
6.003: Signals and Systems 

Discrete-Time Systems 

September 13, 2011
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Homework
 

Doing the homework is essential to understanding the content. 

Weekly Homework Assigments 

•	 tutor (exam-type) problems: 

answers are automatically checked to provide quick feedback 

•	 engineering design (real-world) problems: 

graded by a human 

Learning doesn’t end when you have submitted your work! 

•	 solutions will be posted on Wednesdays at 5pm 

•	 read solutions to find errors and to see alternative approaches 

•	 mark the errors in your previously submitted work 

•	 submit the markup by Friday at 5pm 

•	 identify ALL errors and get back half of the points you lost! 
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Discrete-Time Systems
 

We start with discrete-time (DT) systems because they 

• are conceptually simpler than continuous-time systems 

• illustrate same important modes of thinking as continuous-time 

• are increasingly important (digital electronics and computation) 
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Multiple Representations of Discrete-Time Systems
 

Systems can be represented in different ways to more easily address 

different types of issues. 

Verbal description: ‘To reduce the number of bits needed to store 

a sequence of large numbers that are nearly equal, record the first 

number, and then record successive differences.’ 

Difference equation: 

y[n] = x[n] − x[n − 1] 

Block diagram: 

−1 Delay

+x[n] y[n]

We will exploit particular strengths of each of these representations.
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Difference Equations
 

Difference equations are mathematically precise and compact. 

Example: 

y[n] = x[n] − x[n − 1] 

Let x[n] equal the “unit sample” signal δ[n],  1, if n = 0; 
δ[n] =

0, otherwise. 

−1 0 1 2 3 4
n

x[n] = δ[n]

We will use the unit sample as a “primitive” (building-block signal) 

to construct more complex signals.
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Check Yourself
 

Solve 
y[n] = x[n] − x[n − 1] 

given 
x[n] = δ[n] 

How many of the following are true? 

1. y[2] > y[1] 
2. y[3] > y[2] 
3. y[2] = 0 

4. y[n] − y[n−1] = x[n] − 2x[n−1] + x[n−2] 
5. y[119] = 0 
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Step-By-Step Solutions
 

Difference equations are convenient for step-by-step analysis.
 

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Find y[n] given x[n] = δ[n]: y[n] = x[n]− x[n− 1]

y[−1] = x[−1]− x[−2] = 0− 0 = 0
y[0] = x[0]− x[−1] = 1− 0 = 1
y[1] = x[1]− x[0] = 0− 1 = −1
y[2] = x[2]− x[1] = 0− 0 = 0
y[3] = x[3]− x[2] = 0− 0 = 0

. . .
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Check Yourself
 

Solve 
y[n] = x[n] − x[n − 1] 

given 
x[n] = δ[n] 

How many of the following are true? 4 

1. y[2] > y[1] 
√ 

2. y[3] > y[2] X 

3. y[2] = 0 
√ 

4. y[n] − y[n−1] = x[n] − 2x[n−1] + x[n−2] 
√ 

5. y[119] = 0 
√ 
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Step-By-Step Solutions
 

Block diagrams are also useful for step-by-step analysis.
 

Represent y[n] = x[n] − x[n − 1] with a block diagram: start “at rest”
 

−1 Delay

+x[n] y[n]

0

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]
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Step-By-Step Solutions
 

Block diagrams are also useful for step-by-step analysis.
 

Represent y[n] = x[n] − x[n − 1] with a block diagram: start “at rest”
 

−1 Delay

+1 1

−1
0

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]
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Step-By-Step Solutions
 

Block diagrams are also useful for step-by-step analysis.
 

Represent y[n] = x[n] − x[n − 1] with a block diagram: start “at rest”
 

−1 Delay

+1→ 0

−1
0→ −1

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]
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Step-By-Step Solutions
 

Block diagrams are also useful for step-by-step analysis.
 

Represent y[n] = x[n] − x[n − 1] with a block diagram: start “at rest”
 

−1 Delay

+1→ 0 −1

0
0→ −1

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]
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Step-By-Step Solutions
 

Block diagrams are also useful for step-by-step analysis.
 

Represent y[n] = x[n] − x[n − 1] with a block diagram: start “at rest”
 

−1 Delay

+0 −1

0
−1

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]
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Step-By-Step Solutions
 

Block diagrams are also useful for step-by-step analysis.
 

Represent y[n] = x[n] − x[n − 1] with a block diagram: start “at rest”
 

−1 Delay

+0 −1

0
−1→ 0

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n
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Step-By-Step Solutions
 

Block diagrams are also useful for step-by-step analysis.
 

