6.003: Signals and Systems

Continuous-Time Systems

September 20, 2011



Multiple Representations of Discrete-Time Systems

Discrete-Time (DT) systems can be represented in different ways
to more easily address different types of issues.

Verbal descriptions: preserve the rationale.

“Next year, your account will contain p times your balance
from this year plus the money that you added this year.”

Difference equations: mathematically compact.
y[n + 1] = z[n] + py[n]

Block diagrams: illustrate signal flow paths.

x[n) —»@—» Delay > y[n]

Operator representations: analyze systems as polynomials.
(1-pR)Y =RX



Multiple Representations of Continuous-Time Systems

Similar representations for Continuous-Time (CT) systems.
Verbal descriptions: preserve the rationale.

“Your account will grow in proportion to your balance plus the
rate at which you deposit.”

Differential equations: mathematically compact.

W) — 2(0) + putt)

Block diagrams: illustrate signal flow paths.

t
2(1) —>@_>/_ ()dt . y(t)

[e.9]

Operator representations: analyze systems as polynomials.
(1-pAY = AX



Differential Equations

Differential equations are mathematically precise and compact.

e A (t)
h1 (t)l ‘

We can represent the tank system with a differential equation.
dri(t)  ro(t) —ri(t)

dt T
You already know lots of methods to solve differential equations:
e general methods (separation of variables; integrating factors)
e homogeneous and particular solutions

e inspection

L ()

Today: new methods based on block diagrams and operators,
which provide new ways to think about systems’ behaviors.
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Block Diagrams

Block diagrams illustrate signal flow paths.

DT: adders, scalers, and delays — represent systems described by
linear difference equations with constant coefficents.

il

CT: adders, scalers, and integrators — represent systems described
by a linear differential equations with constant coefficients.

t
o) —=D— [ ()at - (1)

[0.9]

Delays in DT are replaced by integrators in CT.
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Operator Representation

CT Block diagrams are concisely represented with the A operator.

Applying A to a CT signal generates a new signal that is equal to
the integral of the first signal at all points in time.

Y = AX
is equivalent to

y(t) = /_t x(T)dr

o0

for all time ¢.



Check Yourself

A

y(t) = &(t) + py(t)

y(t) = x(t) + py(t)

y(t) = px(t) + py(t)




Check Yourself

L@

y(t) = &(t) + py(t)

y(t) = x(t) + py(t)

y(t) = px(t) + py(t)




Evaluating Operator Expressions

As with R, A expressions can be manipulated as polynomials.

Example:

v

Ne
!

X O—
Lo LG

y(t) = x(t) + /_too x(r)dr + /_too x(r)dr + /_too ( /_T;J:(Tl)d7'1> dr

W=(1+AX
Y=1+AW=>014+A1+A)X=(1+24+A*X
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Evaluating Operator Expressions

Expressions in A can be manipulated using rules for polynomials.
e Commutativity: A(1—-A)X = (1 - A)AX
e Distributivity: A(1 — A)X = (4 - A%)X

o Associativity: ((1 - A)A) (2 - A)X = (1- A) (A(2 . A))X



Check Yourself

-

[ Determine k; so that these

systems are ‘“equivalent.”

X—»@—»A

=0.7

X —(H—

-

:@—»_A » Y

=0.9

A

v
o~
v
~

2. 09 3. 16

kQQ—

4. 0.63 5. none of these




Check Yourself

Write operator expressions for each system.
w
¥ —=O—[AT~O—[

0.7

v
~

=0.9

A

A

W=AX-0TW)  (1+0TAW =AX  (1+0TA)(1+0.94)Y = A2X
Y = AW-09Y) ~ (1+0.94)Y = AW ° (1+1.6A440.63A42)Y = A2X

X—»@—»A W=A >V

[ -
ko [e——
W = A(X +Ek W +koY) L Y= A2X + k1 AY + ko A%Y
Y = AW (1—k1A—ko A2)Y = A2X

k1 =-1.6



Check Yourself

-

[ Determine k; so that these

systems are ‘“equivalent.”

X—»@—»A

=0.7

X —(H—

-

:@—»_A » Y

=0.9

A

v
o~
v
~

2. 09 3. 16

kQQ—

4. 0.63 5. none of these




Elementary Building-Block Signals

Elementary DT signal: d[n].
1, ifn=0;
o) =4
0, otherwise
d[n]
1

ocoo

0

e simplest non-trivial signal (only one non-zero value)
e shortest possible duration (most ‘“transient”)
e useful for constructing more complex signals

What CT signal serves the same purpose?



Elementary CT Building-Block Signal

Consider the analogous CT signal: w(t) is non-zero only at ¢t =0.

0 t<0
wt)=¢1 t=0
0 t>0
w(t)
1
t
0

Is this a good choice as a building-block signal? No

t
w(t)—»/ (-)dt}— 0

o0

The integral of w(t) is zero!



Unit-Impulse Signal

The unit-impulse signal acts as a pulse with unit area but zero width.

