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Multiple Representations of Discrete-Time Systems
 

Discrete-Time (DT) systems can be represented in different ways 

to more easily address different types of issues. 

Verbal descriptions: preserve the rationale. 

“Next year, your account will contain p times your balance 

from this year plus the money that you added this year.” 

Difference equations: mathematically compact. 

y[n + 1] = x[n] + py[n] 

Block diagrams: illustrate signal flow paths. 

+ Delay

p

x[n] y[n]

Operator representations: analyze systems as polynomials. 

(1 − pR) Y = RX
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Multiple Representations of Continuous-Time Systems 

Similar representations for Continuous-Time (CT) systems. 

Verbal descriptions: preserve the rationale. 

“Your account will grow in proportion to your balance plus the 

rate at which you deposit.” 

Differential equations: mathematically compact. 
dy(t) = x(t) + py(t)

dt 
Block diagrams: illustrate signal flow paths. 

+
∫ t

−∞
( · ) dt

p

x(t) y(t)

Operator representations: analyze systems as polynomials. 

(1 − pA)Y = AX
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Differential Equations
 

Differential equations are mathematically precise and compact. 

r0(t)

r1(t)
h1(t)

We can represent the tank system with a differential equation. 

dr1(t) r0(t) − r1(t)= 
dt τ 

You already know lots of methods to solve differential equations: 

• general methods (separation of variables; integrating factors) 

• homogeneous and particular solutions 

• inspection 

Today: new methods based on block diagrams and operators, 

which provide new ways to think about systems’ behaviors. 
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Block Diagrams
 

Block diagrams illustrate signal flow paths.
 

DT: adders, scalers, and delays – represent systems described by 

linear difference equations with constant coefficents. 

+ Delay

p

x[n] y[n]

CT: adders, scalers, and integrators – represent systems described 

by a linear differential equations with constant coefficients. 

+
∫ t

−∞
( · ) dt

p

x(t) y(t)

Delays in DT are replaced by integrators in CT. 
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Operator Representation
 

CT Block diagrams are concisely represented with the A operator. 

Applying A to a CT signal generates a new signal that is equal to 

the integral of the first signal at all points in time. 

Y = AX 

is equivalent to  t 
y(t) = x(τ) dτ 

−∞ 

for all time t. 
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Check Yourself 

A

p

+X Y

A p+X Y

Ap

+X Y

ẏ(t) = ẋ(t) + py(t)

ẏ(t) = x(t) + py(t)

ẏ(t) = px(t) + py(t)

Which block diagrams correspond to which equations? 1 

1. 2. 3. 4. 5. none
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Check Yourself 

A

p

+X Y

A p+X Y

Ap

+X Y

ẏ(t) = ẋ(t) + py(t)

ẏ(t) = x(t) + py(t)

ẏ(t) = px(t) + py(t)

Which block diagrams correspond to which equations? 1 

1. 2. 3. 4. 5. none
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Evaluating Operator Expressions
 

As with R, A expressions can be manipulated as polynomials.
 

Example: 

+ +

A A

X Y
W

w(t) = x(t) + 
t 

x(τ)dτ 
−∞ 
t 

y(t) = w(t) + w(τ )dτ 
−∞   t t t τ2 

y(t) = x(t) + x(τ)dτ + x(τ)dτ + x(τ1)dτ1 dτ2 
−∞ −∞ −∞ −∞ 

W = (1 + A) X 

Y = (1 + A) W = (1 + A)(1 + A) X = (1 + 2A + A2) X 
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Evaluating Operator Expressions
 

Expressions in A can be manipulated using rules for polynomials. 

• Commutativity: A(1 − A)X = (1 − A)AX 

• Distributivity: A(1 − A)X = (A − A2)X 

• Associativity: (1 − A)A (2 − A)X = (1 − A) A(2 − A) X 
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Check Yourself
 

Determine k1 so that these systems are “equivalent.” 

+ A

−0.7

+ A

−0.9

X Y

+

k1

A

k2

AX Y

1. 0.7 2. 0.9 3. 1.6 4. 0.63 5. none of these 
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Check Yourself
 

Write operator expressions for each system. 

+ A

−0.7

+ A

−0.9

X Y
W

W = A(X −0.7W ) 
Y = A(W −0.9Y ) 

→ 
(1+0.7A)W = AX 
(1+0.9A)Y = AW 

→ 
(1+0.7A)(1+0.9A)Y = A2X 
(1+1.6A+0.63A2)Y = A2X 

+

k1

A

k2

AX Y
W

W = A(X +k1W +k2Y ) 
Y = AW 

→ 
Y = A2X +k1AY +k2A2Y 
(1−k1A−k2A2)Y = A2X 

k1 = −1.6 
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Check Yourself
 

Determine k1 so that these systems are “equivalent.” 

