
6.003 Homework #14 Solutions 

Problems 
1. Neural signals 

The following figure illustrates the measurement of an action potential, which is an 
electrical pulse that travels along a neuron. Assume that this pulse travels in the positive 
z direction with constant speed ν = 10 m/s (which is a reasonable assumption for the 
large unmyelinated fibers found in the squid, where such potentials were first studied). 
Let Vm(z, t) represent the potential that is measured at position z and time t, where 
time is measured in milliseconds and distance is measured in millimeters. The right 
panel illustrates f(t) = Vm(30, t) which is the potential measured as a function of time t 
at position z = 30 mm. 
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Part a. Sketch the dependence of Vm on t at position z = 40 mm (i.e., Vm(40, t)). 

It will take the action potention 1 ms to travel from the reference position at z = 30 mm 
to its new position at z = 40 mm. Thus, the new waveform Vm(40, t) is a version of f(t) 
that is shifted by 1 ms to the right. 
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Part b. Sketch the dependence of Vm on z at time t = 0 ms (i.e., Vm(z, 0)). 

The action potential peaks at z = 30 mm when t = 2 ms. Since it is traveling to the right 
at speed ν = 10 mm/ms, it must also peak at z = 10 mm when t = 0. Thus f(2) must 
map to z = 10 mm in the new figure. Similarly, the following function locations map to 
new positions: 

f(0) maps to 30 
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f(1) maps to 20 
f(2) maps to 10 
f(3) maps to 0 
f(4) maps to −10 
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Part c. Determine an expression for Vm(z, t) in terms of f(·) and ν. Explain the relations 
between this expression and your results from parts a and b.   

z − 30 
f t −Vm(z, t) = 

ν

The definition of f(t) provides a starting point: Vm(30, t) = f(t). In part a, we found 
that Vm(40, t) = f(t − 1). This result generalizes: shifting to a more positive location (i.e., 
adding z0 to z) adds a time delay of z0/ν. Expressed as an equation, Vm(30 + z0, t) = 
f(t − z0 

ν ). Substituting z = 30 + z0, we get the general relation 

Vm(z, t) = f
 

t − 
z − 30 

ν

 
. 

To understand our result from part b, substitute t = 0 to obtain Vm(z, 0) = f(0 − z−30 
ν ). 

Thus we must scale the x-axis by ν (to convert the time axis to a space axis) then shift 
the space axis by 30 mm (so that the peak is now at z = −10 mm) and finally, flip the plot 
about the x-axis (bringing the peak to z = 10 mm). 
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2. Characterizing block diagrams 

Consider the system defined by the following block diagram: 

A

A

A

+ +

3
2

1
2

X Y
− −

a. Determine the system functional H = Y 
X . 

Let W represent the output of the topmost integrator. Then 

W = A(X − 
1 
2AY ) = AX − 

1 
2A2Y 

and 

Y = W − 
3 
2AY . 

Substituting the former into the latter we find that 

Y = AX − 
1 
2A2Y − 

3 
2AY . 

Solving for 
Y 
X 

yields the answer, 

Y 
X 

= 
A 

1 + 3 
2 A + 1 

2 A2 . 

b. Determine the poles of the system.  

Substituting A → 
1 
s 

in the system functional yields 

Y 
X 

= 
1 
s 

1 + 3 
2 

1 
s + 1 

2 
1 
s2 

= 
s 

s2 + 3 
2 s + 1 

2 
= 

s 
(s + 1 

2 )(s + 1) 
. 

The poles are then the roots of the denominator: −1 
2 , and −1. 

c. Determine the impulse response of the system.  