Pe(t)

% unit area
6(t) = lim pe(?)

e—0




Unit-Impulse Signal

The unit-impulse function is represented by an arrow with the num-
ber 1, which represents its area or “weight.”

3(t)
T 1
t

It has two seemingly contradictory properties:

e it is nonzero only at t =0, and
e its definite integral (—oo,c0) is one!

Both of these properties follow from thinking about 4(¢) as a limit:

Pe(?)

2 unit area
5(t) = lim pe(t)

e—0




Unit-Impulse and Unit-Step Signals

The indefinite integral of the unit-impulse is the unit-step.

u(t):/_t 5()\)d)\:{1; t=0

00 0; otherwise

u(t)
1

Equivalently




Impulse Response of Acyclic CT System

If the block diagram of a CT system has no feedback (i.e., no cycles),
then the corresponding operator expression is “imperative.”

»
>

X ® >(H— v
L r L

Y=(1+A1+AX=01+24+A4%)X

If z(t) =4(t) then
y(t) = (1+2A+ A2 6(t) = 6(t) + 2u(t) + tu(t)



CT Feedback

Find the impulse response of this CT system with feedback.

z(t) —>(H—>| A > y(t)

L

Method 1: find differential equation and solve it.
y(t) = z(t) + py(t)

Linear, first-order difference equation with constant coefficients.

Try y(t) = Ce®u(t).
Then §(t) = aCe®u(t) + Ce®'5(t) = aCe™u(t) + C5(t).
Substituting, we find that aCe®u(t) + Co(t) = 6(t) + pCe® u(t).

Therefore a=pand C=1 — y(t) = elu(t).
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CT Feedback

Find the impulse response of this CT system with feedback.

z(t) —>(H—>| A > y(t)

L

Method 2: use operators.

Y =A(X +pY)
Y A

X 1-pA

Now expand in ascending series in A:

| =

= Al + pA + p* A* + pP A% + )
If z(t) = 46(t) then
y(t) = A1+ pA+p? A2+ p3 A3 4+ - 6(1)

1 1 ,
=(1+pt+ §p2t2 + gp?’t?’ + ) u(t) = ePlu(t).
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CT Feedback

We can visualize the feedback by tracing each cycle through the
cyclic signal path.

x(t) = O ==t » y(t)

g

y(t) = (A+pA? + p? A3 + pP A+ ) 6(1)

1 1
=1 +pt+ §p2t2 + gp?’t?’ + ) ul(t)

y(t)

22



CT Feedback

We can visualize the feedback by tracing each cycle through the
cyclic signal path.

o (t) — DA 5 y(t)

2 l:
|
y(t) = (A+ pA> + PP A3 + pP A+ ) 6(8)

1 1
=1 +pt+ §p2t2 + gp?’t?’ + ) ul(t)

y(t)

23



CT Feedback

We can visualize the feedback by tracing each cycle through the

cyclic signal path.

y()

>

y(t) = (A+pA? + p° A3 + pP AT+ ) 6(1)

1 1
=(1+pt+ §p2t2 + gp?’t?’ + ) ul(t)

y(t)

24



CT Feedback

We can visualize the feedback by tracing each cycle through the

cyclic signal path.

(1) =tk > y(t)
4 [ _i >

-

T <«

y(t) = (A+ pA? + p? A3 + P AT + ) 6(8)

1 1
=u+m+§ﬁ#+éﬁﬁ+~vmw

y(t)

25



CT Feedback

We can visualize the feedback by tracing each cycle through the

cyclic signal path.

(1) =tk > y(t)
4 [ _i >

-

T <«

y(t) = (A+ pA? + p? A3 + P AT + ) 6(8)

1 1
=(1+pt+ §p2t2 + gpgt?’ + Y ul(t) = ePlu(t)

y(t)

26



CT Feedback

Making p negative makes the output converge (instead of diverge).

z(t) —(HD—>| 4 > y(t)

Lgl—

y(t) = (A — pAZ + p? A% — PP At + ) 6(1)

1 1
=(1—pt+ §thQ - 6p3t3 + ) u(t)

27



CT Feedback

Making p negative makes the output converge (instead of diverge).

o (t) —{ D —>t4 > y(t)

Lgl—

y(t) = (A — pAZ + p? A% — p3 At + ) 6(1)

1 1
=(1—pt+ §thQ - 8193’t3’ + ) u(t)

y(t)

28



CT Feedback

Making p negative makes the output converge (instead of diverge).

2(t) =t 3 y(t)

4

2
il

y(t) = (A — pA% + p? A% — PP At + ) 6(1)

1 1
:u—m+¥%ﬁﬁﬁﬁ+mmm

y(t)

29



CT Feedback

Making p negative makes the output converge (instead of diverge).

2(t) =tk

> y(t)

yiay
T

y(t) = (A — pAZ + p? A% — p3 At + ) 6(1)

1 1
=(1-pt+ §p2t2 - 6pf”t?’ + ) u(t)

y(t)

30



CT Feedback

Making p negative makes the output converge (instead of diverge).