+ A

−0.7

+ A

−0.9

X Y

+

k1

A

k2

AX Y

1. 0.7 2. 0.9 3. 1.6 4. 0.63 5. none of these 
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Elementary Building-Block Signals
 

Elementary DT signal: δ[n].
  1, if n = 0; 
δ[n] =

0, otherwise 

0

1

n

δ[n]

simplest non-trivial signal (only one non-zero value) • 

• shortest possible duration (most “transient”) 

• useful for constructing more complex signals 

What CT signal serves the same purpose? 
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Elementary CT Building-Block Signal
 

Consider the analogous CT signal: w(t) is non-zero only at t = 0. ⎧ 0 t < 0⎨ 
w(t) = 1 t = 0 ⎩ 

0 t > 0 

t

w(t)
1

0

Is this a good choice as a building-block signal? No ∫ t

−∞
( · ) dtw(t) 0

The integral of w(t) is zero! 
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Unit-Impulse Signal
 

The unit-impulse signal acts as a pulse with unit area but zero width. 

t−ε ε

1
2ε

pε(t)

δ(t) = lim
ε→0

pε(t)
unit area

t

−1
2

1
2

1

p1/2(t)

t

−1
4

1
4

2

p1/4(t)

t

−1
8

1
8

4
p1/8(t)
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Unit-Impulse Signal
 

The unit-impulse function is represented by an arrow with the num­

ber 1, which represents its area or “weight.” 

t

δ(t)

1

It has two seemingly contradictory properties: 

• it is nonzero only at t = 0, and 

• its definite integral (−∞, ∞) is one ! 

Both of these properties follow from thinking about δ(t) as a limit:
 

t−ε ε

1
2ε

pε(t)

δ(t) = lim
ε→0

pε(t)
unit area
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Unit-Impulse and Unit-Step Signals
 

The indefinite integral of the unit-impulse is the unit-step. 

t 1; t ≥ 0 
u(t) = δ(λ) dλ = 

−∞ 

Equivalently 

0; otherwise 

t

u(t)
1

Aδ(t) u(t)
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Impulse Response of Acyclic CT System
 

If the block diagram of a CT system has no feedback (i.e., no cycles), 

then the corresponding operator expression is “imperative.” 

+ +

A A

X Y

Y = (1 + A)(1 + A) X = (1 + 2A + A2) X 

If x(t) = δ(t) then 

y(t) = (1 + 2A + A2) δ(t) = δ(t) + 2u(t) + tu(t) 
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CT Feedback
 

Find the impulse response of this CT system with feedback. 

+ A

p

x(t) y(t)

Method 1: find differential equation and solve it. 

ẏ(t) = x(t) + py(t) 

Linear, first-order difference equation with constant coefficients.
 

Try y(t) = Ceαtu(t).
 

Then ẏ(t) = αCeαtu(t) + Ceαtδ(t) = αCeαtu(t) + Cδ(t).
 

Substituting, we find that αCeαtu(t) + Cδ(t) = δ(t) + pCeαtu(t).
 

Therefore α = p and C = 1 → y(t) = eptu(t).
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CT Feedback
 

Find the impulse response of this CT system with feedback. 

+ A

p

x(t) y(t)

Method 2: use operators. 

Y = A (X + pY ) 
Y A = 
X 1 − pA 

Now expand in ascending series in A: 
Y = A(1 + pA + p 2A2 + p 3A3 + · · ·)
X 

If x(t) = δ(t) then 

y(t) = A(1 + pA + p 2A2 + p 3A3 + · · ·) δ(t) 
1 2 2 + 1 3 pt= (1 + pt + 2p t 6p t3 + · · ·) u(t) = e u(t) . 
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t

y(t)

1

0

CT Feedback
 

We can visualize the feedback by tracing each cycle through the 

cyclic signal path. 

+ A

p

x(t) y(t)

y(t) = (A + pA2 + p 2A3 + p 3A4 + · · ·) δ(t)
 
1
 3= (1 + pt + 2p t3 + · · ·) u(t)2 2 + 1 

t 6p 
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t

y(t)

1

0

CT Feedback
 

We can visualize the feedback by tracing each cycle through the 

cyclic signal path. 

+ A

p

x(t) y(t)

y(t) = (A + pA2 + p 2A3 + p 3A4 + · · ·) δ(t)
 
1
 3= (1 + pt + 2p t3 + · · ·) u(t)2 2 + 1 

t 6p 
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t

y(t)

1

0

CT Feedback
 

We can visualize the feedback by tracing each cycle through the 

cyclic signal path. 

+ A

p

x(t) y(t)

y(t) = (A + pA2 + p 2A3 + p 3A4 + · · ·) δ(t)
 
1
 3= (1 + pt + 2p t3 + · · ·) u(t)2 2 + 1 

t 6p 
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t

y(t)

1

0

CT Feedback
 

We can visualize the feedback by tracing each cycle through the 

cyclic signal path. 