Represent y[n] = x[n] − x[n − 1] with a block diagram: start “at rest”
 

−1 Delay

+0 0

0
−1→ 0

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]
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Step-By-Step Solutions
 

Block diagrams are also useful for step-by-step analysis.
 

Represent y[n] = x[n] − x[n − 1] with a block diagram: start “at rest”
 

−1 Delay

+0 0

0
0

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]
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Step-By-Step Solutions
 

Block diagrams are also useful for step-by-step analysis.
 

Represent y[n] = x[n] − x[n − 1] with a block diagram: start “at rest”
 

−1 Delay

+0 0

0
0

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]
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Check Yourself
 

DT systems can be described by difference equations and/or 

block diagrams. 

Difference equation: 
y[n] = x[n] − x[n − 1] 

Block diagram: 

−1 Delay

+x[n] y[n]

In what ways are these representations different? 
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Check Yourself
 

In what ways are difference equations different from block diagrams? 

Difference equation: 

y[n] = x[n] − x[n − 1] 

Difference equations are “declarative.” 

They tell you rules that the system obeys. 

Block diagram: 

−1 Delay

+x[n] y[n]

Block diagrams are “imperative.” 

They tell you what to do. 

Block diagrams contain more information than the corresponding 

difference equation (e.g., what is the input? what is the output?) 
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From Samples to Signals
 

Lumping all of the (possibly infinite) samples into a single object — 

the signal — simplifies its manipulation. 

This lumping is an abstraction that is analogous to 

• representing coordinates in three-space as points 

• representing lists of numbers as vectors in linear algebra 

• creating an object in Python 
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From Samples to Signals
 

Operators manipulate signals rather than individual samples. 

−1 Delay

+x[n] y[n]

Nodes represent whole signals (e.g., X and Y ). 

The boxes operate on those signals: 

• Delay = shift whole signal to right 1 time step 

• Add = sum two signals 

• −1: multiply by −1 

Signals are the primitives.
 

Operators are the means of combination.
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Operator Notation
 

Symbols can now compactly represent diagrams. 

Let R represent the right-shift operator: 

Y = R{X} ≡ RX 

where X represents the whole input signal (x[n] for all n) and Y 

represents the whole output signal (y[n] for all n) 

Representing the difference machine 

−1 Delay

+x[n] y[n]

with R leads to the equivalent representation 

Y = X − RX = (1 − R) X
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Operator Notation: Check Yourself
 

Let Y = RX. Which of the following is/are true: 

1. y[n] = x[n] for all n 

2. y[n + 1] = x[n] for all n 

3. y[n] = x[n + 1] for all n 

4. y[n − 1] = x[n] for all n 

5. none of the above 
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Check Yourself 

Consider a simple signal: 

Then 

Clearly y[1] = x[0]. 

−1 0 1 2 3 4
n

X

−1 0 1 2 3 4
n

Y = RX

Equivalently, if n = 0, then y[n + 1] = x[n]. 

The same sort of argument works for all other n.
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Operator Notation: Check Yourself
 

Let Y = RX. Which of the following is/are true: 

1. y[n] = x[n] for all n 

2. y[n + 1] = x[n] for all n 

3. y[n] = x[n + 1] for all n 

4. y[n − 1] = x[n] for all n 

5. none of the above 
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Operator Representation of a Cascaded System
 

System operations have simple operator representations. 

Cascade systems → multiply operator expressions. 

−1 Delay

+

−1 Delay

+X
Y1

Y2

Using operator notation: 

Y1 = (1 − R) X 

Y2 = (1 − R) Y1 

Substituting for Y1: 

Y2 = (1 − R)(1 − R) X 
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Operator Algebra
 

Operator expressions can be manipulated as polynomials. 

−1 Delay

+

−1 Delay

+X
Y1

Y2

Using difference equations: 

y2[n] = y1[n] − y1[n − 1] 
= (x[n] − x[n − 1]) − (x[n − 1] − x[n − 2]) 

= x[n] − 2x[n − 1] + x[n − 2] 

Using operator notation: 

Y2 = (1 − R) Y1 = (1 − R)(1 − R) X
 

= (1 − R)2X
 

= (1 − 2R + R2) X
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Operator Approach
 

Applies your existing expertise with polynomials to understand block 

diagrams, and thereby understand systems. 
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Operator Algebra
 

Operator notation facilitates seeing relations among systems.
 

