6.003: Signals and Systems

Discrete Approximation of Continuous-Time Systems

September 29, 2011



Mid-term Examination #1

Wednesday, October 5, 7:30-9:30pm,

No recitations on the day of the exam.

Coverage: CT and DT Systems, Z and Laplace Transforms
Lectures 1-7
Recitations 1-7
Homeworks 1-4

Homework 4 will not collected or graded. Solutions will be posted.
Closed book: 1 page of notes (8% x 11 inches; front and back).

No calculators, computers, cell phones, music players, or other aids.
Designed as 1-hour exam; two hours to complete.

Review sessions during open office hours.

Conflict? Contact before Friday, Sept. 30, 5pm.

Prior term midterm exams have been posted on the 6.003 website.
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Concept Map

Today we will look at relations between CT and DT representations.

Block Diagram System Functional

TR e e =
~N 7/

Unit-Sapiple Response
72,3,5,8,13,21,34,55,...

Differerice Equation System Function
2
J[% +yln—1]+ yin—2] Hp -2 _

X(z) 22-z2-1
Block Diagram & System Functional / S

T . N
N /

Impulse Response
h(t) = 2(e7/2 %
AN &

Differential Equation System Function

23(t) + 3(1) + y(t) = 22(0 = e




Discrete Approximation of CT Systems

Example: leaky tank

.70 (f)
hy (t)l | |
1 (t)

Block Diagram

System Functional

X —@AD—{I v =
AN ./

Impulse Response
h(t) = %e’t/'ru(t)

-~ AN

Differential Equation System Function

#1(8) = o)) = ra (1) HO) = 30 = 1o

Today: compare step responses of leaky tank and DT approximation.
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Check Yourself (Practice for Exam)

P
e )
What is the ‘“step response” of the leaky tank system?

u(t) —»| Leaky Tank —» s(t) =7

(S )
1 i -
1. \ 2
: t . t
T T
1 -
3. 4.
: t . t
T T

5. none of the above




Check Yourself

What is the ‘“step response” of the leaky tank system?
de: T71(t) = u(t) —ri(t)

t<0: r(t)=0
t>0: Tl(t)261+626_t/T

i (t) = —2e T
Substitute into de: 7 (—2)e /T =1—¢; —ce /T — =1
Combine t <0 and t > 0:
r1(t) = u(t) + coe ™/ Tu(t)
F1(t) = 3(8) + c26(t) = Ze ()
Substitute into de:
7(1+ c2)8(t) — T%e*t/w(t) = u(t) — u(t) — coe VTult) — ey =—1

ri(t) = (1— e T)u(t)



Check Yourself

Alternatively, reason with systems!

3(t) —»| o= > h(t) = Le (1)

u(t) —{ A= > s(t) =?
() —s] 2 15, > st =2




Check Yourself

P
e )
What is the ‘“step response” of the leaky tank system? 2

u(t) —»| Leaky Tank —» s(t) =7

1 - 14
1. \ 2
T t T t
T T
1 1 1A
3. 4.
T t T t
T T

5. none of the above




Forward Euler Approximation

Approximate leaky-tank system using forward Euler approach.

Approximate continuous signals by discrete signals:
z4n] = zc(nT)
ya[n] = ye(nT)

Approximate derivative at ¢t = nT by looking forward in time:

jo(nT) = Y. [n+1]T— ydln]




Forward Euler Approximation

Approximate leaky-tank system using forward Euler approach.

Substitute
z4[n] = xc(nT)
Yaln] = ye(nT)
. _Ye((n+1)T) —ye(nT)  yaln + 1] — yaln]
yc(nT)"" T - d T .

into the differential equation

TQC(t) = fUC(t) - yc(t)
to obtain

T

= (valn + 1) = yaln) ) = z4ln] = yaln]
Solve:

T T
vl +11 = (1= ) valn] = Tl

T T



Forward Euler Approximation

Plot.
1_
T _
. T=01
1_
T
. T=03
1_
T _
. =1,
1_
T _
| t=15
N ANIYA
Z:\%/
— N Ty

T

Why is this approximation badly behaved for large %?
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Check Yourself

DT approximation:

wm+u—(

)

T

yaln] =~

[ Find the DT pole.




