

Energy and Power

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Why worry about energy?

Today:

- How long will the battery last? in standby mode in active use
- Will the chip overheat and self-destruct?

Look at energy dissipation in MOSFET gates

C: wiring capacitance and C_{GS} of following gate

Let us determine standby power active use power

Let's work out a few related examples first.

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Example 1:

Power
$$P = VI = \frac{V^2}{R}$$

Energy dissipated in time T

$$E = VIT$$

Example 1:

for our gate

Example 2:

Consider

Find energy dissipated in each cycle. Find average power \overline{P} .

$T_1: S_1$ closed, S_2 open

assume $v_C = 0$ at t = 0

Total energy provided by source during T_1

$$E = \int_{0}^{T_{I}} V_{S} i dt$$

$$= \int_{0}^{T_{I}} \frac{V_{S}^{2}}{R_{I}} e^{\frac{-t}{R_{I}C}} dt$$

$$= -\frac{V_{S}^{2}}{R_{I}} R_{I} C e^{\frac{-t}{R_{I}C}} \Big|_{0}^{T_{I}}$$

$$= C V_{S}^{2} \left(1 - e^{\frac{-T_{I}}{R_{I}C}} \right)$$

$$\approx C \, V_S^{\ 2} \ \ if \ T_I >> R_I C$$
 I.e., if we wait long enough

$$\frac{1}{2}CV_{S}^{2} \text{ stored on } C,$$

$$E_{I} = \frac{1}{2}CV_{S}^{2} \text{ dissipated in } R_{I}$$
Independent of R!

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

T_2 : S_2 closed, S_1 open

$$\begin{array}{c|c} + & \\ v_C & \\ \hline \end{array} \qquad \qquad \qquad \qquad \geqslant R_2$$

Initially, $v_C = V_S$ (recall $T_I >> R_I C$)

So, initially,

energy stored in capacitor = $\frac{1}{2}CV_s^2$

Assume $T_2 >> R_2C$

So, capacitor discharges ~fully in T_2

So, energy dissipated in R_2 during T_2

$$E_2 = \frac{1}{2}CV_S^2$$

 E_1 , E_2 independent of R_2 !

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Putting the two together:

Energy dissipated in each cycle

$$E = E_1 + E_2$$

$$= \frac{1}{2}CV_S^2 + \frac{1}{2}CV_S^2$$

 $E = CV_S^2$ energy dissipated in charging & discharging C

Assumes C charges and discharges fully. Average power

$$\overline{P} = \frac{E}{T}$$

$$= \frac{CV_S^2}{T}$$

$$= CV_S^2 f$$

$$= CV_S^2 f$$

$$\text{frequency } f = \frac{1}{T}$$
Thuse materials for 6.002 Circuits and Electronics. Spring 2007. MIT.

Back to our inverter —

What is \overline{P} for the following input?

Equivalent Circuit

What is \overline{P} for the following input?

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000

What is \overline{P} for gate?

We can show (see section 12.2 of A & L)

$$\overline{P} = \frac{{V_S}^2}{2(R_L + R_{ON})} + C{V_S}^2 f \frac{{R_L}^2}{(R_L + R_{ON})^2}$$

when
$$R_L >> R_{ON}$$

$$\overline{P} = \frac{{V_S}^2}{2R_L} + C{V_S}^2 f$$
remember
$$\overline{P}_{STATIC}$$
PDYNAMIC

independent of f. MOSFET ON half the time.

related to switching capacitor

What is \overline{P} for gate?

when
$$R_L >> R_{ON}$$

$$\overline{P} = \frac{{V_S}^2}{2R_L} + C{V_S}^2 f$$

In standby mode, half the gates in a chip can be assumed to be on. So \overline{P}_{STATIC} per gate is still $\frac{V_S^2}{2R_L}$.

Relates to standby power.

In standby mode, $f \rightarrow 0$, so dynamic power is 0

Some numbers...

a chip with
$$10^6$$
 gates clocking at 100 MHZ $C = 1$

$$C = 1f F$$

$$R_L = 10 \, k\Omega$$

$$f = 100 \times 10^6$$

$$V_{\rm s} = 5V$$

$$\overline{P} = 10^6 \left[\frac{25}{2 \times 10^4} + 10^{-15} \times 25 \times 100 \times 10^6 \right]$$

$$=10^6 [1.25 \text{ milliwatts} + 2.5 \text{ microwatts}]$$

must get rid of this

$$\alpha V_s^2$$

$$\alpha f$$

reduce V_s

$$5V \rightarrow 1V$$

$$2.5W \rightarrow 150 \, mW$$

