
6.003 Homework #7 Solutions 

Problems 
1. Second-order systems 

The impulse response of a second-order CT system has the form 

h(t) = e −σt cos(ωdt + φ)u(t) 

where the parameters σ, ωd, and φ are related to the parameters of the characteristic 
polynomial for the system: s2 + Bs + C. 

a. Determine expressions for σ and ωd (not φ) in terms of B and C. 

Express the impulse response in terms of complex exponentials: 

h(t) = 
1 
2e −σt

 
e jωdt+jφ + e −jωdt−jφ

 
u(t) = 

1 
2ejφe(−σ+jωd)t u(t)+1 

2e −jφe(−σ−jωd)t u(t) 

The impulse response is a weighted sum of modes of the form es0t and es1t where s0 and 
s1 are the poles. Thus the poles of the system are at s = −σ ± jωd. The characteristic 
polynomial has the form s2 + Bs + C = (s + σ + jωd)(s + σ − jωd) = (s + σ)2 + ω2 

d. 
Thus B = 2σ and C = σ2 + ω2 

d. Solving, we find that 

σ = 
B 
2 

ωd = 

� 

C − 
1 
4B2 . 

b. Determine 
– the time required for the envelope e−σt of h(t) to diminish by a factor of e, 
– the period of the oscillations in h(t), and 
– the number of periods of oscillation before h(t) diminishes by a factor of e. 
Express your results as functions of B and C only. 

The time to decay by a factor of e is 

1 2 = . 
σ B 

The period is 

2π 2π=  .
 
ωd
 C − 1

4 B
2 

The number of periods before diminishing a factor of e is  
2 C − 1

4 B
2 

B = .2π πB 
C− 14 B

2 

ωdNotice that this last answer is equivalent to Q/π where Q = .2σ 



2 

The unit-sample response of a second-order DT system has the form 

nh[n] = r0 cos(Ω0n + Φ)u[n] 

where the parameters r0, Ω0, and Φ are related to the parameters of the characteristic 
polynomial for the system: z2 + Dz + E. 

d. Determine expressions for r0 and Ω0 (not Φ) in terms of D and E. 
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c. Estimate the parameters in part b for a CT system with the following poles: 

−10

100

−100

s-plane

From the plot σ = 10 and ωd = 100. 

The time to decay by a factor of e is 0.1. 

The period is 
2π = = 0.0628. 
ωd 

2π 
100 

The number of cycles before decaying by e is ≈ 1.610 
2π 

Express the unit-sample response in terms of complex exponentials: 

h[n] = r n 
0

 
1 
2e jΩ0n+jΦ + 

1 
2e −jΩ0n−jΦ

 
u[n] = 

1 
2e jΦ r n 

0 e jΩ0n u[n]+1 
2e −jΦ r n 

0 e −jΩ0n u[n] 

The poles have the form z = r0e jΩ0 and z = r0e−jΩ0 . The characteristic equation is 
z2 + Dz + E = (z − r0e jΩ0 )(z − r0e−jΩ0 ) = z2 − 2r0 cos Ω0 + r2 

0. Thus D = −2r0 cos Ω0 

and E = r2 
0. Solving, we find that 

r0 = 
√ 

E 

Ω0 = cos−1 −D 
2r0 

= cos−1 −D 

2
√ 

E 

e. Determine 
n– the length of time required for the envelope r0 of h[n] to diminish by a factor of e. 

– the period of the oscillations (i.e., Ω
2π 

0 
) in h[n], and 

– the number of periods of oscillation in h[n] before it diminishes by a factor of e. 
Express your results as functions of D and E only. 
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f. 

2. Matches 

The following plots show pole-zero diagrams, impulse responses, Bode magnitude plots, 
and Bode angle plots for six causal CT LTI systems. Determine which corresponds to 
which and fill in the following table. 

