the magnitude is a sum of logs. 
Q PQ

q=1 p=1

Q
log |H(jω)| = log |K| +
 log jω − zq −
 log jω − pp 

QThe angle of H(jω) is a sum of angles. 
Q P

q=1 p=1

Q
∠H(jω) = ∠K +
 ∠ jω − zq −
 ∠ jω − pp 
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Check Yourself 

−1 0 1 2 3 4

−2

−3

−4
logω

log |H(jω)|

Which corresponds to the Bode approximation above? 

1. 
1 

(s + 1)(s + 10)(s + 100) 
2. 

s + 1 
(s + 10)(s + 100) 

3. 
(s + 10)(s + 100) 

s + 1 
4. 

s + 100 
(s + 1)(s + 10) 

5. none of the above 
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Check Yourself 
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5. none of the above 

33



s-plane

σ

ω
10

−10

10−10

H(s) = 10s
(s+ 1)(s+ 10)

−2 −1 0 1 2 3

0

−1

−2 ω [log scale]logω

−11

log |H(jω)|

−2 −1 0 1 2 3

π/2

0

−π/2 ω [log scale]logω

log
∣∣∣∣ s

(s+ 1)(s+ 10)

∣∣∣∣∠H(jω)

Bode Plot: dB
 

34



s-plane

σ

ω
10

−10

10−10

H(s) = 10s
(s+ 1)(s+ 10)

0.01 0.1 1 10 100 1000

0

−1

−2 ω [log scale]ω [log scale]

−11

log |H(jω)|

0.01 0.1 1 10 100 1000

π/2

0

−π/2 ω [log scale]ω [log scale]

log
∣∣∣∣ s

(s+ 1)(s+ 10)

∣∣∣∣∠H(jω)

Bode Plot: dB
 

35



s-plane

σ

ω
10

−10

10−10

H(s) = 10s
(s+ 1)(s+ 10)

0.01 0.1 1 10 100 1000

0

−20

−40 ω [log scale]ω [log scale]

−11

|H(jω)|[dB]= 20 log10 |H(jω)|

0.01 0.1 1 10 100 1000

π/2

0

−π/2 ω [log scale]ω [log scale]

log
∣∣∣∣ s

(s+ 1)(s+ 10)

∣∣∣∣∠H(jω)

Bode Plot: dB
 

36



s-plane

σ

ω
10

−10

10−10

H(s) = 10s
(s+ 1)(s+ 10)

0.01 0.1 1 10 100 1000

0

−20

−40 ω [log scale]ω [log scale]

−20 dB/decade20 dB/decade

|H(jω)|[dB]= 20 log10 |H(jω)|

0.01 0.1 1 10 100 1000

π/2

0

−π/2 ω [log scale]ω [log scale]

log
∣∣∣∣ s

(s+ 1)(s+ 10)

∣∣∣∣∠H(jω)

Bode Plot: dB
 

37



Bode Plot: Accuracy
 

The straight-line approximations are surprisingly accurate.
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Check Yourself
 

Could the phase plots of any of these systems be equal to 

each other? [caution: this is a trick question] 

−1

1

−1 1

2

−1
( )2

3

−1
( )2

4

39



Check Yourself 

1.
−1

ω

π

−π

2.
−1 1

ω

π

−π

3.
−1

2 ω

π

−π

4.
−1

2 ω

π

−π
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Check Yourself 

1.
−1

ω

π

−π

2.
−1 1

ω

π

−π if K < 0

3.
−1

2 ω

π

−π

4.
−1

2 ω

π

−π
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Check Yourself
 

Could the phase plots of any of these systems be equal to 

each other? [caution: this is a trick question] yes 

−1

1

−1 1

2

−1
( )2

3

−1
( )2

4

phase of 2 could be same as phase of 3: depends on sign of K 
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Frequency Response of a High-Q System
 

The frequency-response magnitude of a high-Q system is peaked. 
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Frequency Response of a High-Q System
 

The frequency-response magnitude of a high-Q system is peaked. 
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Frequency Response of a High-Q System
 

The frequency-response magnitude of a high-Q system is peaked. 
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Frequency Response of a High-Q System
 

The frequency-response magnitude of a high-Q system is peaked. 
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Frequency Response of a High-Q System
 

The frequency-response magnitude of a high-Q system is peaked. 
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Check Yourself 

Find dependence of peak magnitude on Q (assume Q > 3). 
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Check Yourself
 

Find dependence of peak magnitude on Q (assume Q > 3).
 

Analyze with vectors. 

low frequencies

σ/ω0

ω/ω0

−1
− 1

2Q

1× 1 = 1

high frequencies

σ/ω0

ω/ω0

−1
− 1

2Q
1

2Q × 2 = 1
Q

Peak magnitude increases with Q ! 
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Frequency Response of a High-Q System
 

As Q increases, the width of the peak narrows. 
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Frequency Response of a High-Q System
 

As Q increases, the width of the peak narrows. 
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Frequency Response of a High-Q System
 

As Q increases, the width of the peak narrows. 
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Frequency Response of a High-Q System
 

As Q increases, the width of the peak narrows. 
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Frequency Response of a High-Q System
 

As Q increases, the width of the peak narrows. 
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Check Yourself
 

Estimate the “3dB bandwidth” of the peak (assume Q > 3). 

Let ωl (or ωh) represent the lowest (or highest) frequency for 

which the magnitude is greater than the peak value divided by√
2. The 3dB bandwidth is then ωh − ωl. 
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Check Yourself
 

Estimate the “3dB bandwidth” of the peak (assume Q > 3).
 

Analyze with vectors. 

low frequencies
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√
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√
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high frequencies
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√

2 1
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√
2
Q

1 + 1
2Q

Bandwidth approximately 
1 
Q 
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Frequency Response of a High-Q System
 

As Q increases, the phase changes more abruptly with ω. 
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Frequency Response of a High-Q System
 

As Q increases, the phase changes more abruptly with ω. 

s

ω0
plane

−1
− 1

2Q

√
1−

(
1

2Q

)2

−
√

1−
(

1
2Q

)2

H(s) = 1

1 + 1
Q

s

ω0
+
(
s

ω0

)2

−2 −1 0 1 2

0

−π/2

−π
log ω

ω0

∠H(jω)

58



Frequency Response of a High-Q System
 

As Q increases, the phase changes more abruptly with ω. 
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Frequency Response of a High-Q System
 

As Q increases, the phase changes more abruptly with ω. 
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Frequency Response of a High-Q System
 

As Q increases, the phase changes more abruptly with ω. 
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Check Yourself 

Estimate change in phase that occurs over the 3dB bandwidth. 
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Check Yourself
 

Estimate change in phase that occurs over the 3dB bandwidth.
 

Analyze with vectors. 

low frequencies

σ/ω0

ω/ω0

−1
− 1

2Q
π

2 −
π

4 = π

4

1− 1
2Q

high frequencies

σ/ω0

ω/ω0
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− 1

2Q
π

2 + π

4 = 3π
4

1 + 1
2Q

Change in phase approximately 
π 
2 
. 
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Summary
 

The frequency response of a system can be quickly determined using 

Bode plots. 

Bode plots are constructed from sections that correspond to single 

poles and single zeros. 

Responses for each section simply sum when plotted on logarithmic 

coordinates. 
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