
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 6.1 

Slide 6.1.1 
When we first starting talking about Scheme expressions, you 
may recall we said that (almost) every Scheme expression had 
three components, a syntax (legal ways of gluing things 
together), a semantics (a way of deciding the meaning 
associated with an expression), and a type. We haven't said 
much about types yet. Today we are going to look in more 
detail at types, and especially how we can use types to design 
procedures with different kinds of behaviors. 

Slide 6.1.2 
So let's motivate the idea of a type. Consider the following two 
examples. The first expression we know will correctly add the 
two numbers to get 15. The second expression we expect to 
give an error, since while we may like to get "high fives", we 
know that we can't add a string to a number, as addition is only 
used on numbers. 
Note what this implies. It suggests that the addition procedure 
has associated with it an expectation of what kinds of 
arguments it will get, in particular an expectation about the type 
of each argument, in this case, numbers. 

Slide 6.1.3 
And here, since we have given a string as an input, instead of an 
integer, the procedure should complain, stating that it can't 
perform its job since it was not given what it expected. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.1.4 
So now let's formalize this idea. We want to assign a type to 
virtually every kind of expression in our language. 
We have already seen some basic primitives: numbers, which 
are a type; strings, another type; booleans, a third type; and 
symbols or names for things, to which we will be returning in a 
few lectures. For some things, like numbers, we could actually 
be more specific, for example distinguishing integers from real 
numbers. 
As we saw with our motivating example, we typically want to 
know the type of a data structure in order to decide if some 
procedure is appropriate to apply to that type. These basic 
primitive data types will usually be sufficient to handle the 

cases we will see. 

Slide 6.1.5 
For compound data, we saw that the basic element was a pair, 
and we have a type notation to denote one. Note that we 
include in this notation a specification of the types of the 
elements within the pair. 
We also saw that we could construct a list out of pairs. So we 
can create a type notation for that as well. In essence we are 
creating a formal definition for a list: we specify that this 
compound data structure is recursively defined as a pair, whose 
first element is of some type A, and whose second element is 
either another list or is the empty list. This exactly reflects the 
description we gave when we introduced lists. 
Note that in our type specifications, we can include the 
possibility of alternative types of elements, as shown in the example. 

Slide 6.1.6 
Now, we don’t just have data structures in our language, we 
have procedures that operate on them. So we want to identify 
different types of procedures as well. We will do this by 
creating a notation that indicates the number of arguments to a 
procedure, the type of each, and the type of the value returned 
by the procedure. For example, number maps to number would 
indicate a procedure that takes a single number as input and 
returns a number as output. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.1.7 
We have now seen that for procedures we can also associate a 
type. In particular, we can specify for a procedure that it 
expects a particular number of arguments, and each argument is 
expected to be of a particular type. Moreover, the procedure's 
output is also of a particular type. And going back to our 
original example, we know that integer addition has a particular 
expectation on the types of arguments. 

Slide 6.1.8 
So we can denote this as shown, indicating the number and type 
of arguments, or inputs, and the type of output of a procedure. 
This type declaration states that this procedure maps two 
numbers to a number. 

Slide 6.1.9 
This means we can now talk about the types associated with 
simple expressions, and to procedures. Here are some 
examples. Note that square, which we defined earlier, is a 
procedure that takes one input, a number, and produces a 
number as output. The primitive > is a predicate that takes two 
numbers as input, and returns a true or false value, hence a 
boolean, as output (true if the first number is greater than the 
second one). 

Slide 6.1.10 
Thus, the type associated with a procedure specifies a kind of 
contract. It states the number and type of inputs, and basically 
guarantees that a particular type of output will be returned given 
those types of inputs, but says "all bets are off" if the types of 
the inputs are incorrect. 
Note that it does not guarantee that the correct answer is 
returned, only that the correct type of answer will be returned. 
Many languages require that the programmer explicitly state 
this contract. In strongly typed languages, the programmer 
must specify at time of definition the types of inputs and the 
type of output. This allows the system to catch errors and help 
the programmer with debugging but restricts the flexibility of 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

the procedures. Scheme is a weakly typed language, meaning that the programmer does not specify the types of 
inputs and outputs. Thus, errors will not be caught until run-time, which can make debugging harder, but the 
programmer tends to have more flexibility in creating procedures. Even in a weakly typed language, a good 
programmer will take advantage of the discipline of type analysis. 

