
6.003: Signals and Systems 

Discrete Approximation of Continuous-Time Systems 

September 29, 2011
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Mid-term Examination #1
 

Wednesday, October 5, 7:30-9:30pm, 

No recitations on the day of the exam. 

Coverage: CT and DT Systems, Z and Laplace Transforms 

Lectures 1–7 

Recitations 1–7 

Homeworks 1–4 

Homework 4 will not collected or graded. Solutions will be posted. 

Closed book: 1 page of notes (81
2 × 11 inches; front and back). 

No calculators, computers, cell phones, music players, or other aids. 

Designed as 1-hour exam; two hours to complete. 

Review sessions during open office hours. 

Conflict? Contact before Friday, Sept. 30, 5pm. 

Prior term midterm exams have been posted on the 6.003 website. 
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Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s) = 2

2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

Delay → R

Concept Map
 

Today we will look at relations between CT and DT representations. 

Block Diagram System Functional

Difference Equation System Function

Unit-Sample Response

+

Delay

+

Delay

X Y Y

X
= H(R) = 1

1−R−R2

y[n] = x[n] + y[n−1] + y[n−2] H(z) = Y (z)
X(z) = z2

z2 − z − 1

h[n] : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .index shift

Delay → R

CT

DT

CT

DT

CT 

DT 

CT 

DT 
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Discrete Approximation of CT Systems 

Example: leaky tank 
r0(t)

r1(t)
h1(t)

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+ 1
τ

∫
X Y

−
Y

X
= A
A+ τ

τ ṙ1(t) = r0(t)− r1(t) H(s) = Y (s)
X(s) = 1

1 + τs

h(t) = 1
τ e
−t/τu(t)

∫
ẋ(t) x(t)

∫
X AX

Today: compare step responses of leaky tank and DT approximation. 
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Check Yourself (Practice for Exam)
 

What is the “step response” of the leaky tank system? 

Leaky Tanku(t) s(t) =?

t

1

τ

1.
t

1

τ

2.

t

1

τ

3.
t

1

τ

4.

5. none of the above
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Check Yourself
 

What is the “step response” of the leaky tank system? 

de: τ ṙ1(t) = u(t) − r1(t) 

t < 0: r1(t) = 0 

t > 0: r1(t) = c1 + c2e−t/τ 

ṙ1(t) = − c
τ 
2 e−t/τ   

Substitute into de: τ − c2 e−t/τ = 1 − c1 − c2e−t/τ → c1 = 1 τ

Combine t < 0 and t > 0: 
r1(t) = u(t) + c2e −t/τ u(t) 

−t/τṙ1(t) = δ(t) + c2δ(t) − 
c2 

e u(t)
τ 

Substitute into de: 

−t/τ −t/ττ(1 + c2)δ(t) − τ
c2 

e u(t) = u(t) − u(t) − c2e u(t) → c2 = −1 
τ
 

−t/τ )u(t)
r1(t) = (1 − e 
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Check Yourself
 

Alternatively, reason with systems!
 

A
A+τδ(t) h(t) = 1

τ e
−t/τu(t)

A
A+τu(t) s(t) =?

A A
A+τδ(t)

u(t)
s(t) =?

A
A+τ Aδ(t)

h(t)
s(t) =

∫ t

−∞
h(t′)dt′

1 1 
s(t) =

 t 
e −tI/τ u(t')dt' =

 t 
e −tI/τ dt' = (1 − e −t/τ ) u(t)

τ τ−∞ 0 
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Check Yourself
 

What is the “step response” of the leaky tank system? 2 

Leaky Tanku(t) s(t) =?

t

1

τ

1.
t

1

τ

2.

t

1

τ

3.
t

1

τ

4.

5. none of the above
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Forward Euler Approximation
 

Approximate leaky-tank system using forward Euler approach. 

Approximate continuous signals by discrete signals: 

xd[n] = xc(nT ) 

yd[n] = yc(nT ) 

Approximate derivative at t = nT by looking forward in time: 

t
nT (n+1)T

yd[n]
yd[n+1]

ẏc(nT ) = yd[n+1]− yd[n]
T

yc(t)
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Forward Euler Approximation
 

Approximate leaky-tank system using forward Euler approach. 

