
MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001 – Structure and Interpretation of Computer Programs

Spring Semester, 2005

Project 2 – Prisoner's Dilemma
•	 Issued: Monday, February 21
•	 To Be Completed By: Friday, March 11, 6:00 pm
•	 Reading: Sections 2.1, 2.2.1 and 2.2.2 in Structure and Interpretation of

Computer Programs

•	 Code to load for this project:

o	 A link to the system code file prisoner.scm is provided from the Projects
link on the projects section.

Purpose

Project 2 focuses on the use of higher order procedures, together with data structures.
You will also further develop and demonstrate your ability to write clear, intelligible,
well-documented procedures, as well as test cases for your procedures.

A Fable

In the mid-1920's, the Nebraska State Police achieved what may still be their finest
moment. After a 400-mile car chase over dirt roads and through corn fields, they finally
caught up with the notorious bank robbers Bunny and Clod. The two criminals were
brought back to the police station in Omaha for further interrogation. Bunny and Clod
were questioned in separate rooms, and each was offered the same deal by the police. The
deal went as follows (since both are the same, we need only describe the version
presented to Bunny):

“Bunny, here's the offer that we are making to both you and Clod. If you both hold out on
us and don't confess to bank robbery, then we admit that we don't have enough proof to
convict you. However, we will be able to jail you both for one year, for reckless driving
and endangerment of corn. If you turn state's witness and help us convict Clod (assuming
he doesn't confess), then you will go free, and Clod will get twenty years in prison. On
the other hand, if you don't confess and Clod does, then he will go free and you will get
twenty years.”

“What happens if both Clod and I confess?” asked Bunny.

“Then you both get ten years,” responded the police.

Bunny, who had been a math major at Cal Tech before turning to crime, reasoned this
way: “Suppose Clod intends to confess. Then if I don't confess, I'll get twenty years, but

if I do confess, I'll only get ten years. On the other hand, suppose Clod intends to hold out
on the cops. Then if I don't confess, I'll go to jail for a year, but if I do confess, I'll go
free. So no matter what Clod intends to do, I am better off confessing than holding out.
So I'd better confess.”

Naturally, Clod employed the very same reasoning. Both criminals confessed, and both
went to jail for ten years (Well, actually they didn't go to jail. When they were in court,
and heard that they had both turned state's witness, they strangled each other. But that's
another story.) The police, of course, were triumphant, since the criminals would have
been free in a year had both remained silent.

The Prisoner's Dilemma

The Bunny and Clod story is an example of a situation known in mathematical game
theory as the “prisoner's dilemma.” A prisoner's dilemma always involves two “game
players,” and each has a choice between “cooperating” and “defecting.” If the two
players cooperate, they each do moderately well; if they both defect, they each do
moderately poorly. If one player cooperates and the other defects, then the defector does
extremely well and the cooperator does extremely poorly. (In the case of the Bunny and
Clod story, “cooperating” means cooperating with one's partner - i.e. holding out on the
police - and “defecting” means confessing to bank robbery.) Before formalizing the
prisoner's dilemma situation, we need to introduce some basic game theory notation.

A Crash Course in Game Theory

In game theory, we differentiate between a game, and a play. A game refers to the set of
possible choices and outcomes for the entire range of situations. A play refers to a
specific set of choices by the players, with the associated outcome for that particular
scenario. Thus, in game theory, a two-person binary-choice game is represented by a
two-by-two matrix. Here is a hypothetical game matrix.

B cooperates B defects
A cooperates A gets 5 A gets 2

B gets 5 B gets 3
A defects A gets 3 A gets 1

B gets 2 B gets 1

The two players in this case are called A and B, and the choices are called “cooperate”
and “defect.” Players A and B can play a single game by separately (and secretly)
choosing either to cooperate or to defect. Once each player has made a choice, he
announces it to the other player; and the two then look up their respective scores in the
game matrix. Each entry in the matrix is a pair of numbers indicating a score for each
player, depending on their choices. Thus, in the example above, if Player A chooses to
cooperate while Player B defects, then A gets 2 points and B gets 3 points. If both players
defect, they each get 1 point. Note, by the way, that the game matrix is a matter of public

knowledge; for instance, Player A knows before the game even starts that if he and B
both choose to defect, they will each get 1 point.

In an iterated game, the two players play repeatedly; thus after finishing one game, A and
B may play another. (Admittedly, there is a little confusion in the terminology here; thus
we refer to each iteration as a “play,” which constitutes a single “round” of the larger,
iterated game.) There are a number of ways in which iterated games may be played; in
the simplest situation, A and B play for some fixed number of rounds (say 200), and
before each round, they are able to look at the record of all previous rounds. For instance,
before playing the tenth round of their iterated game, both A and B are able to study the
results of the previous nine rounds.

An Analysis of a Simple Game Matrix

The game depicted by the matrix above is a particularly easy one to analyze. Let's
examine the situation from Player A's point of view (Player B's point of view is
identical):

“Suppose B cooperates. Then I do better by cooperating myself (I receive five points
instead of three). On the other hand, suppose B defects. I still do better by cooperating
(since I get two points instead of one). So no matter what B does, I am better off
cooperating.”

Player B will, of course, reason the same way, and both will choose to cooperate. In the
terminology of game theory, both A and B have a dominant choice - i.e., a choice that
gives a preferred outcome no matter what the other player chooses to do. The matrix
shown above, by the way, does not represent a prisoner's dilemma situation, since when
both players make their dominant choice, they also both achieve their highest personal
scores. We'll see an example of a prisoner's dilemma game very shortly.

To re-cap: in any particular game using the above matrix, we would expect both players
to cooperate; and in an iterated game, we would expect both players to cooperate
repeatedly, on every round.

The Prisoner's Dilemma Game Matrix

Now consider the following game matrix:

B cooperates B defects
A cooperates A gets 3 A gets 0

B gets 3 B gets 5
A defects A gets 5 A gets 1

B gets 0 B gets 1

In this case, Players A and B both have a dominant choice - namely, defection. No matter
what Player B does, Player A improves his own score by defecting, and vice versa.

However, there is something odd about this game. It seems as though the two players
would benefit by choosing to cooperate. Instead of winning only one point each, they
could win three points each. So the “rational” choice of mutual defection has a puzzling
self-destructive flavor.

The second matrix is an example of a prisoner's dilemma game situation. Just to
formalize the situation, let CC be the number of points won by each player when they
both cooperate; let DD be the number of points won when both defect; let CD be the
number of points won by the cooperating party when the other defects; and let DC be the
number of points won by the defecting party when the other cooperates. Then the
prisoner's dilemma situation is characterized by the following conditions:

In the second game matrix, we have

so both conditions are met. In the Bunny and Clod story, by the way, you can verify that:

Again, these values satisfy the prisoner's dilemma conditions.

Axelrod's Tournament

In the late 1970's, political scientist Robert Axelrod held a computer tournament designed
to investigate the prisoner's dilemma situation (Actually, there were two tournaments.
Their rules and results are described in Axelrod's book: The Evolution of Cooperation.).
Contestants in the tournament submitted computer programs that would compete in an
iterated prisoner's dilemma game of approximately two hundred rounds, using the second
matrix above. Each contestant's program played five iterated games against each of the
other programs submitted, and after all games had been played the scores were tallied.

The contestants in Axelrod's tournament included professors of political science,
mathematics, computer science, and economics. The winning program - the program with
the highest average score - was submitted by Anatol Rapoport, a professor of psychology
at the University of Toronto. In this project, we will pursue Axelrod's investigations and
make up our own Scheme programs to play the iterated prisoner's dilemma game.

As part of this project, we will be running a similar tournament, but now involving a
three-person prisoner's dilemma.

Before we look at the two-player program, it is worth speculating on what possible
strategies might be employed in the iterated prisoner's dilemma game. Here are some
examples:

Nasty - a program using the Nasty strategy simply defects on every round of every game.

Patsy - a program using the Patsy strategy cooperates on every round of every game.

Spastic - this program cooperates or defects on a random basis.

Egalitarian - this program cooperates on the first round. On all subsequent rounds,
Egalitarian examines the history of the other player's actions, counting the total number
of defections and cooperations by the other player. If the other player's defections
outnumber her cooperations, Egalitarian will defect; otherwise this strategy will
cooperate.

Eye-for-Eye - this program cooperates on the first round, and then on every subsequent
round it mimics the other player's previous move. Thus, if the other player cooperates
(defects) on the nth round, then Eye-for-Eye will cooperate (defect) on the (n+1)st round.

All of these strategies are extremely simple. (Indeed, the first three do not even pay any
attention to the other player; their responses are uninfluenced by the previous rounds of
the game.) Nevertheless, simplicity is not necessarily a disadvantage. Rapoport's first-
prize program employed the Eye-for-Eye strategy, and achieved the highest average
score in a field of far more complicated programs.

The Two-Player Prisoner's Dilemma Program

A Scheme program for an iterated prisoner's dilemma game is provided as part of the
code for this project. The procedure play-loop pits two players (or, to be more precise,
two “strategies”) against one another for approximately 100 games, then prints out the
average score of each player.

Player strategies are represented as procedures. Each strategy takes two inputs - its own
“history” (that is, a list of all its previous “plays,” where for convenience we will use "c"
to represent cooperate, and "d" to represent defect) and its opponent's “history.” The
strategy returns either the string “c” for “cooperate” or the string “d” for “defect.” (Note
that we will need to use procedures appropriate for comparing strings when we analyze
these results.)

At the beginning of an iterated game, each history is an empty list. As the game
progresses, the histories grow (via extend-history) into lists of “c”'s and “d”'s, thus
each history is stored from most recent to least recent. Note how each strategy must have
its own history as its first input. So in play-loop-iter, strat0 has history0 as its first
input, and strat1 has history1 as its first input.

The values from the game matrix are stored in a list named *game-association-list*.
This list is used to calculate the scores at the end of the iterated game.

(define *game-association-list*
(list (list (list “c” “c”) (list 3 3))

(list (list “c” “d”) (list 0 5))
(list (list “d” “c”) (list 5 0))
(list (list “d” “d”) (list 1 1))))

Thus, if both players cooperate, the payoff to each player is a 3, if one player cooperates
and the other defects, the defecting player gets a payoff of 5, the cooperating player gets a
zero payoff, if both players defect, each gets a payoff of 1.

Some sample strategies are given in the code. Nasty and Patsy are particularly simple;
each returns a constant value regardless of the histories. Spastic also ignores the
histories and chooses randomly between cooperation and defection. You should study
Egalitarian and Eye-for-Eye to see that their behavior is consistent with the
descriptions in the previous section.

Problem 1

To be able to test out the system, we need to complete a definition for extract-entry.
This procedure will retrieve the payoff information from the game association list. The
procedure's behavior is as follows: it takes as input a play, represented as a list of choices
for each strategy (i.e., a “c” or a “d”), and the game association list. Thus a play will in
this case be a list of two entries (since there are two players), each of which is the choice
of action for that player. Each entry in the game association list is a list itself, with a first
element representing a list of game choices, and the second element representing a list of
scores (or payoffs) for each player. Thus extract-entry wants to search down the game
association list trying to match its first argument against the first element of each entry in
the game association list, one by one. When it succeeds, it returns that whole entry.

For example, we expect the following behavior:

(define a-play (make-play “c” “d”))

(extract-entry a-play *game-association-list*)

;Value: ((“c” “d”) (0 5))

Write the procedure extract-entry, and test it out using the above case *game-
association-list*. Turn in a copy of your documented procedure and some test
examples. You may want to use a diagram of the list structure to guide the creation of
your code.

Problem 2

Use play-loop to play games among the five defined strategies. Notice how a strategy's
performance varies sharply depending on its opponent. For example, Patsy does quite
well against Eye-for-Eye or against another Patsy, but it loses badly to Nasty. Pay
special attention to Eye-for-Eye. Notice how it never beats its opponent - but it never
loses badly. Create a matrix in which you show the average score for tournaments pitting
all possible pairings of the five different strategies: Nasty, Patsy, Eye-for-Eye,
Spastic, Egalitarian. Describe the behavior you observe for the different
strategies.

Problem 3

Games involving Egalitarian tend to be slower than other games. Why is that so? Use
order-of-growth notation to explain your answer.

Alyssa P. Hacker, upon seeing the code for Egalitarian, suggested the following
iterative version of the procedure:

(define (Egalitarian my-history other-history)
(define (majority-loop cs ds hist)
(cond ((empty-history? hist) (if (> ds cs) “d” “c”))

((string=? (most-recent-play hist) “c”)
(majority-loop (+ 1 cs) ds (rest-of-plays hist)))
(else
(majority-loop cs (+ 1 ds) (rest-of-plays hist)))))

(majority-loop 0 0 other-history))

Compare this procedure with the original version. Do the orders of growth (in time) for
the two procedures differ? Is the newer version faster?

Problem 4

Write a new strategy eye-for-two-eyes. The strategy should always cooperate unless
the opponent defected on both of the previous two rounds. (Looked at another way: eye-
for-two-eyes should cooperate if the opponent cooperated on either of the previous two
rounds.) Play eye-for-two-eyes against other strategies. Describe the behavior you
observe.

Problem 5

Write a procedure make-eye-for-n-eyes. This procedure should take a number as input
and return the appropriate Eye-for-Eye-like strategy. For example, (make-eye-for-n-
eyes 2) should return a strategy equivalent to eye-for-two-eyes. Use this procedure
to create a new strategy and test it against the other strategies. Describe the observed
behavior.

Problem 6

Write a procedure make-rotating-strategy which takes as input two strategies (say,
strat0 and strat1) and two integers (say freq0 and freq1). Make-rotating-
strategy should return a strategy which plays strat0 for the first freq0 rounds in the
iterated game, then switches to strat1 for the next freq1 rounds, and so on. (Hint: you
may find it useful to think about the remainder procedure in order to decide which
strategy to use at each iteration.) Test it against other strategies and describe the
performance.

Problem 7

Write a new strategy, make-higher-order-spastic, which takes a list of strategies as
input. It returns a new strategy that loops through this list of strategies, using the next
one in the list for each play, and then starting again at the beginning of the list when it has
used all the strategies. Test this new strategy against other strategies and describe the
performance.

Problem 8

Write a procedure gentle, which takes as input a strategy (say strat) and a number
between 0 and 1 (call it gentleness-factor). The gentle procedure should return a
strategy that plays the same as strat except: when strat defects, the new strategy
should have a gentleness-factor chance of cooperating. (If gentleness-factor is 0,
the return strategy performs exactly the same as strat; if gentleness-factor is 0.5, the
returned strategy cooperates half the time that strat defects; if gentleness-factor is 1,
the returned strategy performs the same as Patsy.)

Use gentle with a low value for gentleness-factor - say, 0.1 - to create two new
strategies: slightly-gentle-Nasty and slightly-gentle-Eye-for-Eye.

The Three-Player Prisoner's Dilemma

So far, all of our prisoner's dilemma examples have involved two players (and, indeed,
most game-theory research on the prisoner's dilemma has focused on two-player games).
But it is possible to create a prisoner's dilemma game involve three - or even more -
players.

Strategies from the two-player game do not necessarily extend to a three-person game in
a natural way. For example, what does Eye-for-Eye mean? Should the player defect if
either of the opponents defected on the previous round? Or only if both opponents
defected? And are either of these strategies nearly as effective in the three-player game as
Eye-for-Eye is in the two-player game?

Before we analyze the three-player game more closely, we must introduce some notation
for representing the payoffs. We use a notation similar to that used for the two-player

game. For example, we let DCC represent the payoff to a defecting player if both
opponents cooperate. Note that the first position represents the player under
consideration. The second and third positions represent the opponents.

Another example: CCD represents the payoff to a cooperating player if one opponent
cooperates and the other opponent defects. Since we assume a symmetric game matrix,
CCD could be written as CDC. The choice is arbitrary.

Now we are ready to discuss the payoffs for the three-player game. We impose three
rules (Actually, there is no universal definition for the multi-player prisoner's dilemma.
The constraints used here represent one possible version of the three-player prisoner's
dilemma):

1) Defection should be the dominant choice for each player. In other words, it should
always be better for a player to defect, regardless of what the opponents do. This rule
gives three constraints:

2) A player should always be better off if more of his opponents choose to cooperate.
This rule gives:

3) If one player's choice is fixed, the other two players should be left in a two-player
prisoner's dilemma. This rule gives the following constraints:

We can satisfy all of these constraints with the following payoffs:

CDD = 0, DDD = 1, CCD = 2, DCD = 3, CCC = 4, DCC = 5.

Problem 9

Revise the Scheme code for the two-player game to make a three-player iterated game.
The program should take three strategies as input, keep track of three histories, and print
out results for three players. You need to change only three procedures: play-loop,
print-out-results and get-scores (although you may also have to change your
definition of extract-entry if you did not write it in a general enough manner). We
would suggest that you make copies of the necessary code and rename them so that you
can separate the two person version from the three person one.

You also need to change *game-association-list* as follows:

(define *game-association-list*
(list (list (list “c” “c” “c”) (list 4 4 4))

(list (list “c” “c” “d”) (list 2 2 5))

(list (list “c” “d” “c”) (list 2 5 2))

(list (list “d” “c” “c”) (list 5 2 2))

(list (list “c” “d” “d”) (list 0 3 3))

(list (list “d” “c” “d”) (list 3 0 3))

(list (list “d” “d” “c”) (list 3 3 0))

(list (list “d” “d” “d”) (list 1 1 1))))

Problem 10

Write strategies Patsy-3, Nasty-3, and spastic-3 that will work in a three-player
game. Try them out to make sure your code is working.

Write two new strategies: tough-Eye-for-Eye and soft-Eye-for-Eye. Tough-Eye-
for-Eye should defect if either of the opponents defected on the previous round. Soft-
Eye-for-Eye should defect only if both opponents defected on the previous round. Play
some games using these two new strategies. Describe the observed behavior of the
strategies.

Problem 11

Write a procedure make-combined-strategies which takes as input two two-player
strategies and a “combining” procedure. Make-combined-strategies should return a
three-player strategy that plays one of the two-player strategies against one of the
opponents, and the other two-player strategy against the other opponent, then calls the
“combining” procedure on the two two-player results. Here's an example: this call to
make-combined-strategies returns a strategy equivalent to tough-Eye-for-Eye in
Problem 10.

(make-combined-strategies
Eye-for-Eye Eye-for-Eye
(lambda (r1 r2) (if (or (string=? r1 “d”) (string=? r2 “d”))“d” “c”)))

The resulting strategy plays Eye-for-Eye against each opponent, and then calls the
combining procedure on the two results. If either of the two two-player strategies has
returned “d”, then the three-player strategy will also return “d”.

Here's another example. This call to make-combined-strategies returns a three-player
strategy that plays Eye-for-Eye against one opponent, Egalitarian against another,
and chooses randomly between the two results:

(make-combined-strategies
Eye-for-Eye Egalitarian
(lambda (r1 r2) (if (= (random 2) 0) r1 r2)))

Problem 12

A natural idea in creating a prisoner's dilemma strategy is to try and deduce what kind of
strategies the other players might be using. In this problem, we will implement a simple
version of this idea.

The underlying idea is to keep track of how the strategy for one player correlates with the
decisions of the other two players on the previous round (of course, you can imagine
generalizing this to several previous rounds). Thus, we want to build an intermediary data
structure which keeps track of what player-0 did, correlated with what the other two
players did, over the course of the histories for the three players. Imagine creating a
procedure that takes three histories as arguments: call them hist-0, hist-1 and hist-2.
The idea is that we wish to characterize the strategy of the player responsible for hist-0.
Given this is a three player game, there are three possible situations we need to keep track
of: what did player-0 do on one round when the two other players both cooperated on the
previous round; what did player-0 do on one round when one of the others cooperated
and the other defected on the previous round; and what did player-0 do on one round
when both other players defected on the previous round. Since these three situations will
occur multiple times, we want to keep track of how often in each case did player-0
cooperate, and how often did she defect in response to these choices, and how often did
each of these three cases occur (although that could be found by adding the number of
times player-0 cooperated and defected).

Thus, you should design and implement a data structure called a history-summary, with
the overall structure shown in Figure 1. The history-summary has three subpieces, one
for the case where both player-1 and player-2 cooperated, one for when one of them
cooperated and the other defected, and a third for when both of these players defected.
This means that your data abstraction for a history-summary should have three
selectors, for these three pieces. For each piece, there is another data structure that keeps
track of the number of times player-0 cooperated on the next round, the number of times
she defected, and the total number of examples (though as we noted, this is redundant).
You may find it convenient to think of this as a kind of tree structure. Thus, your first
task is to design constructors and selectors to implement this multilevel abstraction.

Figure 1: Example of the summary data structure, as a tree. The top level has three
pieces, corresponding to the actions of the other players (both cooperated, only one
cooperated, both defected). The second level has three pieces, listing the number of times
the player cooperated, defected and the total number of times the situation specified by
the actions of the opponents occured.

Once you have designed your data abstraction, build a procedure that takes the three
histories as arguments, and returns a history-summary. If we extract from this data
structure the piece corresponding to cooperate-cooperate, this should give us all the
information about what happened when player-1 and player-2 both cooperated. Thus, we
should be able to extract from this piece the number of times player-0 cooperated and the
number of times she defected.

REMEMBER: the goal of our data structure is to correlate player-0’s behavior on round
n, with player-1 and player-2’s behavior on round n-1. For example, the result of an
implementation, call it make-history-summary, on an example set of histories is shown
below:

(define summary (make-history-summary

(list “c” “c” “d” “d” “c” “d” “c” “c”) ;hist-0

(list “c” “c” “c” “d” “d” “c” “d” “c”) ;hist-1

(list “c” “c” “d” “d” “d” “c” “c” “c”) ;hist-2))

summary
;Value: ((3 0 3) (1 1 2) (0 2 2))

To help you decode this result, first remember that since we are going to compare the
decision for, say, the most recent round in the first history, this means we compare that
value (“c”) against the values of the previous round in the other two histories (also both
“c”), or we ompare the value in the previous round (“c) against the values in the

preceeding round of the other two histories (a “c” and a “d”). As a result of this process,
the first list in this summary describes what player-0 did on a round immediately after
both opponents cooperated, in this case she cooperated 3 times, and never defected. The
second list describes what player-0 did on a round immediately after one opponent
cooperated and one defected, in this case she cooperated once and defected once; and the
final list describes what player-0 did on a round immediately after both opponents
defected, in this case she defected twice and never cooperated. Note that there are only 7
cases counted, since we compare the result on one round against the opponents’ decisions
on the previous round.

Problem 13

Finally, using this data structure, we can build a new procedure that will return a list of
three numbers: the probability that the hist-0 player cooperates given that the other two
players cooperated on the previous round, the probability that the hist-0 player
cooperates given that only one other player cooperated on the previous round, and the
probability that the hist-0 player cooperates given that both others defected on the
previous round. To fill out some details in this picture, let's look at a couple of examples.
We will call our procedure get-probability-of-c: here are a couple of sample calls.