Expand the system functional using partial fractions: 
Y 
X 

= 
A 

1 + 3 
2 A + 1 

2 A2 = 
αA 

1 + A 
+ 

βA 
1 + 1 

2 A 
= 

2A 
1 + A 

− 
A 

1 + 1 
2 A 

Each term in the partial fraction expansion contributes one fundamental mode to h, 

h(t) = (2e −t − e −t/2) u(t) 



4 6.003 Homework #14 Solutions / Fall 2011 
3. Bode Plots 

Our goal is to design a stable CT LTI system H by cascading two causal CT LTI systems: 
H1 and H2. The magnitudes of H(jω) and H1(jω) are specified by the following straight-
line approximations. We are free to choose other aspects of the systems. 
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H1 and H2 have to be stable as well as causal because we’re talking about their frequency 
responses, and H has to be causal because H1 and H2 are. This implies that all poles 
must be in the left half-plane. 

a.	 Determine all system functions H1(s) that are consistent with these design specifi­
cations, and plot the straight-line approximation to the phase angle of each (as a 
function of ω). 

The frequency response of H1 breaks up at ω = 1 and then down at ω = 8 and 40. The 
two breaks downward require poles at s = −8 and s = −40 respectively, The break 
upward can be achieved with a zero at s = 1 (blue) or at s = −1 (red). 
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H1 could also be multiplied by −1 without having any effect on the magnitude function. 
Multiplying by −1 would shift the phase curves up or down by π. 

b.	 Determine all system functions H2(s) that are consistent with these design specifi­
cations, and plot the straight-line approximation to the phase angle of each (as a 
function of ω). 



slope of H changes from 0 to −40 dB/decade at ω 10. H2 can be achieved with 
poles at s = −1 and −8 and a zero at s = 40 (blue) or at s = −40 (red). 
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To compensate for H1, the frequency response of H2 must break downward at ω = 1 
and upward at ω = 40. In addition, H2 must break downward at ω = 8 so that the 

= 

H2 could also be multiplied by −1 without having any effect on the magnitude function. 
Multiplying by −1 would shift the phase curves up or down by π. 
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4. Controlling Systems 

Use a proportional controller (gain K) to control a plant whose input and output are 
related by 

R2  
F = 1 + R − 2R2  

as shown below. 
+ K FX Y
−

a.	 Determine the range of K for which the unit-sample response of the closed-loop system 
converges to zero. 

Using Black’s equation, we can write 

Y 
X 

= 
KR2 

1+R−2R2 

1 + KR2 

1+R−2R2 

= 
KR2 

1 + R − (2 − K)R2 

The closed-loop poles can be found by substituting R → 1 
z : 

Y 
X 

= 
K 

z2 + z − (2 − K) 

and solving for the roots of the denominator: 

z = − 
1 
2 

±
 

1 
4 

+ 2 − K 

The unit-sample response will converge to zero iff the poles are inside the unit circle. 
When K = 0, the poles are at z = −2 and z = 1 (not convergent). As K increases, 
the poles move toward each other, creating a double pole at z = −1 

2 when K = 9 
4 . 

The response will converge when the pole that started at z = −2 reaches z = −1, i.e., 
at K = 2. The poles will split away from z = −1 

2 for K > 9 
4 and will stay inside the 

unit circle if 1 
4 + 2 − K > −3 

4 , i.e., if K < 3. 
These results are shown in the following graphical representation. 

K=0K=0 K=2K=2

K=9/4

K=3

K=3

Thus, the unit-sample response will converge if 2 < K < 3. 
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b.	 Determine the range of K for which the closed-loop poles are real-valued numbers 

with magnitudes less than 1. 

From the plot in the previous part, it follows that the closed-loop poles are on the real 
axis and have magnitudes less than one when 2 < K < 9 

4 . 
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5. CT responses 
We are given that the impulse response of a CT LTI system is of the form 

A

t
T

where A and T are unknown. When the system is subjected to the input 

3

−2

t
1

x1(t)

the output y1(t) is zero at t = 5. When the input is 

the output y2(t) is equal to 9 at t = 9. Determine A and T . Also determine y2(t) for all 
t. 

x2(t) = sin
(
πt

3

)
u(t),

The first fact implies that

y1(5) =
∫ ∞
−∞

x1(τ)h(5− τ)dτ = A

∫ 5

5−T
x1(τ)dτ = 0.