Substitute 
xd[n] = xc(nT )
 

yd[n] = yc(nT )
 

yc (n + 1)T − yc nT yd[n + 1] − yd[n]
 
ẏc(nT ) ≈ = 

T T 
into the differential equation 

τ ẏc(t) = xc(t) − yc(t) 

to obtain   τ 
yd[n + 1] − yd[n] = xd[n] − yd[n] . 

T

Solve:   
T 

yd[n + 1] − 1 − yd[n] = 
T

xd[n]
τ τ 
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Forward Euler Approximation 

Plot. 

t

1
T
τ = 0.1

t

1
T
τ = 0.3

t

1
T
τ = 1

t

1
T
τ = 1.5

t

1
T
τ = 2

τ

TWhy is this approximation badly behaved for large τ ? 
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Check Yourself
 

DT approximation: 

yd[n + 1] − 1 − 
T 
τ 

yd[n] = 
T 
τ 

xd[n] 

Find the DT pole. 

1. z = 
T 
τ 

2. z = 1 − 
T 
τ 

3. z = 
τ 
T 

4. z = − 
τ 
T 

5. z = 
1 

1 + T 
τ 
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Check Yourself
 

DT approximation:
 

T 
yd[n + 1] − 1 − yd[n] = 

T
xd[n]

τ τ 

Take the Z transform: 
T 

zYd(z) − 1 − Yd(z) = 
T

Xd(z)
τ τ 

Solve for the system function: 
T 
τH(z) = 

Yd(z) = 
Xd(z) z − 1 − Tτ 

Pole at z = 1 − 
T 
. 

τ 
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Check Yourself
 

DT approximation: 

yd[n + 1] − 1 − 
T 
τ 

yd[n] = 
T 
τ 

xd[n] 

Find the DT pole. 2 

1. z = 
T 
τ 

2. z = 1 − 
T 
τ 

3. z = 
τ 
T 

4. z = − 
τ 
T 

5. z = 
1 

1 + T 
τ 
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Dependence of DT pole on Stepsize 

t

1
T
τ = 0.1

t

1
T
τ = 0.3

t

1
T
τ = 1

t

1
T
τ = 1.5

t

1
T
τ = 2

τ

z

z

z

z

z

The CT pole was fixed (s = − 1 
τ ). Why is the DT pole changing? 
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Dependence of DT pole on Stepsize
 

Dependence of DT pole on T is generic property of forward Euler. 

Approach: make a systems model of forward Euler method. 

CT block diagrams: adders, gains, and integrators: 

AX Y

ẏ(t) = x(t)
 

Forward Euler approximation: 

y[n + 1] − y[n] = x[n]
T 

Equivalent system: 

T + RX Y

Forward Euler: substitute equivalent system for all integrators. 
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+ 1
τ

∫
X Y

−

+ 1
τ T + RX Y

−

  
  

Example: leaky tank system 

Started with leaky tank system: 

Replace integrator with forward Euler rule: 

Write system functional: 
R

Y
T T TR
 R
1−Rτ τ τ=
 =
 =
 

1 +
T R 1 − R +
 Rτ
TX
 1 − 1 −
T 

τ R
1−Rτ 

Equivalent to system we previously developed: 
T 

yd[n + 1] − 1 − yd[n] = 
T

xd[n]
τ τ 
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Model of Forward Euler Method
 

Replace every integrator in the CT system 

AX Y

with the forward Euler model: 

T + RX Y

Substitute the DT operator for A: 
1 T R T T A = → = z = 
s 1 − R 1 − 1 z − 1 

z 

z − 1 
Forward Euler maps s → . 

T 
Or equivalently: z = 1 + sT . 
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Dependence of DT pole on Stepsize 

Pole at z = 1 − T 
τ = 1 + sT . 

t

1
T
τ = 0.1

t

1
T
τ = 0.3

t

1
T
τ = 1

t

1
T
τ = 1.5

t

1
T
τ = 2

τ

z

z

z

z

z
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Forward Euler: Mapping CT poles to DT poles
 

Forward Euler Map: 

s → z = 1 + sT 

0 1 

1 
T

− 2 
T −1 

1
T

− 1
T− 2

T

s

z → 1 + sT 1−1

z

DT stability: CT pole must be inside circle of radius 1 
T at s = − 1 

T . 

