
MASSACHVSETTS INSTITVTE OF TECHNOLOGY 

Department of Electrical Engineering and Computer Science 

6.001 Structure and Interpretation of Computer Programs 

Spring Semester, 2005 

Project 5 - The Meta-Circular Evaluator 

• Issued Monday, April 25th. 

• To Be Completed By: Friday, May 6th, 6:00 pm 

• Code to load for this project: 

o Links to the system code files meval.scm, syntax.scm, and 

environment.scm are provided from the Projects link on the 

projects section . 

You should begin working on the assignment once you receive it. It is to your 

advantage to get work done early, rather than waiting until the night before it is 

due. You should also read over and think through each part of the assignment 

(as well as any project code) before you sit down at the computer. It is 

generally much more efficient to test, debug, and run a program that you have 

thought about beforehand, rather than doing the planning "online." Diving into 

program development without a clear idea of what you plan to do generally 

ensures that the assignments will take much longer than necessary. 

The purpose of this project is to familiarize you with evaluators. There is a fair 

amount to read and understand; we recommend that you first skim through the 

project to familiarize yourself with the format, before tackling problems. 

Word to the wise: This project doesn't require a lot of actual programming. It 

does require understanding a body of code, however, and thus it will require 

careful preparation. You will be working with evaluators such as those 

described in chapter 4 of the text book, and variations on those evaluators. If 

you don't have a good understanding of how the evaluator is structured, it is 

very easy to become confused between the programs that the evaluator is 

interpreting, and the procedures that implement the evaluator itself. For this 

project, therefore, we suggest that you do some careful preparation. Once 

you've done this, your work in the lab should be fairly straightforward. 

Understanding the evaluator


Load the code (meval.scm, then syntax.scm, finally environment.scm) for this 

project. These files contain a version of the meta-circular evaluator described in 



7 

lecture and in the textbook. Because this evaluator is built on top of the 

underlying Scheme evaluator, we have called the procedure that executes 

evaluation m-eval (with associated m-apply) to distinguish it from the normal 

eval. 

You should look through these files to get a sense for how they implement a 

version of the evaluator discussed in lecture (especially the procedure m-eval). 

You will be both adding code to the evaluator, and using the evaluator. Be 

careful, because it is easy to get confused. Here are some things to keep in 

mind: 

When adding code to be used as part of meval.scm, you are writing in 

Scheme, and can use any and all of the procedures of Scheme. Changes 

you make to the evaluator are changes in defining the behavior you want 

your new evaluator to have. 

After loading the evaluator (i.e., loading the file meval.scm and any 

additions or modifications you make), you start it by typing (driver­

loop). In order to help you avoid confusion, we've arranged that each 

driver loop will print prompts on input and output to identify which 

evaluator you are typing at. For example, 
;;; M-Eval input:

(+ 3 4)

;;; M-Eval value:


shows an interaction with the m-eval evaluator. To evaluate an 

expression, you type the expression and press ctrl-x ctrl-e. Don't use 

M-z to evaluate the expression; the presence of the prompt confuses the 

M-z mechanism. Also notice that if you have started up the evaluator in a 

*scheme* buffer, you may go to any other buffer, write definitions or 

expressions and evaluate them from that buffer. This will cause the 

expressions to be evaluated in the new evaluator. On the other hand, if 

you have not started up the evaluator, evaluating expressions from a 

buffer will cause them to be evaluated in the normal Scheme evaluator. 

The evaluator with which you are working does not include an error system. 

If you hit an error you will bounce back into ordinary Scheme. You can 

restart the driver-loop by running the procedure driver-loop. Note that 

the driver loop does not re-initialize the environment, so any definitions 

you have made should still be available if you have to re-run driver-

loop. In case you do want a clean environment, you should evaluate 

(refresh-global-environment) while in normal Scheme. 

It is instructive to run the interpreter while tracing m-eval. (You will also 

probably need to do this while debugging your code for this assignment.) 



Since environments are, in general, complex circular list structures, we 

have set Scheme's printer so that it will not go into an infinite loop when 

asked to print a circular list. (See the descriptions of *unparser-list-

depth-limit* and *unparser-list-breadth-limit* in the Scheme 

reference manual.) 