The time to diminish by a factor of e is rn
0 = 1 

e . Taking the log of both sides yields 
n ln r0 = −1 so that the time is 

− 
1 

ln r0 
= − 

1 

ln 
√ 

E 

The period is 2π 
Ω0 

which is 

2π 

cos−1 −D 
2
√ 

E 

The number of periods before the response diminishes by e is 

−1 
ln r0 
2π 

cos−1 −D 
2 

√ 
E 

= 
−1 

ln 
√ 

E 
cos−1 −D 

2
√ 

2π 
E 

Estimate the parameters in part e for a DT system with the following poles: 

0.938

0.149

z-plane

From the plot Ω0 = tan−1 0.

0
149 
938 

≈ 0.16 radians and r0 = 0.1492 + 0.9382 ≈ 0.95. 
.

√

The time to decay by a factor of e is 
−1 

ln 0.95 
≈ 19.5. 

The period is 
2π = Ω0 

2π 
0.16 

≈ 39.3. 

The number of cycles before decaying by e is 
19.5 
39.3 

≈ 0.5 

Pole-zero diagram 1 has a single pole at zero. The impulse response of a system with 
a single pole at zero is a unit step function (3). We evaluate the frequency response by 
considering frequencies along the jω axis. As we move away from the pole at the origin 
the log-magnitude decays linearly (5). The phase is constant since the angle between the 
pole and any point along positive side of the jω axis remains constant at π/2. The angle 
of the frequency response is therefore −π/2 (4). 
Pole-zero diagram 4 has a single pole at at s = −1. The impulse response has the 
form estu(t) = e−tu(t) (2). As we move along the jω axis, we move away from the pole at 
the origin, and the log-magnitude will eventually decay linearly. Because the pole is not 
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exactly at the origin, this decay is not significant until ω = 1 (6). The phase starts at 0, 
and eventually moves to −π/2. Note that as we move farther up the jω axis, this system 
behaves like the system of diagram 1 (2). 
Pole-zero diagram 3 adds a zero at the origin. A zero at the origin corresponds to 
taking the derivative, so we take the impulse response of pole-zero diagram 4 (2) and take 
its derivative (4). When ω is small, the zero is dominant. As we move away from ω = 0, 
the effect of the zero diminishes and the log-magnitude increases linearly. For sufficiently 
large ω we are far enough that the zero and pole appear to cancel each other, and the 
magnitude becomes a constant (3). A zero at the origin means that we take the phase 
response of pole-zero diagram 4 (2) and add π/2 to it (6). 
Pole-zero diagram 2 contains complex conjugate poles 

H(s) = 
K 

(s + σ + jωd)(s + σ − jωd) 
= 

jA 
s + σ + jωd 

− 
jA 

s + σ − jωd 
. 

The impulse response has the form 

h(t) ∝ e −σt(ejωdt − e −jωdt) ∝ e −σt sin ωdt 

which is response (1). The magnitude response will eventually decay twice as fast as that 
of pole-zero diagram 4 (6). Since there are two poles, there will be a bump at around 
ω = 1 (2). At the origin, the angular contributions of the two poles cancel each other out, 
hence the angle is zero. As we move up the jω axis, the angles add up to −π, with each 
pole contributing −π/2 (3). 
Pole-zero diagram 6 adds a zero at the origin, meaning that we take the derivative 
of the impulse response of pole-zero diagram 2 (1). The derivative ends up being the 
combination of a decaying cos(t) term minus a decaying sin(t) term (5). The zero at the 
origin adds a linearly increasing component to the magnitude function (4). It also adds 
π/2 to the phase response everywhere (5). 
Pole-zero diagram 5 has complex conjugate poles and zeros at the same frequency ω. 
The system function has the form 

H(s) = 
s2 − ω0 

Q s + ω2
0 

s2 + ω0 
Q s + ω2

0 
. 