If the lower limit is 1, the area of the triangle between τ = 1 and τ = 3 is 2 and cancels
the area of the rectangle between τ = 4 and τ = 5. Therefore T = 4. From the second
fact, we have

9 = y2(9) = A

∫ 9

5
x2(τ)dτ

= A

∫ 9

5
sin
(πτ

3

)
dτ

= − A

π/3 cos
(πτ

3

)∣∣∣9
5

= 9A
2π ,

so A = 2π.
There are three ranges to consider in computing y2(t). For t < 0, there is no overlap
between x2(τ) and h(t − τ) and hence y2(t) = 0. For 0 ≤ t < 4, there is partial overlap
and y2(t) is given by

y2(t) = 2π
∫ t

0
sin
(πτ

3

)
dτ = − 2π

π/3 cos
(πτ

3

)∣∣∣t
0

= 6
(

1− cos
(
πt

3

))
.

For t ≥ 4, the overlap is total and we have

y2(t) = 2π
∫ t

t−4
sin
(πτ

3

)
dτ = 6

(
cos
(
π(t− 4)

3

)
− cos

(
πt

3

))
.
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Hence


0

( ) =

 , ( t < 0,
6
((1−(cos πt ,y2 t 3 0 t < 4,

6 cos π(t

))
≤

−4)
)
− cos πt .3

)
, t3 ≥ 4

( )
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6. DT approximation of a CT system 

Let HC1 represent a causal CT system that is described by  

ẏC (t) + 3yC (t) = xC (t)  

where xC (t) represents the input signal and yC (t) represents the output signal. 

HC1xC(t) yC(t)

a. Determine the pole(s) of HC1. 

The the Laplace transform of the differential equation to get 

sYC (s) + 3YC (s) = XC (s) 

and solve for YC (s)/XC (s) = 1/(s + 3). The pole is at s = −3. 

Your task is to design a causal DT system HD1 to approximate the behavior of HC1. 

HD1xD[n] yD[n]

Let xD[n] = xC (nT ) and yD[n] = yC (nT ) where T is a constant that represents the time 
between samples. Then approximate the derivative as 

dyC (t) yC (t + T ) − yC (t)= . 
dt T 

b. Determine an expression for the pole(s) of HD1. 

Take the Z transform of the difference equation 
yD[n + 1] − yD[n] 

T 
+ 3yD[n] = xD[n] 

to obtain 
zYD(z) − YD 

T 
+ 3YD(z) = XD(z) 

Solving 

(z − 1 + 3T )YD(z) = T XD(z) 

so that 

HD(z) = 
YD(z) 
XD(z) 

= 
T 

z − 1 + 3T 
. 

There is a pole at z = 1 − 3T . 
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c. Determine the range of values of T for which HD1 is stable. 

Stability requires that the pole be inside the unit circle 

−1 < 1 − 3T < 1 

or 
−2 < −3T < 0 

so that 

0 < T < 
2 
3 

. 

Now consider a second-order causal CT system HC2, which is described by 

ÿC (t) + 100yC (t) = xC (t) . 

d. Determine the pole(s) of HC2. 

Take the Laplace transform of the differential equation to get 

s 2YC + 100YC = XC 

and solve for YC /XC = 1/(s2 + 100). There are poles at s = ±j10. 

Design a causal DT system HD2 to approximate the behavior of HC2. Approximate 
derivatives as before: 

yC (t + T ) − yC (t) 
yĊ (t) = 

dyC (t) = and 
dt T  

d2yC (t) yĊ (t + T ) − yĊ (t)  
dt2 = 

T
.  

e. Determine an expression for the pole(s) of HD2. 

d2yC (t) 
dt2 = 

˙yC (t + T ) − ˙yC (t) 
T 

= 
yC (t+2T )−yC (t+T ) 

T − yC (t+T )−yC (t) 
T 

T 

= 
yC (t + 2T ) − 2yC (t + T ) + yC (t) 

T 2 . 