Check Yourself

DT approximation:

vl +11 = (1= ) vl = Tl

Take the Z transform:
T T
i) = (1= T )Vale) = T4l

Solve for the system function:

2 %
H(Z):;;Z((Z)) = L (1_%>
T

Poleat z=1- —.
T



Check Yourself

p
DT approximation:

T T
- (1-= ==
i +11 = (1= 1 salnl = L
[ Find the DT pole. 2
T
T T
3.z T z T
1
5 z=




Dependence of DT pole on Stepsize

=0.1

A
oY

Ll

=0.3

—_
1

alle

I

—

¢N

b | AVAVLL L-15 463:
Y | /\\//t L=> {3:

The CT pole was fixed (s = —%). Why is the DT pole changing?
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Dependence of DT pole on Stepsize

Dependence of DT pole on T is generic property of forward Euler.
Approach: make a systems model of forward Euler method.

CT block diagrams: adders, gains, and integrators:

X—AH—Y

Forward Euler approximation:
1 _
yn 1 =yl _

T
Equivalent system:

X—»I}—»@—» R > Y

Forward Euler: substitute equivalent system for all integrators.
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Example: leaky tank system

Started with leaky tank system:

X —>€;)_—>I>—>

Replace integrator with forward Euler rule:

—
v
~

O o

T

Write system functional:

T R
X 1+LE 1-rR+IR 1—(1—%)7&

Equivalent to system we previously developed:
T T
yaln +1] = (1= — Jyaln] = —zq[n]
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Model of Forward Euler Method

Replace every integrator in the CT system

X—| A+ Y

with the forward Euler model:

X —»I}—»@—» R

Substitute the DT operator for A:
T
1 TR = T
= — _> — z —
A s 1-R 1— % z—1

-1
Forward Euler maps s — T

Or equivalently: z=1+ sT.
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Dependence of DT pole on Stepsize

Pole at z=1-L =1+ 7.

T _
. t T =03
1_
T _
. t 7!
1_
L=-15

oY

.




Forward Euler: Mapping CT poles to DT poles

Forward Euler Map:

S — z=1+sT
0 1
1
-7 0
2
— -1
) s z
T
! S 1+sTh o\ 1
—F 4 + s

DT stability: CT pole must be inside circle of radius % at s

4~

2 1

< <0 = T<2
T T T
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Backward Euler Approximation

We can do a similar analysis of the backward Euler method.
Approximate continuous signals by discrete signals:
z4[n] = ze(nT)
ya[n] = ye(nT)
Approximate derivative at t = nT by looking backward in time:
Jo(nT) = yaln] — di[nfll

Ye(t)

yd[n—l]T/ valr
t

(n—1)T nT
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Backward Euler Approximation

We can do a similar analysis of the backward Euler method.

Substitute
zgq[n] = xzc(nT)
Ya[n] = ye(nT)
de(nT) ~ nT —ye (n—1)T  ygln] —yqgln —1]

T N T
into the differential equation
TYc(t) = we(t) — ye(t)

to obtain

T

7 (yd[n] — yan — 1]) = zq[n] — yaln] -

Solve: - -
(147 ) el = sl — 11 = Tl
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Backward Euler Approximation

Plot.
1_
T _
= =01
]__
T _
| ==03
1_ —r Ol
T _
T ?_1
1 - o
T _
| ==15
]__
T _
T ?_2

This approximation is better behaved. Why?
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Check Yourself

DT approximation:

(1+7 ) salnl = vatn =11 = T

[ Find the DT pole.
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Check Yourself
DT approximation:

(147 ) el = sl — 11 = Tl

Take the Z transform:
T

= —X4(2)

-

1+ 7;) Ya(2) — 21 Yg(2)

Find the system function:
v T

H(Z) — d(z) — 7'2:
Xa@) o (1+Z)2-1

Pole at z = .
1+ L

25



Check Yourself

p
DT approximation:

T T
- (1-= ==
it +11 = (1= 2 Ysatil = Lgi
[ Find the DT pole. 5
1.z:Z 2. z=1——
T T
T T
1
5. z=
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Dependence of DT pole on Stepsize

lﬁ
T
==0.1
- t T
1
T _
| . ?—0.3
1_ o o P
T _
: t 7=l
1 o—o—o
T _
. t T
1
T _
: t T2

Why is this approximation better behaved?
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Dependence of DT pole on Stepsize

Make a systems model of backward Euler method.