− 
2 
T 

< − < 0 → 
T 
τ 

< 21 
τ 

−
 0
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Backward Euler Approximation
 

We can do a similar analysis of the backward Euler method. 

Approximate continuous signals by discrete signals: 

xd[n] = xc(nT )
 

yd[n] = yc(nT )
 

Approximate derivative at t = nT by looking backward in time: 

t
(n−1)T nT

yd[n−1]
yd[n]

ẏc(nT ) = yd[n]− yd[n−1]
T

yc(t)
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Backward Euler Approximation
 

We can do a similar analysis of the backward Euler method. 

Substitute 
xd[n] = xc(nT ) 

yd[n] = yc(nT ) 

ẏc(nT ) ≈ 
yc nT − yc 

T 

(n − 1)T 
= 

yd[n] − yd[n − 1] 
T 

into the differential equation 

τ ẏc(t) = xc(t) − yc(t) 

to obtain 
τ 

yd[n] − yd[n − 1] = xd[n] − yd[n] . 
T 

Solve: 

1 + 
T

yd[n] − yd[n − 1] = 
T

xd[n]
τ τ 
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Backward Euler Approximation 

Plot. 

t

1
T
τ = 0.1

t

1
T
τ = 0.3

t

1
T
τ = 1

t

1
T
τ = 1.5

t

1
T
τ = 2

τ

This approximation is better behaved. Why? 
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Check Yourself
 

DT approximation: 

1 + 
T 
τ 

yd[n] − yd[n − 1] = 
T 
τ 

xd[n] 

Find the DT pole. 

1. z = 
T 
τ 

2. z = 1 − 
T 
τ 

3. z = 
τ 
T 

4. z = − 
τ 
T 

5. z = 
1 

1 + T 
τ 
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Check Yourself
 

DT approximation:
 

1 + 
T

yd[n] − yd[n − 1] = 
T

xd[n]
τ τ 

Take the Z transform: 

1 + 
T

Yd(z) − z −1Yd(z) = 
T

Xd(z)
τ τ 

Find the system function: 
T 
τ z 

H(z) = 
Yd(z) = 
Xd(z) 1 + Tτ z − 1 

1 
Pole at z = .

1 + Tτ 
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Check Yourself
 

DT approximation: 

yd[n + 1] − 1 − 
T 
τ 

yd[n] = 
T 
τ 

xd[n] 

Find the DT pole. 5 

1. z = 
T 
τ 

2. z = 1 − 
T 
τ 

3. z = 
τ 
T 

4. z = − 
τ 
T 

5. z = 
1 

1 + T 
τ 
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Dependence of DT pole on Stepsize 

t

1
T
τ = 0.1

t

1
T
τ = 0.3

t

1
T
τ = 1

t

1
T
τ = 1.5

t

1
T
τ = 2

τ

z

z

z

z

z

Why is this approximation better behaved? 
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Dependence of DT pole on Stepsize
 

Make a systems model of backward Euler method.
 

CT block diagrams: adders, gains, and integrators: 

AX Y

ẏ(t) = x(t)
 

Backward Euler approximation: 

y[n] − y[n − 1] = x[n]
T 

Equivalent system: 

T +

R

X Y

Backward Euler: substitute equivalent system for all integrators. 
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Model of Backward Euler Method
 

Replace every integrator in the CT system 

AX Y

with the backward Euler model: 

T +

R

X Y

Substitute the DT operator for A:
 
1 T T A = 
s 

→ 1 − R 
= 

1 − 1 
z 

1 
Backward Euler maps z → .1 − sT 
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Dependence of DT pole on Stepsize 

Pole at z = 1 
1+ T 

τ 
= 1 

1−sT . 

t

1
T
τ = 0.1

t

1
T
τ = 0.3

t

1
T
τ = 1

t

1
T
τ = 1.5

t

1
T
τ = 2

τ

z

z

z

z

z
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Backward Euler: Mapping CT poles to DT poles
 

Backward Euler Map:
 

s → z =
 1 
1−sT 

0 1
 

1 
T 

1
2−


2 
T 

0

s

z → 1
1−sT

1−1

z

1
3−


1
2

1
2The entire left half-plane maps inside a circle with radius
 at z =
 .
 