“Equivalent” block diagrams (assuming both initially at rest): 

−1 Delay

+

−1 Delay

+X
Y1

Y2

Delay

Delay

−2

+X Y

Equivalent operator expressions: 

(1 − R)(1 − R) = 1 − 2R + R2 

The operator equivalence is much easier to see. 
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Check Yourself
 

Operator expressions for these “equivalent” systems 

(if started “at rest”) obey what mathematical property? 

Delay−1

+ DelayX Y

Delay

Delay Delay−1

+X Y

1. commutate 2. associative 

3. distributive 4. transitive 

5. none of the above 
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Delay−1

+ DelayX Y

Check Yourself
 

Y = R(1 − R)X
 

Delay

Delay Delay−1

+X Y

Y = (R − R2)X 

Multiplication by R distributes over addition.
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Check Yourself
 

Operator expressions for these “equivalent” systems 

(if started “at rest”) obey what mathematical property? 3 

Delay−1

+ DelayX Y

Delay

Delay Delay−1

+X Y

1. commutate 2. associative 

3. distributive 4. transitive 

5. none of the above 
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Check Yourself
 

How many of the following systems are equivalent to 

Y = (4R2 + 4R + 1) X ? 

Delay 2 + Delay 2 +X Y

Delay + Delay 4 +X Y

Delay 4 +

Delay

+X Y
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Check Yourself 

Delay 2 + Delay 2 +X Y

Y = (2R + 1)(2R + 1) X 
—————————————————————————– 

Delay + Delay 4 +X Y

Y = (4R2 + 4R + 1) X 
—————————————————————————– 

Delay 4 +

Delay

+X Y

Y = (4R2 + 4R + 1) X 
—————————————————————————– 

All implement Y = (4R2 + 4R + 1) X 
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Check Yourself
 

How many of the following systems are equivalent to 

Y = (4R2 + 4R + 1) X ? 3 

Delay 2 + Delay 2 +X Y

Delay + Delay 4 +X Y

Delay 4 +

Delay

+X Y
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Operator Algebra: Explicit and Implicit Rules
 

Recipes versus constraints.
 

Recipe: subtract a right-shifted version of the input signal from a 

copy of the input signal. 

−1 Delay

+X Y

Y = (1 − R) X 

Constraint: the difference between Y and RY is X. 

Delay

+X Y

Y = RY + X 

(1 − R) Y = X 

But how does one solve such a constraint? 
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Example: Accumulator
 

Try step-by-step analysis: it always works. Start “at rest.” 

+

Delay

x[n] y[n]

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Find y[n] given x[n] = δ[n]: y[n] = x[n] + y[n− 1]

y[0] = x[0] + y[−1] = 1 + 0 = 1
y[1] = x[1] + y[0] = 0 + 1 = 1
y[2] = x[2] + y[1] = 0 + 1 = 1

. . .
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Example: Accumulator
 

Try step-by-step analysis: it always works. Start “at rest.” 

+

Delay

x[n] y[n]

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Find y[n] given x[n] = δ[n]: y[n] = x[n] + y[n− 1]

y[0] = x[0] + y[−1] = 1 + 0 = 1
y[1] = x[1] + y[0] = 0 + 1 = 1
y[2] = x[2] + y[1] = 0 + 1 = 1

. . .

Persistent response to a transient input! 
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Example: Accumulator
 

The response of the accumulator system could also be generated by 

a system with infinitely many paths from input to output, each with 

one unit of delay more than the previous. 

Y = (1 + R + R2 + R3 + · · ·) X 

Delay

Delay Delay

Delay Delay Delay

+

... ...

X Y
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Example: Accumulator
 

These systems are equivalent in the sense that if each is initially at 

rest, they will produce identical outputs from the same input. 

(1 − R) Y1 = X1 ⇔ ? Y2 = (1 + R + R2 + R3 + · · ·) X2 

Proof: Assume X2 = X1: 

Y2 = (1 + R + R2 + R3 + · · ·) X2
 

= (1 + R + R2 + R3 + · · ·) X1
 

= (1 + R + R2 + R3 + · · ·) (1 − R) Y1
 

= ((1 + R + R2 + R3 + · · ·) − (R + R2 + R3 + · · ·)) Y1
 

= Y1
 

It follows that Y2 = Y1. 

It also follows that (1 − R) and (1 + R + R2 + R3 + · · ·) are reciprocals. 
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Example: Accumulator
 

The reciprocal of 1−R can also be evaluated using synthetic division. 