Substituting to find the difference equation, we get 
yD[n + 2] − 2yD[n + 1] + yD[n] 

T 2 + 100yD[n] = xD[n] . 

Take the Z transform to find that 
(z 2 − 2z + 1 + 100T 2)YD(z) = T 2XD(z) 

or 
YD(z) 
XD(z) 

= 
T 2 

z2 − 2z + 1 + 100T 2 . 

The poles are at 

z = 1 ±
 

1 − 1 − 100T 2 = 1 ± j10T 

f. Determine the range of values of T for which HD2 stable. 

The poles are always outside the unit circle. The system is always unstable. 
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7. Feedback 

Consider the system defined by the following block diagram. 
+ + +

Delaypo

α
− −

X Y

a. Determine the system functional Y 
X . 

We can use Black’s equation (previous problem) to find the system functional for the 
innermost loop: 

H1 = 
1 

1 − p0R 
. 

Then apply Black’s equation for a second time to find the system functional for the 
next loop: 

H2 = 
H1 

1 + H1 
= 

1 
1−p0R 

1 + 1 
1−p0R 

= 
1 

2 − p0R 
. 

Repeat for the outermost loop: 

H3 = 
αH2 

1 + αH2 
= 

α 
2−p0R 

1 + α 
2−p0R 

= 
α 

2 + α − p0R 
. 

b. Determine the number of closed-loop poles.  

The denominator is a first order polynomial in R. Therefore, there is a single pole. It 
is located at z = p0 

2+α . 

c. Determine the range of gains (α) for which the closed-loop system is stable.  

The closed-loop system will be stable iff the closed-loop pole is inside the unit circle:

|z| =
∣∣∣∣ p0
2 + α

∣∣∣∣ < 1

which implies that |2 + α| > |p0|. This will be true if α > |p0| − 2 or if α < −|p0| − 2.
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8. Finding a system 

a.	 Determine the difference equation and block diagram representations for a system 
whose output is 10, 1, 1, 1, 1, . . . when the input is 1, 1, 1, 1, 1, . . .. 

Notice that Y = 10X − 9RX. This relation suggests the following difference equation 

y[n] = 10x[n] − 9x[n − 1] 

and block diagram 

Delay

+10

−9

X Y

b. Determine the difference equation and block diagram representations for a system 
whose output is 1, 1, 1, 1, 1, . . . when the input is 10, 1, 1, 1, 1, . . ..  

c.  

The difference equation for the inverse relation can be obtained by interchanging y 
and x in the previous difference equation to get 

x[n] = 10y[n] − 9y[n − 1]. 

So 

y[n] = 
9y[n − 1] + x[n] 

10 
, 

which has this block diagram 

Delay

+ 0.1

0.9

X Y

Compare the difference equations in parts a and b. Compare the block diagrams in 
parts a and b.  

The difference equations for parts a and b have exactly the same structure. The only 
difference is that the roles of x and y are reversed. The block diagrams have similar 
parts (1 delay, 1 adder, 2 gains), but the topologies are completely different. The first 
is acyclic and the second is cyclic. 



14 6.003 Homework #14 Solutions / Fall 2011 

9. Lots of poles 

All of the poles of a system fall on the unit circle, as shown in the following plot, where 
the ‘2’ and ‘3’ means that the adjacent pole, marked with parentheses, is a repeated pole 
of order 2 or 3 respectively. 

Re z

Im z

(×)3(×)2

×

×

Which of the following choices represents the order of growth of this system’s unit-sample 
response for large n? Give the letter of your choice plus the information requested. 

a. y[n] is periodic. If you choose this option, determine the period. 

b.	 y[n] ∼ Ank (where A is a constant). If you choose this option, determine k. 

c.	 y[n] ∼ Azn (where A is a constant). If you choose this option, determine z. 

d.	 None of the above. If you choose this option, determine a closed-form asymptotic 
expression for y[n]. 