You will notice that when you have run driver-loop, the mode line (bar at 

the bottom of edwin with the buffer name, along with (Scheme: listen)) 

will display (Scheme Meval: listen) instead. This indicates that meval 

will be receiving anything you C-x C-e, instead of (regular) MITScheme. 

In order to give you further warning when you accidentally send things to 

Meval instead of MITScheme, the *warn-meval-define* variable controls 

whether Meval will print out warnings if the define you're evaluating is 

binding a variable that is also bound in MITScheme. 

Computer Exercise 1: Exploring Meval. 

Load the code files into your Scheme environment. To begin using the Scheme 

interpreter defined by this file, evaluate (driver-loop). Notice how it now 

gives you a new prompt, in order to alert you to the fact that you are now 

"talking" to this new interpreter. Try evaluating some simple expressions in this 

interpreter. Note that this interpreter has no debugging mechanism -- that 

is, if you hit an error, you will be thrown into the debugger for the underlying 

Scheme. This can be valuable in helping you to debug your code for the new 

interpreter, but you will need to restart the interpreter. 

You may quickly notice that some of the primitive procedures about which 

Scheme normally knows are missing in m-eval. These include some simple 

arithmetic procedures (such as *) and procedures such as cadr, cddr, newline. 

Extend your evaluator by adding these new primitive procedures (and any 

others that you think might be useful). Check through the code to figure out 

where this is done. In order to make these changes visible in the evaluator, 

you'll need to rebuild the global environment: 

(refresh-global-environment)


Show your changes to the evaluator, and turn in a demonstration of your 

extended evaluator working correctly. 

Computer Exercise 2: Changing style. 

In MITScheme, if expressions are allowed to lack an alternative expression, as 

in the following: 



(define x 5)

(if (= x 0)


(set! x 0.000001))


At present, what happens if you evaluate this expression in m-eval? 

Modify the evaluator so that ifs may lack an alternative, but if they are lacking 

the alternative and the test evaluates to false, then the value of the if should be 

#f. 

Show your changes to the evaluator, and turn in a demonstration of your 

extended evaluator working correctly. 

Adding new special forms to Scheme


Computer Exercise 3: Adding a special form. 

We have seen that our evaluator treats any compound expression as an 

application of a procedure, unless that expression is a special form that has 

been explicitly defined to obey a different set of rules of evaluation (e.g., 

define, lambda, if). We are going to add some special forms to our evaluator 

in the next few exercises. 

A common loop construct in other languages is the do...while loop. It has the 

following syntax: 

(do exp1

exp2

...

expN

while test)


The behavior is as follows: exp1 through expN are evaluated in sequence. Then 

test is evaluated. If test evaluates to #f then we stop executing the loop and 

return the symbol done; otherwise the loop is repeated from the start. For 

example, 

(let ((x '()))

(do (set! x (cons '* x))


(write-line x)

while (< (length x) 3))) ;evaluate this to get


(*)

(* *)

(* * *)

; Value: done




Your task is to add this special form to m-eval, showing your changes to the 

code, and demonstrating that it works by providing some test cases. 

Caveat: avoid mutation on the expression that you are desugaring; for example, 

when the expression which you are passed is the code pointer of a compound 

expression, mutating the expression will actually change what the procedure 

does. 

To do this, you should include the following: 

•	 Create a data abstraction for handling do...while loops, that is, selectors 

for getting out the parts of the loop that will be needed in the evaluation. 

•	 Add a dispatch clause to the right part of m-eval. We have actually 

included this clause, you simply need to uncomment it. 

•	 Write the procedure(s) that handle the actual evaluation of the


do...while loop.


Be sure to turn in a listing of your additions and changes, as well as examples 

of your code working on test cases. 

Computer Exercise 4: The let* special form. 

Now let's try something a bit tougher. We have already seen the let special 

form. A variation on this is the let* special form. This form acts much like let, 

however, the clauses of the let* are evaluated in order (rather than all at the 

same time as in a let), and any reference in a later clause to the variable of an 

earlier clause should use the new value of that variable. For example 

(define i 1)

(let ((i 3)


(j (factorial i))

(list i j)))


would return the value (3 1) because the let variables i, j are bound in 

parallel, and thus the argument to fact is the value of i outside the expression, 

namely 1. On the other hand: 

(define i 1)

(let* ((i 3)


(j (factorial i))

(list i j)))


would return the value (3 6) since the variable i is first bound to 3, and then 

the variable j is bound, and in this case the input to fact is the new value 3. 