+ A

p

x(t) y(t)

y(t) = (A + pA2 + p 2A3 + p 3A4 + · · ·) δ(t)
 
1
 3= (1 + pt + 2p t3 + · · ·) u(t)2 2 + 1 

t 6p 
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t

y(t)

1

0

CT Feedback
 

We can visualize the feedback by tracing each cycle through the 

cyclic signal path. 

+ A

p

x(t) y(t)

y(t) = (A + pA2 + p 2A3 + p 3A4 + · · ·) δ(t)
 
1
 3 pt= (1 + pt + 2p t3 + · · ·) u(t) = e u(t)2 2 + 1 

t 6p 
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CT Feedback
 

Making p negative makes the output converge (instead of diverge). 

+ A

−p

x(t) y(t)

y(t) = (A − pA2 + p 2A3 − p 3A4 + · · ·) δ(t)
 
1 3 3 + ·
= (1 − pt + t · ·) u(t)2p 2 2 − 

1 
t 6p 
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CT Feedback
 

1
2


Making p negative makes the output converge (instead of diverge). 

+ A

−p

x(t) y(t)

y(t) = (A − pA2 + p 2A3 − p 3A4 + · · ·) δ(t)
 
1
= (1 − pt + 3

2p t2 − 6p t3 + · · ·) u(t) 

t

y(t)

1

0
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CT Feedback
 

1
2


Making p negative makes the output converge (instead of diverge). 

+ A

−p

x(t) y(t)

y(t) = (A − pA2 + p 2A3 − p 3A4 + · · ·) δ(t)
 
1
= (1 − pt + 3

2p t2 − 6p t3 + · · ·) u(t) 

t

y(t)

1

0

29



CT Feedback
 

1
2


Making p negative makes the output converge (instead of diverge). 

+ A

−p

x(t) y(t)

y(t) = (A − pA2 + p 2A3 − p 3A4 + · · ·) δ(t)
 
1
= (1 − pt + 3

2p t2 − 6p t3 + · · ·) u(t) 

t

y(t)

1

0
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CT Feedback
 

1
2


Making p negative makes the output converge (instead of diverge). 

+ A

−p

x(t) y(t)

y(t) = (A − pA2 + p 2A3 − p 3A4 + · · ·) δ(t)
 
1
= (1 − pt + 3

2p t2 − 6p t3 + · · ·) u(t) 

t

y(t)

1

0
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CT Feedback
 

1
2


Making p negative makes the output converge (instead of diverge). 

+ A

−p

x(t) y(t)

y(t) = (A − pA2 + p 2A3 − p 3A4 + · · ·) δ(t)
 
1
 3 −pt= (1 − pt + u(t)2p t2 − 6p t3 + · · ·) u(t) = e 

t

y(t)

1

0
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Convergent and Divergent Poles
 

The fundamental mode associated with p converges if p < 0 and
 

diverges if p > 0. 

+ A

p

X Y

t

y(t)

1

0

p < 0

t

y(t)

1

0

p > 0
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Convergent and Divergent Poles
 

The fundamental mode associated with p converges if p < 0 and
 

diverges if p > 0. 

+ A

p

X Y

Re(p)

Im(p)

Re(p)

Convergent Divergent
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In CT, each cycle adds a new integration. 

+ A

p

x(t) y(t)

2A3 + p 3A4 + · · ·) δ(t) 

CT Feedback
 

1
2


y(t) = (A + pA2 + p 
1
= (1 + pt + 3

2p t2 + 6p t3 + · · ·) u(t) = e u(t)pt

t

y(t)

1

0
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DT Feedback
 

In DT, each cycle creates another sample in the output. 

Delay

+

p0

X Y

y[n] = (1 + pR + p 2R2 + p 3R3 + p 4R4 + · · ·) δ[n] 
= δ[n] + pδ[n − 1] + p 2δ[n − 2] + p 3δ[n − 3] + p 4δ[n − 4] + · · · 

−1 0 1 2 3 4
n

y[n]
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+ A

p

X Y

Summary: CT and DT representations
 

Many similarities and important differences. 

ẏ(t) = x(t) + py(t) 

A 
1 − pA 1 − pR 

y[n] = x[n] + py[n − 1] 

+

Delayp

X Y

1 

e ptu(t) p n u[n] 
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Check Yourself
 

Which functionals represent convergent systems? 

1 

1 − 1 
4 R2 

1 

1 − 1 
4 A2 

1 

1 + 2R + 3 
4 R2 

1 

1 + 2A + 3 
4 A2 

1.
√

x√
x 2.

√ √
x x 3.

√ √
√ √ 4.

√
x

x
√ 5. none of these
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Check Yourself
 

√1 1 = both inside unit circle 
1 − 14 R2 (1 − 12 R)(1 + 12 R) 

1 1 = left & right half-planes X
1 − 14 A2 (1 − 12 A)(1 + 12 A) 

1 1 = inside & outside unit circle 
1 + 2R + 34 R2 (1 + 12 R)(1 + 32 R) 

√1 1 = both left half plane 
1 + 2A + 34 A2 (1 + 12 A)(1 + 32 A) 

39

X 



Check Yourself
 

Which functionals represent convergent systems? 4 

1 

1 − 1 
4 R2 

1 

1 − 1 
4 A2 

1 

1 + 2R + 3 
4 R2 

1 

1 + 2A + 3 
4 A2 

1.
√

x√
x 2.

√ √
x x 3.

√ √
√ √ 4.

√
x

x
√ 5. none of these
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Mass and Spring System
 

Use the A operator to solve the mass and spring system. 

x(t)

y(t)

F = K
(
x(t)− y(t)

)
= Mÿ(t)

+ K

M
A A

−1

x(t) y(t)
ẏ(t)ÿ(t)

Y = 
K 
M A2 

X 1 +
 A2K 
M
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Mass and Spring System
 

Factor system functional to find the poles.
 

A2 A2K KY
 M M=
 =
 
X 1 +

1 + 
K 

A2 (1 − p0A)(1 − p1A)K 
M

A2 = 1 − (p0 + p1)A + p0p1A2 
M
 

The sum of the poles must be zero. 

The product of the poles must be K/M .   
K K 

p0 = j
M 

p1 = −j
M 
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Mass and Spring System
 

.
Alternatively, find the poles by substituting A → 1
 

The poles are then the roots of the denominator.
 
s 

Y = 
K 
M A2 

X 1 +
 K 
M A2 

Substitute A → 1 : 

Y = 

s 
K 
M 

X s2 + K 
M 

K 
s = ±j 

M 
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Mass and Spring System
 

The poles are complex conjugates. 

Re s

Im s
s-plane √

K
M ≡ ω0

−
√

K
M ≡ −ω0

The corresponding fundamental modes have complex values. 

fundamental mode 1: ejω0t = cos ω0t + j sin ω0t 

fundamental mode 2: e −jω0t = cos ω0t − j sin ω0t 
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Mass and Spring System
 

Real-valued inputs always excite combinations of these modes so 

that the imaginary parts cancel. 

Example: find the impulse response. 

A2K KY
 A A
M M=
 =
 −

K 
M A2 1 − p0A 1 − p1A1 +
X
 p0 − p1 

ω0
2 A A = 2jω0 1 − jω0A

− 1 + jω0A 
ω0 A ω0 A
 = 2j 1 − jω0A

− 2j 1 + jω0A
 ' v " ' v " 
makes mode 1 makes mode 2 

The modes themselves are complex conjugates, and their coefficients 

are also complex conjugates. So the sum is a sum of something and 

its complex conjugate, which is real. 
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Mass and Spring System
 

The impulse response is therefore real.
 

Y ω0 A ω0 A 
X 

= 2j 1 − jω0A
− 2j 1 + jω0A 

The impulse response is 

jω0t − 
ω0 −jω0th(t) = 

ω0 
e2j 2j 

e = ω0 sin ω0t ; t > 0 

t

y(t)

0

46

( ) ( )



Mass and Spring System
 

Alternatively, find impulse response by expanding system functional. 

+ ω2
0 A A

−1

x(t) y(t)
ẏ(t)ÿ(t)

Y 
X 

= 
ω2

0A2 

1 + ω2
0A2 

= ω2
0A2 − ω4

0A4 + ω6
0A6 − + · · · 

If x(t) = δ(t) then
 

t

3! + ω
3
 t

5! − + 
5
 

y(t) = ω
20
t − ω
40

6
0
 · · · ,
 t ≥ 0
 

47



� �

� �

Mass and Spring System
 

Look at successive approximations to this infinite series.
 
∞

Y ω0
2A2 0 l 

= = ω0
2A2 −ω0

2A2 
X 1 + ω0

2A2 
l=0 

If x(t) = δ(t) then 
∞

y(t) = 
0 

ω0
2 −ω0

2 l 
A2l+2δ(t) 

l=0 
3 5 7 9t2 4= ω0t − ω0 3! + ω6

0 
t

5! − ω8
0 

t

7! + ω10
0 

t

9! − + · · · = ω0 sin ω0t 

t

y(t)

0
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+ A

p

X Y

Summary: CT and DT representations
 

Many similarities and important differences. 

ẏ(t) = x(t) + py(t) 

A 
1 − pA 1 − pR 

y[n] = x[n] + py[n − 1] 

+

Delayp

X Y

1 

e ptu(t) p n u[n] 
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