This denominator has the same form as pole-zero diagrams 2 and 6, but has an additional 
power of s (corresponding to differentiation) in the numerator. This leads to a response 
of the form in (6). The symmetry of the poles and zeros means they cancel each other’s 
effect on magnitude (1). The phase response at ω = 0 is zero, as the contributions cancel 
each other out. As we move past ω = 1 where the conjugates are located, the phase moves 
in the negative direction faster, but eventually settles back at 0 as we move farther and 
the contributions again cancel each other out (1). 

h(t) Magnitude Angle 

PZ diagram 1: 3 5 4 

PZ diagram 2: 1 2 3 

PZ diagram 3: 4 3 6 

PZ diagram 4: 2 6 2 

PZ diagram 5: 6 1 1 

PZ diagram 6: 5 4 5 
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Engineering Design Problems 
3. Desired oscillations 

The following feedback circuit was the basis of Hewlett and Packard’s founding patent. 

K 1 1+
R R R

C C C

Vin Vout
−

a.	 With R = 1 kΩ and C = 1µF, sketch the pole locations as the gain K varies from 
0 to ∞, showing the scale for the real and imaginary axes. Find the K for which 
the system is barely stable and label your sketch with that information. What is the 
system’s oscillation period for this K? 

The closed-loop gain is 

H(s) = 
K 

(1+sRC)3 

1 + K 
(1+sRC)3 

= 
K 

(1 + sRC)3 + K 

The denominator is zero if 
(1 + sRC)3 = −K 

(1 + sRC) = 3√ 
−K 

s = 
−1 + 3√−K 

RC 

There are three cube roots of −K: − 3√ 
K, 3√ 

Ke jπ/3, and 3√ 
Ke−jπ/3 and three corre­

sponding poles: 

s = 
−1 − 3√ 

K 
RC 

, 
−1 + 3√ 

Ke jπ/3 

RC 
, and 

−1 + 3√ 
Ke−jπ/3 

RC 

√
3

RC

−
√

3
RC

The point of marginal stability is where the root locus crosses the jω axis. This occurs 
when the real part of −1 + 3√ 

Ke jπ/3 equals zero: 
3√ 

K = 2 

so that K = 8. The frequency of oscillation is ω = 
√

3 
RC so the period of oscillation is 

T = 
2π 
ω 

= 
2πRC √

3 
. 
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For RC = 1 ms (as given), the period T = 3.63 ms. 

b. How do your results change if R is increased to 10 kΩ? 

Increasing R by a factor of 10 increases the period T by a factor of 10, to T = 36.3 ms. 
It has no effect of the critcal value of K = 8. 

4. Robotic steering 

Design a steering controller for a car that is moving forward with constant velocity 

θ

p

V . 

You can control the steering-wheel angle w(t), which causes the angle θ(t) of the car to 
change according to 

dθ(t) V = w(t)
dt d 

where d is a constant with dimensions of length. As the car moves, the transverse position 
p(t) of the car changes according to 

dp(t)   
= V sin θ(t) ≈ V θ(t) . 

dt 

Consider three control schemes: 
a. w(t) = Ke(t) 
b. w(t) = Kv ė(t) 
c. w(t) = Ke(t) + Kv ė(t) 

where e(t) represents the difference between the desired transverse position x(t) = 0 and 
the current transverse position p(t). Describe the behaviors that result for each control 
scheme when the car starts with a non-zero angle (θ(0) = θ0 and p(0) = 0). Determine 
the most acceptable value(s) of K and/or Kv for each control scheme or explain why 
none are acceptable. 

Part a. This system can be represented by the following block diagram: 

+ K V
dA VA

−
X P

W Θ

We are given a set of initial conditions — p(0) = 0 and θ(0) = θ0 — and we are asked 
to characterize the response p(t). Initial conditions are easy to take into account when a 
system is described by differential equations. However, feedback is easiest to analyze for 
systems expressed as operators or (equivalently) Laplace transforms. Therefore we first 
calculate the closed-loop system function, 

H(s) 
Y (s) 
X(s) 

= 
K V 

d V 1 
s2 

1 + K V 
d V 1 

s2 

= 
K V 2 

d 

s2 + K V 2 

d 
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which has two poles: ±jω0 where ω0 = V
√