If CT system is stable, then DT system is also stable.
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Masses and Springs, Forwards and Backwards
 

In Homework 2, you investigated three numerical approximations to 

a mass and spring system: 

• forward Euler 

• backward Euler 

• centered method 

x(t)

y(t)

32



  
  

t
(n−1)T nT

yd[n−1]
yd[n]

yc

((
n− 1

2
)
T
)

= yd[n] + yd[n−1]
2

ẏc

((
n− 1

2
)
T
)

= yd[n]− yd[n−1]
T

yc(t)

Trapezoidal Rule
 

The trapezoidal rule uses centered differences. 

Approximate CT signals at points between samples: 
1 yd[n] + yd[n − 1] 

yc (n− )T = 2 2 

Approximate derivatives at points between samples: 
1 yd[n] − yd[n − 1] 

ẏc (n− )T = 2 T 
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Trapezoidal Rule
 

The trapezoidal rule uses centered differences. 

ẏ(t) = x(t) 

Trapezoidal rule: 
y[n] − y[n − 1] x[n] + x[n − 1]= 

T 2 
Z transform: 

−1T 1 + z T z + 1 
H(z) = 

Y (s) = = 
X(s) 2 1 − z−1 2 z − 1 

Map: 
1 T z + 1 A = → 
s 2 z − 1 

1 + sT 
2Trapezoidal rule maps z → .

1 − sT 
2 

34
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Trapezoidal Rule: Mapping CT poles to DT poles
 

Trapezoidal Map: 
1+ sT 

2s → z = 
1− sT 

2 

0 1 

− 1 1 
T 3 

− 2 0T 

−∞ −1 

2+jωT jω 2−jωT 

The entire left-half plane maps inside the unit circle. 

The jω axis maps onto the unit circle 

0

s

z → 2+sT
2−sT

1−1

z
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Mapping s to z: Leaky-Tank System
 

Forward Euler Method 
1
T

− 1
T− 2

T

s

z → 1 + sT 1−1

z

Backward Euler Method 

0

s

z → 1
1−sT

1−1

z

0

s

z → 2+sT
2−sT

1−1

z
Trapezoidal Rule 
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Mapping s to z: Mass and Spring System
 

Forward Euler Method 
1
T

− 1
T− 2

T

s

z → 1 + sT 1−1

z

Backward Euler Method 

0

s

z → 1
1−sT

1−1

z

0

s

z → 2+sT
2−sT

1−1

z
Trapezoidal Rule 
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Mapping s to z: Mass and Spring System
 

Forward Euler Method 
1
T

− 1
T− 2

T

s

z → 1 + sT 1−1

z

Backward Euler Method 

0

s

z → 1
1−sT

1−1

z

0

s

z → 2+sT
2−sT

1−1

z
Trapezoidal Rule 
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Block Diagram System Functional

Differential Equation System Function

Impulse Response

+ 1
τ

∫
X Y

−
Y

X
= A
A+ τ

τ ṙ1(t) = r0(t)− r1(t) H(s) = Y (s)
X(s) = 1

1 + τs

h(t) = 1
τ e
−t/τu(t)

∫
ẋ(t) x(t)

∫
X AX

Concept Map
 

Relations between CT and DT representations. 

Block Diagram System Functional

Difference Equation System Function

Unit-Sample Response

+

Delay

+

Delay

X Y Y

X
= H(R) = 1

1−R−R2

y[n] = x[n] + y[n−1] + y[n−2] H(z) = Y (z)
X(z) = z2

z2 − z − 1

h[n] : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .index shift

Delay → R

CT

DT

CT

DT

CT 

DT 

CT 

DT 
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