(define summary (make-history-summary

(list “c” “c” “c” “c”) ;hist-0

(list “d” “d” “d” “c”) ;hist-1

(list “d” “d” “c” “c”))) ;hist-2

(get-probability-of-c summary)
;Value: (1 1 1)

(define new-summary (make-history-summary

(list “c” “c” “c” “d” “c”)

(list “d” “c” “d” “d” “c”)

(list “d” “c” “c” “c” “c”)))

(get-probability-of-c new-summary)

;Value: (0.5 1 ())

In the top example, the returned list indicates that the first player cooperates with
probability 1 no matter what the other two players do. In the bottom example, the first
player cooperates with probability 0.5 when the other two players cooperate; the first
player cooperates with probability 1 when one of the other two players defects; and since
we have no data regarding what happens when both of the other players defect, our
procedure returns () for that case.

Write the get-probability-of-c procedure.

Problem 14

Using this procedure, you should be able to write some predicate procedures that help in
deciphering another player's strategy. For instance, we can use get-probability-of-c
to record the behavior of an opponent. We could then compare this against what we
would expect for a behavior to see if they match. Thus, the first procedure tests to see if
two lists are the same. Using this we could check to see if an opponent is a fool by seeing
if he always cooperates (i.e. the observed behavior would be a “c” for cooperate in all
cases).

(define (test-entry index trial)

(cond ((null? index)

(null? trial))

((null? trial) #f)

((= (car index) (car trial))

(test-entry (cdr index) (cdr trial)))
(else #f)))

(define (is-he-a-fool? hist0 hist1 hist2)

(test-entry (list 1 1 1)

(get-probability-of-c

(make-history-summary hist0 hist1 hist2))))

(define (could-he-be-a-fool? hist0 hist1 hist2)

(test-entry (list 1 1 1)

(map (lambda (elt)

(cond ((null? elt) 1)

((= elt 1) 1)
(else 0)))

(get-probability-of-c (make-history-summary hist0

hist1

hist2)))))

Use the get-probability-of-c procedure to write a predicate that tests whether another
player is using the soft-Eye-for-Eye strategy from Problem 10. Also, write a new
strategy named dont-tolerate-fools. This strategy should cooperate for the first ten
rounds; on subsequent rounds it checks (on each round) to see whether the other players

might both be playing Patsy. If our strategy finds that both other players seem to be
cooperating uniformly, it defects; otherwise, it cooperates.

Submission

For each problem above, include your code (with identification of the problem number
being solved), as well as comments and explanations of your code, and demonstrate your
code’s functionality against a set of test cases. Once you have completed this project,
your file should be submitted electronically on the 6.001 on-line tutor, using the
Submit Project Files button.

Remember that this is Project 2; when you are have completed all the work and saved it
in a file, upload that file and submit it for Project 2.

Extra Credit: The Three-Player Prisoner's Dilemma Tournament

As described earlier, Axelrod held two computer tournaments to investigate the two-
player prisoner's dilemma. We are going to hold a three-player tournament. You can
participate by designing a strategy for the tournament. You might submit one of the
strategies developed in the project (but not one of the standard strategies provided as part
of the code), or develop a completely new one. The only restriction is that the strategy
must work against any other legitimate entry. Any strategies that cause the tournament
software to crash will be disqualified. If you wish to submit an entry strategy, you should:

•	 Send a copy of your procedure by email to your TA by the due date of the project
(we will not accept entries submitted after the project is due). Include your name
and a brief description of how the strategy works.

•	 The form of the submitted strategy should be a procedure that takes three
arguments: the player's own history list and history lists for each of the other two
players. The procedure should return either a “c” or a “d” for cooperate or defect.

•	 We reserve the right to disqualify any entries that violate the spirit of the

prisoner's dilemma game (e.g., by “mutating” someone elses's history list).

•	 We strongly suggest that you try out your procedure in the lab (by using it as an
argument to the three-person play-loop procedure) before submitting it.

The tournament will be a complete one, that is every strategy plays against every other
pair. Each game will consist of approximately 100 rounds.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