K
d . We can convert the system function to a

differential equation:

p̈(t) +K
V 2

d
p(t) = K

V 2

d
x(t)

and then find the solution when x(t) = 0,

p̈(t) +K
V 2

d
p(t) = 0

so that p(t) = C sinω0t since p(0) = 0.
From p(t) we can calculate θ(t) = ṗ(t)/V = C

V ω0 cosω0t. From the initial condition
θ(0) = θ0, it follows that C = V θ0/ω0 and

p(t) = V θ0
ω0

sinω0t = θ0

√
d

K
sinV

√
K

d
t

for t > 0.
If K is small, then the oscillations are slow, but they have a large amplitude. If K is
large, then the oscillations are fast (and therefore uncomfortable for passengers), but the
amplitude is small. While none of these behaviors are desireable, it would probably be
best to increase K so that the amplitude of the oscillation is small enough so that the car
stays in its lane.
Part b. The system can be represented by the following block diagram:

+ Kvs
V
d

1
s

V
s−

X P
W Θ

The closed-loop system function is

H(s) =
Kvs

V 2

d
1
s2

1 +Kvs
V 2

d
1
s2

=
Kvs

V 2

d

s(s+Kv
V 2

d )
.

The closed-loop poles are at s = 0 and s = −Kv
d V

2.
Since p(0) = 0, the form of p(t) is given by

p(0) = C
(

1− e−
Kv

d
V 2t
)

for t > 0. We can find C by relating C to the initial value of θ(t) = ṗ(t)/V . Since
θ(0) = θ0, ṗ(0) = V θ0. Therefore C = 1

Kv
V
d

, so that

p(t) = θ0

Kv
V
d

(
1− e−

Kv
d
V 2t
)

for t > 0 as shown below.
θ0d
V Kv

d
V 2Kv

t

We would like to make Kv large because large Kv leads to fast convergence. Large values
of Kv also lead to smaller steady-state errors in p(t).
There are no oscillations in p(t) with the velocity sensor, which is an advantage over results
with the position sensor in part a. However, there is now a steady-state error in p(t), which
is worse. Fortunately the steady-state error can be made small with large Kv.
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 Part c. The system can be represented by the following block diagram:

+ Kvs+K V
d

1
s

V
s−

X P
W Θ

The closed-loop system function is

H(s) =
(Kvs+K)V 2

d
1
s2

1 + (Kvs+K)V 2

d
1
s2

=
(Kvs+K)V 2

d

s2 + (Kvs+K)V 2

d

=
(Kvs+K)V 2

d

s2 + 1
Qsω0 + ω2

0

This second-order system has a resonant frequency ω0 =
√

K
d V

2 and a quality factor
Q = K

Kv

1
ω0
.

There is an enormous variety of acceptable solutions to this problem, since there are many
values of K and Kv that can work. Here, we focus on one line of reasoning based on our
normalization of second-order system in terms of Q and ω0.
To avoid excessive oscillations, we would like Q to be small. Try Q = 1. Then

H(s) =
(Kvs+K)V 2

d

s2 + ω0s+ ω2
0
.

Then p(t) has the form

p(t) = Ce−ω0t/2 sin
(√

3
2 ω0t

)
.

As before, we can use the intial condition of θ(0) = θ0 to determine C. In general,
θ(t) = ṗ(t)/V so ṗ(0) = θ0V = C

√
3ω0/2. Therefore

p(t) = 2V θ0√
3ω0

e−ω0t/2 sin
(√

3
2 ω0t

)
.

V θ0√
3ω0

1
ω0

t

Increasing Q would reduce the overshoot but slow the response. We could compensate for
the slowing of the response by increasing ω0.
Performance can be adjusted to be better than either part a or part b. By adjusting Q
and ω0 we can get convergence of p(t) to zero with minimum oscillation.
Although the steady-state value of the error is zero and the oscillation is minimized, there
is still a transient behavior, which could momentarily move the car into the other lane!
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