Add let* to the evaluator as a special form. To do this, you will need to 

•	 create some syntax procedures to extract out the parts of a let*


expression


• add a dispatch clause to m-eval to handle let* expressions 

•	 create procedure(s) to handle the evaluation of the let*. We suggest 

that you use the following idea. If the let* has no clauses, then you 

simply need to evaluate the body in the current environment. Otherwise 

you need to create a new environment, extending the current one, in 

which the variable of the first clause is bound to the value (obtained by 

evaluation) of the corresponding part of the first clause. Within that 

environment, you need to continue the process, either binding the next 

variable to its value, or if there are not more variables, evaluating the 

body. 

Add this special form to your evaluator. Turn in a listing of your changes, and 

examples of your procedures working on test cases. 

Computer Exercise 5: 

As a final exercise in adding special forms directly to the evaluator, we would 

like to add a way for set!s to be undone. To do this, we will need a new special 

form, unset! which is used as follows: 

(define x 4)

x ; 4

(set! x 5)

x ; 5

(set! x 6)

x ; 6

(unset! x)

x ; 5

(unset! x)

x ; 4

(unset! x)

x ; 4


You'll notice that any number of set!s can be undone, and that unset!ing a 

variable that hasn't been set does nothing. 

•	 create some syntax procedures to extract out the parts of a unset! 

expression 

• add a dispatch clause to m-eval to handle unset! expressions 

•	 modify the binding abstraction to save old values when mutations 

occur and support the unset-binding-value! operation. 



•	 write eval-unset!, which undoes the last set! to the variable. It returns 

an unspecified value (i.e. whatever you want it to). If the variable is 

unbound, it should generate an unbound variable error. 

Transformers: More than meets the eye


In some cases, it is easy to think of implementing a special form in terms of 

more primitive expressions that are already covered by the evaluator. For 

example, suppose we have a simple special form, called until with the 

following behavior. An until expression contains a sequence of 

subexpressions, the first of which is a test expression. The idea is that one first 

evaluates the test expression – if it is true, we are done, and can simply return 

some value, such as the symbol done. If the test expression is not true, then 

we evaluate each of the remaining expressions in order and repeat the process. 

One way to implement an until is to rewrite it in terms of more primitive 

Scheme expressions. For instance, 

(until (> x n)

(write-line x)

(set! x (+ x 1)))


can be rewritten as 

(let ()

(define (loop)


(if (> x n)

'done

(begin (write-line x)


(set! x (+ x 1))

(loop))))


(loop))


and similarly 

(until test

exp1

exp2

...


expn)


can be rewritten as 

(let ()

(define (loop)


(if test

'done

(begin exp1


exp2




...

expn

(loop))))


(loop))


where test, exp1, exp2, ..., expn can be arbitrary expressions. 

Hence one way to implement the transformation is as a procedure, which takes 

the until expression and returns the transformed expression. 

(define (until->transformed exp)

(let ((test (cadr exp))


(other-exps (cddr exp)))

(list

'let

'()

(list 'define


'(loop)

(list 'if


test

''done

(cons 'begin


(append other-exps (list '(loop))))))

'(loop))))


This is the direct way of creating the transform. You should check it through 

carefully to see how the use of list and quote will create an appropriate 

expression. This form is also a bit cumbersome, because we have to do so much 

direct list manipulation. 

Optional Material: Quasiquote, Unquote, Unquote-splicing 

Here is an alternative method called quasiquote. Note that this is much hairer -

- don't feel you have to use this approach as the version above is perfectly fine! 

However, you can check out the Scheme reference manual for more details on 

quasiquote. 

(define (until->transformed exp)

(let ((test (cadr exp))


(other-exps (cddr exp)))

`(let ()


(define (loop)

(if ,test


'done

(begin ,@other-exps


(loop)))) 
(loop)))) 

As this example illustrates, the special syntax characters backquote (`), comma 

(,), and at-sign (@) are extremely useful in writing syntactic transformations. 