2(t) =t > y(t)

i
4

31



CT Feedback

Making p negative makes the output converge (instead of diverge).

2(t) =t > y(t)

i
4

32



Convergent and Divergent Poles

The fundamental mode associated with p converges if p < 0 and
diverges if p > 0.

X—»@—» A > Y
‘_
p<0 p>0
y(t) y()
1 1
t . t

33



Convergent and Divergent Poles

The fundamental mode associated with p converges if p < 0 and
diverges if p > 0.

X—»@—»

=~
v
i..<




CT Feedback

In CT, each cycle adds a new integration.

i _i

\ -
y(t) = (A+pA? + p? A3 + P A + .. ) 6(1)

1 1
=(1+pt+ 5thQ + ép?’t?’ + - u(t) = ePlut)

y(t)

35



DT Feedback

In DT, each cycle creates another sample in the output.

X =
“II I

yln] = 1+ pR+ p*R2 + PR3 + p*R* + ) d[n)
= [n] + pd[n — 1] + p?6[n — 2] + p38[n — 3] + p*d[n — 4] + - --

36



Summary: CT and DT representations

Many similarities and important differences.

y(t) = =(t) + py() yln] = xln] + py[n —1]

X—»@—»A > Y X—»@

- <« Delay
A 1
1—-pA 1—pR
ePlu(t)

p"uln]

37



Check Yourself

s

[ Which functionals represent convergent systems? }
1 1
1 1
— ZR2 — Z‘AQ
1 1
1+ 2R + 3R2 1424+ 342

1. \\? § 2. ;{\X/ 3. \\?\\? 4. %i} 5. none of these

38



Check Yourself

= both inside unit circle

left & right half-planes

inside & outside unit circle

both left half plane

39



Check Yourself

s

[ Which functionals represent convergent systems? 4 }
1 1
1 1
— ZR2 — Z‘AQ
1 1
1+ 2R + 3R2 1424+ 342

1y§ 2. VY

4.%?

5. none of these

40




Mass and Spring System

Use the A operator to solve the mass and spring system.

1.

= K (z(t) —y(t)) = Mj(t)

(t)
F

1 y(t)
:L‘(t) —»@—»I@y—(ﬂ#fl y(t)= A > y(t)

—1

A

y £l

X 14+ Ea2

41



Mass and Spring System

Factor system functional to find the poles.

Y A LA

X 14+ E2 " 1-ppA)(1-piA)

K
1+ MAQ =1— (po +p1)A+ pop1.A®

The sum of the poles must be zero.
The product of the poles must be K/M.

_a K- K
po=3i\ 5y P1=—0\7;

42



Mass and Spring System

Alternatively, find the poles by substituting A — %
The poles are then the roots of the denominator.

Y A

X 1+ &2

Substitute A — 1

v_ %
X_s2+%

K

43



Mass and Spring System

The poles are complex conjugates.

Ims
s-plane
X/ & =w
Res
(* % = —Wwo

The corresponding fundamental modes have complex values.
fundamental mode 1: e/“0f = coswyt + j sinwpt

fundamental mode 2: ¢ 790! = coswgt — j sinwpt

44



Mass and Spring System

Real-valued inputs always excite combinations of these modes so
that the imaginary parts cancel.

Example: find the impulse response.

Y_]{;AZ_]{;<A A)

X 14842 po-pi\1-pA 1-piA

B wd A B A
2jwg \ 1 — jwgA 14 jwoA

5 (o) 5 ()
275 \ 1 — jwpA 25 \ 1+ jwpA

makes mode 1 makes mode 2

The modes themselves are complex conjugates, and their coefficients
are also complex conjugates. So the sum is a sum of something and
its complex conjugate, which is real.

45



Mass and Spring System

The impulse response is therefore real.
Z wo A _wo A
X 25 \1-jwyA 25 \ 1+ jwpA

The impulse response is

h(t) = %J‘*’Ot — %e_jwot =wpsinwgt; t>0
J J




Mass and Spring System

Alternatively, find impulse response by expanding system functional.

x(t) _.@_> QN pyru RAON pyre IR y(t)

A

Y wiA? 242 A4 646
LA el N VU R,
X T o A e

If 2(t) =4(t) then

2 g2 gt?
y(t):th—wog‘i‘wa—‘f—"' y tZO

47



Mass and Spring System

Look at successive approximations to this infinite series.

Y wiA? 9 2% 2 2\!
T
X 1+w(2)A2 w0 ; w0

o, 4t t? gttt
:wot—w()i +w0§ —W()ﬁ"‘wo ol — + -+ = wpsinwopt

oA
VA




Summary: CT and DT representations

Many similarities and important differences.

y(t) = =(t) + py() yln] = xln] + py[n —1]

X—»@—»A > Y X—»@

- <« Delay
A 1
1—-pA 1—pR
ePlu(t)

p"uln]
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