Therefore 

1 +R +R2 +R3 + · · ·
1−R 1

1 −R
R
R −R2

R2

R2 −R3

R3

R3 −R4
· · ·

1 = 1 + R + R2 + R3 + R4 + · · · 1 − R 
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Feedback
 

Systems with signals that depend on previous values of the same 

signal are said to have feedback. 

Example: The accumulator system has feedback.
 

Delay

+X Y

By contrast, the difference machine does not have feedback. 

−1 Delay

+x[n] y[n]
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Cyclic Signal Paths, Feedback, and Modes
 

Block diagrams help visualize feedback.
 

Feedback occurs when there is a cyclic signal flow path. 

R

R
−2

+X Y

Delay

+X Y

acyclic cyclic 

Acyclic: all paths through system go from input to output with no 

cycles. 

Cyclic: at least one cycle. 
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Feedback, Cyclic Signal Paths, and Modes
 

The effect of feedback can be visualized by tracing each cycle 

through the cyclic signal paths. 

Delay

+

p0

X Y

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Each cycle creates another sample in the output. 
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Feedback, Cyclic Signal Paths, and Modes
 

The effect of feedback can be visualized by tracing each cycle 

through the cyclic signal paths. 

Delay

+

p0

X Y

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Each cycle creates another sample in the output. 
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Feedback, Cyclic Signal Paths, and Modes
 

The effect of feedback can be visualized by tracing each cycle 

through the cyclic signal paths. 

Delay

+

p0

X Y

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Each cycle creates another sample in the output. 
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Feedback, Cyclic Signal Paths, and Modes
 

The effect of feedback can be visualized by tracing each cycle 

through the cyclic signal paths. 

Delay

+

p0

X Y

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Each cycle creates another sample in the output. 

The response will persist even though the input is transient.
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Check Yourself
 

How many of the following systems have cyclic signal 

paths? 

R

R+ +X Y + +

R R

X Y

R

+ +X Y + +

R R

X Y
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Check Yourself
 

How many of the following systems have cyclic signal 

paths? 3 

R

R+ +X Y + +

R R

X Y

R

+ +X Y + +

R R

X Y
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Finite and Infinite Impulse Responses
 

The impulse response of an acyclic system has finite duration, while 

that of a cyclic system can have infinite duration. 

−1 Delay

+X Y

Delay

+X Y

−1 0 1 2 3 4
n

−1 0 1 2 3 4
n

50



Analysis of Cyclic Systems: Geometric Growth
 

If traversing the cycle decreases or increases the magnitude of the 

signal, then the fundamental mode will decay or grow, respectively. 

If the response decays toward zero, then we say that it converges. 

Otherwise, we it diverges. 
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Check Yourself
 

How many of these systems have divergent unit-sample 

responses? 

Delay0.5

+X Y

Delay1.2

+X Y

Delay0.5

+ 1.2DelayX Y
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Check Yourself 

Delay0.5

+X Y

−1 0 1 2 3 4
n

y[n]

Delay1.2

+X Y

−1 0 1 2 3 4
n

y[n]

Delay0.5

+ 1.2DelayX Y

−1 0 1 2 3 4
n

y[n]
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X 

√ 

X
 

Check Yourself 

Delay0.5

+X Y

−1 0 1 2 3 4
n

y[n]

Delay1.2

+X Y

−1 0 1 2 3 4
n

y[n]

Delay0.5

+ 1.2DelayX Y

−1 0 1 2 3 4
n

y[n]
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Check Yourself
 

How many of these systems have divergent unit-sample 

responses? 1 

Delay0.5

+X Y
X 

Delay1.2

+X Y √ 

Delay0.5

+ 1.2DelayX Y

X 

55



Cyclic Systems: Geometric Growth
 

If traversing the cycle decreases or increases the magnitude of the 

signal, then the fundamental mode will decay or grow, respectively. 

Delay0.5

+X Y

Delay1.2

+X Y

−1 0 1 2 3 4
n

y[n]

−1 0 1 2 3 4
n

y[n]

These are geometric sequences: y[n] = (0.5)n and (1.2)n for n ≥ 0. 

These geometric sequences are called fundamental modes. 
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Multiple Representations of Discrete-Time Systems
 

Now you know four representations of discrete-time systems. 

Verbal descriptions: preserve the rationale. 

“To reduce the number of bits needed to store a sequence of 

large numbers that are nearly equal, record the first number, 

and then record successive differences.” 

Difference equations: mathematically compact. 

y[n] = x[n] − x[n − 1] 

Block diagrams: illustrate signal flow paths. 

−1 Delay

+x[n] y[n]

Operator representations: analyze systems as polynomials. 

Y = (1 − R) X
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