CT block diagrams: adders, gains, and integrators:

X—AH—Y

Backward Euler approximation:
y[n] —y[n — 1]

T
Equivalent system:

X_.|>_>@R—*|_> y

Backward Euler: substitute equivalent system for all integrators.

= z[n]
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Model of Backward Euler Method

Replace every integrator in the CT system

X—| A+ Y

with the backward Euler model:
X _.I>_>@—‘_|_> Y
R

Substitute the DT operator for A:
g, r _ T
s 1-R  1— %

1
1—sT"

Backward Euler maps z —
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Dependence of DT pole on Stepsize

—_
W
~
415
I
[@n)]
—

VA NS AN N
oYY

j T
1_
T
: t 7 =03
1 o—o—s
T _
. ¢ 7=
1 .
L-15
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Backward Euler: Mapping CT poles to DT poles

Backward Euler Map:

—

-
5

Wi N~ =

The entire left half-plane maps inside a circle with radius % at z =

If CT system is stable, then DT system is also stable.

31
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Masses and Springs, Forwards and Backwards

In Homework 2, you investigated three numerical approximations to
a mass and spring system:

e forward Euler
e backward Euler
e centered method




Trapezoidal Rule

The trapezoidal rule uses centered differences.

Approximate CT signals at points between samples:

yc((n—%)T) _ Yyaln] + gd[n — 1]

Approximate derivatives at points between samples:

yc((ﬂ—%)T) _ yd[n] —;d[n — 1]

yr) = bl + valn 1]

1
2
ie((n-3)7) = el paln 1]




Trapezoidal Rule

The trapezoidal rule uses centered differences.
y(t) = x(t)

Trapezoidal rule:
y[n] —y[n — 1] _ z[n] + x[n — 1]

T 2
Z transform:

-5 -5 (150) -5 (22)
Map:

1 T /(z+1
A=—-—= —
s 2(2—1)

1+ 5
Trapezoidal rule maps z —
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Trapezoidal Rule: Mapping CT poles to DT poles

Trapezoidal Map:

1+5F
s - 2= ar
2
0 1
_1 1
T 3
2
—Z 0
—00 -1
jw 24jwT

A
VA
y

The entire left-half plane maps inside the unit circle.

The jw axis maps onto the unit circle
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Mapping s to z: Leaky-Tank System

Forward Euler Method
S

1
T

] 14 sT
1 z S

Backward Euler Method
&

»
>

1
Z = T=T

Trapezoidal Rule
S
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Mapping s to z: Mass and Spring System

Forward Euler Method

Backward Euler Method
&

»
>

1
Z = T=T

Trapezoidal Rule
S
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Mapping s to z: Mass and Spring System

Forward Euler Method

Backward Euler Method
&

»
>

1
Z = T=T

Trapezoidal Rule
S
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Concept Map

Relations between CT and DT representations.

S

S

Block Diagram

X —-O—

Y
L (oo L o]

System Functional

Y 1

x MR =1

Block Diagram

System Functional

~ 7

Impulse Response
h(t) = %E’L/Tu(f,

AN

Differential Equation
T (t) = ro(t) — r1(t)

H(s)

_ Y (s)
X(s)

System Function

1
1+7s

~

Diff nce Equation
Mw[n—u +yn—2]

System Function
_Y@e_ A
)= X(z) 22-z-1

39




MIT OpenCourseWare
http://ocw.mit.edu

6.003 Signals and Systems
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms



