
6.003: Signals and Systems 

Feedback, Poles, and Fundamental Modes 

September 15, 2011
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Homework
 

Doing the homework is essential to understanding the content. 

Weekly Homework Assigments 

•	 tutor (exam-type) problems: 

answers are automatically checked to provide quick feedback 

•	 engineering design (real-world) problems: 

graded by a human 

Learning doesn’t end when you have submitted your work! 

•	 solutions will be posted on Wednesdays at 5pm 

•	 read solutions to find errors and to see alternative approaches 

•	 mark the errors in your previously submitted work 

•	 submit the markup by Friday at 5pm 

•	 identify ALL errors and get back half of the points you lost! 
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Last Time: Multiple Representations of DT Systems
 

Verbal descriptions: preserve the rationale. 

“To reduce the number of bits needed to store a sequence of 

large numbers that are nearly equal, record the first number, 

and then record successive differences.” 

Difference equations: mathematically compact. 

y[n] = x[n] − x[n − 1] 

Block diagrams: illustrate signal flow paths. 

−1 Delay

+x[n] y[n]

Operator representations: analyze systems as polynomials. 

Y = (1 − R) X
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Last Time: Feedback, Cyclic Signal Paths, and Modes
 

Systems with signals that depend on previous values of the same 

signal are said to have feedback. 

Example: The accumulator system has feedback. 

Delay

+X Y

−1 Delay

+X Y

By contrast, the difference machine does not have feedback. 
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Last Time: Feedback, Cyclic Signal Paths, and Modes
 

The effect of feedback can be visualized by tracing each cycle 

through the cyclic signal paths. 

Delay

+

p0

X Y

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Each cycle creates another sample in the output. 
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Last Time: Feedback, Cyclic Signal Paths, and Modes
 

The effect of feedback can be visualized by tracing each cycle 

through the cyclic signal paths. 

Delay

+

p0

X Y

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Each cycle creates another sample in the output. 

The response will persist even though the input is transient.
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−1 0 1 2 3 4
n

y[n]

Geometric Growth: Poles
 

These unit-sample responses can be characterized by a single number 

— the pole — which is the base of the geometric sequence. 

Delay

+

p0

X Y

y[n] =
 

pn
0 , if n >= 0; 

0, otherwise. 

−1 0 1 2 3 4
n

y[n]

−1 0 1 2 3 4
n

y[n]

p0 = 0.5 p0 = 1 p0 = 1.2 
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Check Yourself
 

How many of the following unit-sample responses can be 

represented by a single pole? 

n n

n n

n
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Check Yourself
 

How many of the following unit-sample responses can be 

represented by a single pole? 3 

n n

n n

n
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Geometric Growth
 

The value of p0 determines the rate of growth. 

y[n] y[n] y[n] y[n]

−1 0 1
z

p0 < −1: magnitude diverges, alternating sign 

−1 < p0 < 0: magnitude converges, alternating sign
 

0 < p0 < 1: magnitude converges monotonically
 

p0 > 1: magnitude diverges monotonically
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Second-Order Systems
 

The unit-sample responses of more complicated cyclic systems are 

more complicated. 

R

R

1.6

−0.63

+X Y

−1 0 1 2 3 4 5 6 7 8
n

y[n]

Not geometric. This response grows then decays. 
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Factoring Second-Order Systems
 

Factor the operator expression to break the system into two simpler 

systems (divide and conquer). 

R

R

1.6

−0.63

+X Y

Y = X + 1.6RY − 0.63R2Y 

(1 − 1.6R + 0.63R2) Y = X 

(1 − 0.7R)(1 − 0.9R) Y = X
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Factoring Second-Order Systems
 

The factored form corresponds to a cascade of simpler systems. 

(1 − 0.7R)(1 − 0.9R) Y = X 

+

0.7 R

+

0.9 R

X Y
Y2

(1 − 0.7R) Y2 = X (1 − 0.9R) Y = Y2 

+

0.9 R

+

0.7 R

X Y
Y1

(1 − 0.9R) Y1 = X (1 − 0.7R) Y = Y1 

The order doesn’t matter (if systems are initially at rest).
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Factoring Second-Order Systems
 

The unit-sample response of the cascaded system can be found by 

multiplying the polynomial representations of the subsystems. 

Y 1 1 1 = = × 
X (1 − 0.7R)(1 − 0.9R) (1 − 0.7R) (1 − 0.9R)   _    _ 

 _   _  
= (1 + 0.7R + 0.72R2 + 0.73R3 + · · ·) × (1 + 0.9R + 0.92R2 + 0.93R3 + · · ·) 

Multiply, then collect terms of equal order: 

Y = 1 + (0.7 + 0.9)R + (0.72 + 0.7 × 0.9 + 0.92)R2 
X 

+ (0.73 + 0.72 × 0.9 + 0.7 × 0.92 + 0.93)R3 + · · · 
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Multiplying Polynomial
 

Graphical representation of polynomial multiplication. 

Y 

Y 
X 

= (1 + aR + a 2R2 + a 3R3 + · · ·) × (1 + bR + b2R2 + b3R3 + · · ·) 

1

a R

a2 R2

a3 R3

+

1

b R

b2 R2

b3 R3

+

... ... ... ...

X Y

Collect terms of equal order: 

= 1 + (a + b)R + (a 2 + ab + b2)R2 + (a 3 + a 2b + ab2 + b3)R3 + · · · 
X 
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−1 0 1 2 3 4 5 6 7 8
n

y[n]

Multiplying Polynomials
 

Tabular representation of polynomial multiplication. 

(1 + aR + a 2R2 + a 3R3 + · · ·) × (1 + bR + b2R2 + b3R3 + · · ·) 

1 bR b2R2 b3R3 · · · 

1 1 bR b2R2 b3R3 · · · 
aR aR abR2 ab2R3 ab3R4 · · · 

a2R2 a2R2 a2bR3 a2b2R4 a2b3R5 · · · 
a3R3 a3R3 a3bR4 a3b2R5 a3b3R6 · · · 

· · · · · · · · · · · · · · · · · · 

Group same powers of R by following reverse diagonals: 
Y = 1 + (a + b)R + (a 2 + ab + b2)R2 + (a 3 + a 2b + ab2 + b3)R3 + · · · 
X 
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Partial Fractions
 

Use partial fractions to rewrite as a sum of simpler parts.
 

R

R

1.6

−0.63

+X Y

Y 1 1 4.5 3.5 = = = − 
X 1 − 1.6R + 0.63R2 (1 − 0.9R)(1 − 0.7R) 1 − 0.9R 1 − 0.7R 
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Second-Order Systems: Equivalent Forms
 

The sum of simpler parts suggests a parallel implementation.
 

Y 
X 

= 
4.5 

1 − 0.9R 
− 

3.5 
1 − 0.7R 

+

0.9 R

4.5 +

−3.5

R0.7

+

X Y
Y1

Y2

If x[n] = δ[n] then y1[n] = 0.9n and y2[n] = 0.7n for n ≥ 0. 

Thus, y[n] = 4.5(0.9)n − 3.5(0.7)n for n ≥ 0. 
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Partial Fractions
 

Graphical representation of the sum of geometric sequences. 

−1 0 1 2 3 4 5 6 7 8
n

y1[n] = 0.9n for n ≥ 0

−1 0 1 2 3 4 5 6 7 8
n

y2[n] = 0.7n for n ≥ 0

−1 0 1 2 3 4 5 6 7 8
n

y[n] = 4.5(0.9)n − 3.5(0.7)n
for n ≥ 0
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Partial Fractions 

Partial fractions provides a remarkable equivalence. 

R

R

1.6

−0.63

+X Y

+

0.9 R

4.5 +

−3.5

R0.7

+

X Y
Y1

Y2

→ follows from thinking about system as polynomial (factoring). 
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Poles
 

The key to simplifying a higher-order system is identifying its poles. 

Poles are the roots of the denominator of the system functional 

when R → 1 . z 

Start with system functional: 
Y 1 1 1 = = = 
X 1 − 1.6R+0.63R2 (1−p0R)(1−p1R) (1−0.7R) (1−0.9R) 

p0=0.7 p1=0.9 

1 
Substitute R → and find roots of denominator: 

z 
2 2Y 1 z z= = = 

X 1.6 0.63 z2 −1.6z+0.63 (z−0.7) (z−0.9)1 − + 
z z2 

z0=0.7 z1=0.9 

The poles are at 0.7 and 0.9. 
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Check Yourself
 

Consider the system described by 

y[n] = − 
1 
4y[n − 1] + 

1 
8y[n − 2] + x[n − 1] − 

1 
2x[n − 2] 

How many of the following are true? 

1. The unit sample response converges to zero. 

2. There are poles at z = 1
2 and z = 1

4 . 

3. There is a pole at z = 1
2 . 

4. There are two poles. 

5. None of the above 
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Check Yourself
 

1 1 1
 
y[n] = −4y[n − 1] + 8y[n − 2] + x[n − 1] − 2x[n − 2] 

1 1 1
1 + 4R − 8R2 Y = R − 2R2 X
 

1
2
R

2R −

H(R) = 

Y = 
X
 1

4

1
8
R21 +
 R −


1
 1
2
 

1
 1
2
 

1
2


−
 z −
 z −
2
z z =
=
 =
 1
4
 

1
 1
8
 

1
 2 + 1
4


1
8
 

1
2
1 +
 z +
−
 z −
 z −
2 zz z

1. The unit sample response converges to zero.
 
1
2
 and z =
 1

4
.
2. There are poles at z =

1
2
.
3. There is a pole at z =


4. There are two poles. 

5. None of the above 
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Check Yourself
 

1 1 1
 
y[n] = −4y[n − 1] + 8y[n − 2] + x[n − 1] − 2x[n − 2] 

1 1 1
1 + 4R − 8R2 Y = R − 2R2 X
 

1
2
R

2R −

H(R) = 

Y = 
X
 1

4

1
8
R21 +
 R −


1
 1
2
 

1
 1
2
 

1
2


−
 z −
 z −
2
z z=
 =
 =
 1
4
 

1
 1
8
 

1
 2 + 1
4


1
8
 

1
2


1
4
1 +
 z +
−
 z −
 z −
2 zz z

√ 
1. The unit sample response converges to zero. 

1
2
 and z =
 1

4
. X
2. There are poles at z =

1
2
. X
√3. There is a pole at z =


4. There are two poles. 

5. None of the above X
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Check Yourself
 

Consider the system described by 

y[n] = − 
1 
4y[n − 1] + 

1 
8y[n − 2] + x[n − 1] − 

1 
2x[n − 2] 

How many of the following are true? 2 

1. The unit sample response converges to zero. 

2. There are poles at z = 1
2 and z = 1

4 . 

3. There is a pole at z = 1
2 . 

4. There are two poles. 

5. None of the above 
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Population Growth 
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Population Growth 
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Population Growth 
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Population Growth 
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Population Growth 
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Check Yourself
 

What are the pole(s) of the Fibonacci system? 

1. 1 

2. 1 and −1 

3. −1 and −2 

4. 1.618 . . . and −0.618 . . . 

5. none of the above 
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Check Yourself
 

What are the pole(s) of the Fibonacci system? 

Difference equation for Fibonacci system: 

y[n] = x[n] + y[n − 1] + y[n − 2] 

System functional: 
Y 1 

H = = 
X 1 − R − R2 

Denominator is second order → 2 poles. 
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Check Yourself
 

Find the poles by substituting R → 1/z in system functional. 
2Y 1 1 z

H = = = 
X 1 − R − R2 → 

1 − 1 − 1 z2 − z − 1 
z 2z

Poles are at √
1 ± 5 1 

z = = φ or −2 φ 

where φ represents the “golden ratio” √
1 + 5 

φ = ≈ 1.6182 
The two poles are at 

1 
z0 = φ ≈ 1.618 and z1 = − ≈ −0.618 

φ 
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Check Yourself
 

What are the pole(s) of the Fibonacci system? 4 

1. 1 

2. 1 and −1 

3. −1 and −2 

4. 1.618 . . . and −0.618 . . . 

5. none of the above 
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Example: Fibonacci’s Bunnies
 

Each pole corresponds to a fundamental mode.
 

1 
φ ≈ 1.618 and − ≈ −0.618 

φ 

One mode diverges, one mode oscillates! 

−1 0 1 2 3 4
n

φn

−1 0 1 2 3 4
n

(
− 1
φ

)n
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Example: Fibonacci’s Bunnies
 

The unit-sample response of the Fibonacci system can be written 

as a weighted sum of fundamental modes. 

φ 1
 
Y 1 √

5 φ 
√

5

H = = = + 

X 1 − R − R2 1 − φR 1 + 1 Rφ 

φ 1 
h[n] = √ φn + √ (−φ)−n ; n ≥ 0

5 φ 5

But we already know that h[n] is the Fibonacci sequence f : 

f : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . 

Therefore we can calculate f [n] without knowing f [n − 1] or f [n − 2] ! 
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Complex Poles
 

What if a pole has a non-zero imaginary part?
 

Example:
 
Y 1 = 
X 1 − R + R2 

1 z2 
= = 

1 − 1 
z + 1 

z2 z2 − z + 1 

1 
√

3 ±jπ/3Poles are z = 2 ± 2 j = e .
 

What are the implications of complex poles?
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Complex Poles
 

Partial fractions work even when the poles are complex. 

jπ/3 −jπ/3Y 1 1 1 e e= × = √ − 
jπ/3R −jπ/3R jπ/3R −jπ/3RX 1 − e 1 − e j 3 1 − e 1 − e

There are two fundamental modes (both geometric sequences): 

e jnπ/3 = cos(nπ/3) + j sin(nπ/3) and e −jnπ/3 = cos(nπ/3) − j sin(nπ/3) 

n n
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Complex Poles
 

Complex modes are easier to visualize in the complex plane. 

e jnπ/3 = cos(nπ/3) + j sin(nπ/3) 

Re

Im

e j0π/3

e j1π/3e j2π/3

e j3π/3

e j4π/3 e j5π/3

Re

Im

e j0π/3

e j5π/3e j4π/3

e j3π/3

e j2π/3 e j1π/3

n

e−jnπ/3 = cos(nπ/3) − j sin(nπ/3) 

n
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Complex Poles
 

The output of a “real” system has real values. 

y[n] = x[n] + y[n − 1] − y[n − 2]
 
Y 1
 

H = = 
X 1 − R + R2 

1 1 = 
jπ/3R

× −jπ/3R1 − e 1 − e
jπ/3 −jπ/31 e e= 

j 
√

3 1 − e jπ/3R
− 

1 − e−jπ/3R   1 
h[n] = √

j 3
e j(n+1)π/3 − e −j(n+1)π/3 = √ sin2 (n + 1)π 

3 3 

1

−1

n

h[n]
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Check Yourself
 

Unit-sample response of a system with poles at z = re ±jΩ . 

n

Which of the following is/are true? 

1. r < 0.5 and Ω ≈ 0.5 

2. 0.5 < r < 1 and Ω ≈ 0.5 

3. r < 0.5 and Ω ≈ 0.08 

4. 0.5 < r < 1 and Ω ≈ 0.08 

5. none of the above 
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Check Yourself
 

Unit-sample response of a system with poles at z = re ±jΩ . 

n

Which of the following is/are true? 2 

1. r < 0.5 and Ω ≈ 0.5 

2. 0.5 < r < 1 and Ω ≈ 0.5 

3. r < 0.5 and Ω ≈ 0.08 

4. 0.5 < r < 1 and Ω ≈ 0.08 

5. none of the above 
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Check Yourself 

R R R+X Y

How many of the following statements are true? 

1. This system has 3 fundamental modes. 

2. All of the fundamental modes can be written as geometrics. 

3. Unit-sample response is y[n] : 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . . 

4. Unit-sample response is y[n] : 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . . 

5. One of the fundamental modes of this system is the unit 

step. 
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Check Yourself 

R R R+X Y

How many of the following statements are true? 4 

1. This system has 3 fundamental modes. 

2. All of the fundamental modes can be written as geometrics. 

3. Unit-sample response is y[n] : 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . . 

4. Unit-sample response is y[n] : 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . . 

5. One of the fundamental modes of this system is the unit 

step. 
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Summary
 

Systems composed of adders, gains, and delays can be characterized 

by their poles. 

The poles of a system determine its fundamental modes. 

The unit-sample response of a system can be expressed as a weighted 

sum of fundamental modes. 

These properties follow from a polynomial interpretation of the sys­

tem functional. 
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