Placing a backquote before an expression is similar to placing an ordinary 

quote before the expression, except that any subexpression preceded by a 

comma is evaluated. If a subexpression is preceded by comma at-sign, it is 

evaluated (and must produce a list) and the list is appended into the result being 

formed. For example: 
(define x '(1 2 3))

(define y '(4 5 6))


`(a b c ,x ,@y 7 8)

;Value: (a b c (1 2 3) 4 5 6 7 8)


Note that that the evaluated subexpressions of a backquote form can be actual 

expressions, not just symbols. Thus until->transformed can also be defined as 

(define (until->transformed exp)

`(let ()


(define (loop)

(if ,(cadr exp)


'done

(begin ,@(cddr exp)


(loop))))

(loop)))


Adding new derived expressions to Scheme


Early in the semester, we introduced the idea of "syntactic sugar," that is, the 

notion that some of the special forms in our language can be expressed as 

simple syntactic transformations of other language elements. Examples are 

cond, which can be implemented in terms of if; and let, which can be 

implemented in terms of lambda. Such expressions are also called derived 

expressions. Your job in this part will be to design and implement a new 

derived expression for Scheme. 

Section 4.1.2 of the textbook demonstrates how to implement cond as a derived 

expression: to evaluate a cond expression, we transform it to an equivalent if 

expression using the procedure cond->if; and then we evaluate the transformed 

expression. Let can also be implemented as a derived expression, as explained 

in exercise 4.6 on page 375. 

Computer Exercise 6: Let's desugar for a while. 

Implement a syntactic transformation to convert a do...while loop expression 

from Exercise 3 into a simpler expression. Then change your evaluator so that 



when the special form do...while is recognized, the evaluator desugars this 

expression into the simpler form and evaluates that. 

Remember that in a syntactic transformation, you are converting one list 

structure into another (which will subsequently be evaluated). Thus, you should 

start with a simple do...while example, and write down what the equivalent 

simpler expression would be. You can probably use the same syntactic 

selectors as in Exercise 3, although the evaluation clause in m-eval will be 

different. 

Hint: one correct solution to this problem involves desugaring a do...while 

loop into an expression having do...while as a sub-expression. 

Computer Exercise 7: Transforming boolean combinations. 

In scheme, and and or are special forms because all of the arguments to these 

forms are not necessarily evaluated. The following example exhibits this 

behaviour: 

(define (safe-list-ref lst n)


(if (and (integer? n) (list? lst) (>= n 0) (< n (length lst)))


(list-ref lst n)


'invalid-list-reference))


So, for example, if (list? lst) is false, then the expression (length lst) is not 

evaluated, which is good. This is called 'short-circuiting:' as soon as an 

argument to and evaluates to false we return true, without evaluating the 

remaining arguments; or behaves almost the same way. You already 

implemented this behavior in PS9, but there's one more feature we want you to 

add. 

The result of an or special form is not necessarily #t or #f, but rather the value 

of the first non-#f argument. (For example, (or #f 3 4) => 3.) Likewise, if an 

and special form has no arguments which evaluate to #f, then its return value is 

the value of its last argument. (For example, (and 2 3 4) => 4.) You may read 

about this behavior in more detail in the Scheme reference manual. 



As before, add a pair of clauses to m-eval that transform or and and expressions 

into expressions that m-eval already knows how to evaluate. Remember that the 

individual expressions in the body of or are supposed to be evaluated at most 

once: 

(or (begin (display "once ") #f)

(begin (display "and ") #f)

(begin (display "only ") 'done)

(begin (display "adbmal") #t))


once and only

;Value: done


(and (begin (display "a ") (> 6 5))

(begin (display "b ") (< 6 5))

(begin (display "c ") (+ 6 5)))


a b

;Value: #f


(One way to desugar or involves using let and if. In this case there can be 

"name capture" errors if the let variable already appears in the or expression 

being desugared. For this problem, it is okay to assume that any variables you 

use in desugaring do not already appear. Note that there is a better way to 

desugar and and or that avoids this problem. In Exercise 9 we give you another 

way to fix this problem.) 

Computer Exercise 8: Desugaring case. 

We have used the case expression in a number of recent projects. Remember 

its form: 

(case message

((TYPE) ‘do-something-if-message-is-type)

((FOO) ‘do-something-else-if-message-is-foo)

(else ‘do-something-further-if-nothing-matches)


Remember the behavior of a case. In this example, the value of message 

would be compared against the symbol type. If they are eq?, then the 

expressions in that clause are evaluated, and the value of the last one is returned 

as the value of the whole expression. If not, we move on to the next expression 

and repeat the process. If an expression has the keyword else as its first 

subexpression, we automatically evaluate the remaining subexpressions in this 

clause. 

Extend m-eval to handle case expressions, by desugaring them into some other 

form, such as a cond. Be sure to create some appropriate syntax procedures for 

extracting parts of a case expression, as well as building the procedure to 



convert such an expression into a cond. Show examples of your procedure 

converting case expressions into cond expressions. Also add this to your 

evaluator and show examples of expressions being correctly evaluated. 

Computer Exercise 9: Name Capture and Static Analysis 

You'll note that the implementation sketched above for the until special form 

has a flaw, namely that if we try to use a symbol named loop in an until loop, 

we get into trouble. For example: 

(define loop 3.14159)

(define (many-circles n)


(let ((x 1))

(until (> x n)


(display (* loop x x))

(set! x (+ x 1)))))


would transform to 

(define loop 3.14159)

(define (many-circles n)


(let ((x 1))

(let ()


(define (loop)

(if (> x n)


'done

(begin


(display (* loop x x))

(set! x (+ x 1))

(loop))))


(loop))))


which would give an error when we try to multiply loop as a numeric value. 

This general problem is called 'name capture.' One method to avoid this is to 

analyze the expression we are desugaring, and instead of calling the helper 

function loop we will give it a name that is not used already in the expression 

we're desugaring. Thus we will need a procedure (names-used-in exp) which 

will analyze an expression and give us back a list of all of the symbol names 

which are referenced in that expression. For example 

(names-used-in '(until (> x n) (display (* loop x x)) (set! x (+ x

1)))) => (> x n display * loop)


Having analyzed the expression to determine the names that are used, we need 

to compute a symbol not occurring in the list of used names. Such a symbol is 

usually called fresh. Here is one way to compute a fresh symbol : 



(define (fresh-symbol free)

; list<symbol> -> symbol

; computes a new symbol not occurring in free


(fold-right symbol-append 'unused free))


The fixed code is below, with changes shown in bold: 

(define (until->transformed exp)

(let* ((test (cadr exp))


(other-exps (cddr exp))

(names-occurring (names-used-in exp))

(loop-name (fresh-symbol names-occurring)))


(list

'let

'()

(list 'define


(list loop-name)

(list 'if


test

''done

(cons 'begin


(append other-exps (list '(loop))))))

(list loop-name))))


The procedure names-used-in computes all of the free variables in exp, 

returning a list of symbols. The procedure fresh-symbol then computes a new 

symbol not occurring in the free variables list, and that symbol is used instead 

of the symbol loop. 

We want you to fill in the definition of the procedure names-used-in, which 

computes the variables used in a particular expression. A skeleton of the 

procedure is provided in the code, and you will need to add some extra cases. 

Give some examples that directly show your implementation of names-used-in 

works. Also, come up with a test case for which one of your original 

desugarings (for and, or, case, or do...while) fails because of name capture. 

Then, change the appropriate desugaring so that it uses names-used-in and 

fresh-symbol to avoid name capture, and show that the problem is fixed by this 

change. 

Exercise 10: Avoiding Name Capture (Optional Bonus Problem) 

As mentioned in problem 7, there is a desugaring for or which completely 

avoids name capture. Write up a procedure to perform this desugaring, using 

quote, quasiquote, unquote, and unquote-splicing where appropriate. A correct 

solution should be short, around 6 lines of code. 



Submission


For each problem, include your code (with identification of the exercise 

number being solved), as well as comments and explanations of your code, and 

demonstrate your code's functionality against a set of test cases. Once you have 

completed this project, your file should be submitted electronically on the 

6.001 on-line tutor, using the Submit Project Files button. 

We encourage you to work with others on problem sets as long as you 

acknowledge it (see the 6.001 General Information handout) and so long as you 

observe the rules on collaboration and using "bibles". If you cooperated with 

other students, LA's, or others, please indicate your consultants' names and how 

they collaborated. Be sure that your actions are consistent with the posted 

course policy on collaboration. 

Remember that this is Project 5; when you have completed all your work and 

saved it in a file, upload that file and submit it for Project 5. 