A partial fraction expansion of the system functional will have terms of the following A partial fraction expansion of the system functional will have terms of the following
forms:

1
1−R ,

(
1

1−R

)2
,

(
1

1−R

)3
,

1
1 +R2 ,

1
1 +R , and

(
1

1 +R

)2
.

The third one will have the fastest growth for large n. Its expansion has the form

(1 +R+R2 +R3 + · · ·)× (1 +R+R2 +R3 + · · ·)× (1 +R+R2 +R3 + · · ·) .

Multiplying the first two:

1 R R2 R3 · · ·

1 1 R R2 R3 · · ·
R R R2 R3 R4 · · ·
R2 R2 R3 R4 R5 · · ·
R3 R3 R4 R5 R6 · · ·
· · · · · · · · · · · · · · · · · ·

Group same powers of R by following reverse diagonals:

1 + 2R+ 3R2 + 4R3 + · · ·

Multiplying this by the last term:

1 R R2 R3 · · ·

1 1 R R2 R3 · · ·
2R 2R 2R2 2R3 2R4 · · ·

3R2 3R2 3R3 3R4 3R5 · · ·
4R3 4R3 4R4 4R5 4R6 · · ·
· · · · · · · · · · · · · · · · · ·
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Group same powers of R by following reverse diagonals: 

1 + 3R + 6R2 + 10R3 + · · · 

This expression grows with (n + 1)(n + 2)/2 which is on the order of n2. Thus b is the 
correct solution with k = 2. 
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10.Relation between time and frequency responses 

The impulse response of an LTI system is shown below. 

1

−1
5

t

h(t)

If the input to the system is an eternal cosine, i.e., x(t) = cos(ωt), then the output will 
have the form 

y(t) = C cos(ωt + φ)  

The impulse response has the form of a decaying sinusoid. The time constant of decay is 
approximately 2, so the exponential part has the form e−t/2. The sinusoid has approx­
imately 8 periods in 5 time units so 8 2π 

ωd 
= 5. Solving this, we find that ωd ≈ 10. The 

impulse response therefore has the form 

h(t) = e −t/2 sin(10t)u(t) . 

There are two poles associated with such a response and no zeros. The poles have real parts 
of −σ = −1 

2 and imaginary parts of ±j10. The characteristic equation is (s−p0)(s−p1) = 
(s + 1 

2 + j10)(s + 1 
2 − j10) = s2 + s + 100.25 = s2 + ω0 

Q s + ω2 
0. Thus ω0 ≈ 10 and Q ≈ 10. 

The system function is the Laplace transform of the impulse response, 

H(s) = 
ωd 

s2 + ω0 
Q s + ω2

0 
≈ 

10 
s2 + s + 100 

a. Determine ωm, the frequency ω for which the constant C is greatest. What is the 
value of C when ω = ωm? 

The gain of the system is largest at a frequency ωm = ω2
0 − 2σ2 ≈ 10. The gain is 

then approximately Q ≈ 10 times the DC gain, which is ≈ 1 
10 . Thus C ≈ 1. 

b. Determine ωp, the frequency ω for which the phase angle φ is −π 
4 . What is the value 

of C when ω = ωp? 

The phase angle varies from 0 when ω = 0 to −π as ω → ∞. The phase angle is 
equal to −π 

2 when ω = ω0 [notice that when ω = ω0 the ω2
0 term in the denominator 

of the system function is cancelled by s2 = (jω0)2]. The phase angle will be −π 
4 when 

ω = ωp = ω0 − σ (so that the vector from the upper pole is 
√

2 times longer at ωp than 
at ω0. At ωp, the gain is reduced from its maximum by 3 dB (a factor of 

√
2). Thus 

C ≈ 1√
2 
. 
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