Slide 6.1.11 
More formally, we see that a type actually describes many 
procedures, basically any procedure that maps the specified 
number and type of inputs to the specified type of output. 
We also see that not only does every Scheme value have a type, 
but that in some cases, a value may be described by several 
types (for example an integer is also a kind of number). When 
this happens, we will typically choose the type which describes 
the largest set of objects as our designated type. Thus, for 
example, addition maps two integers to an integer, but it also 
maps two numbers (including real numbers) to a number, so we 
would use this latter type as our specification for addition. 
Finally, note that some special forms do not name values, and 
hence do not have a type associated with them. 

Slide 6.1.12 
Let's see if you are getting this. Here are three example 
expressions. If evaluate each of them, you will get some 
Scheme object, and you should be able to reason through to 
determine the type of that returned value. When you are ready 
to see the answers, go to the next slide. 

Slide 6.1.13 
We know that the type of the first expression should be a 
procedure, since we know that lambda will create a procedure. 
We also know that the number of arguments for this procedure 
is 3. In terms of the types of the arguments, we can see that the 
first one must be a number, since greater than expects a number 
as argument. The other two arguments must also be numbers, 
since they are used with procedures that take numbers as input. 
Finally, the value returned by this procedure is a number, since 
both the consequent and the alternative clauses of the if 
expression return numbers. Hence, we have the type declaration 
shown here, a procedure that maps three numbers to a number. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.1.14 
For the second example, we also know it is a procedure, due to 
the lambda. For the input argument, we can see that it must be 
an expression whose value is a boolean, since if expects such 

a value as the value of its predicate. The return value of this 
procedure must be a string, since both the consequent and 
alternative clauses return strings. 

Slide 6.1.15 
And of course the last expression is just an expression whose 
type is a number. 

Slide 6.1.16 
So to summarize: a type is a set of values that characterizes a 
set of things that belong together, due to common behavior. 
And virtually every expression in Scheme has a value that has a 
type associated with it. 
Of particular interest to us are procedures, which we can also 
type, based on the number and type of arguments, and the type 
of the returned value. 
As we are going to see, types provide a very nice mathematical 
framework for reasoning about programs. First, they can 
provide a basis for preventing common errors in our code: if we 
know that a procedure expects a particular type of argument we 
can use this to ensure that other procedures or expressions 

supply the correct kind of input. Second, we are about to see how types of procedures can serve as a key tool in 
helping us design other procedures, by providing a framework for understanding how values are passed between 
procedures. In the rest of this lecture, we are going to use this idea to explore how we can create complex, but 
powerful, procedures that manipulate a wide range of information beyond simple numbers. 

6.001 Notes: Section 6.2




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.2.1 
So why bother with types? We are going to see that they are 
very useful in helping us reason about procedures, to catch 
errors and to deduce what kinds of inputs and outputs different 
procedures that we create must have. 
In the rest of this lecture, we are going to explore how we can 
capture complex patterns in procedures, using types to help us 
reason things through. 
To do this, let's go back to the basic idea of a procedure, which 
was to capture some common pattern of computation. For 
example, here are three expressions that have a common 
pattern, that of multiplying a value by itself. We know that this 
is a common pattern, and we would like to be able to refer to it 
using a name. To do this, we first need to capture this pattern of computation in a procedure abstraction. 

Slide 6.2.2 
... and here is how we do that. We create a lambda, with a formal 
parameter to capture the part of the expression that can change, 
and with a body that actually specifies the common pattern, using 
the formal parameter as a place holder for input values. The key 
point is that this lambda expression captures that common pattern 
so that we can reuse it many times. 

Slide 6.2.3 
Once we have captured that common pattern, we want to be able 
to refer to it, so we give a name to the procedure. 

Slide 6.2.4 
And note that now we can specify the type of this procedure, in 
this case a procedure that takes a single number as input, and 
returns a number as its value. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.2.5 
So the key idea in procedure abstraction is to capture a common 
pattern, give it a name, then use that name as if it were a primitive 
operation, without having to worry about the details of how that 
concept is computed. Thus, for example, we now have the notion 
of squaring, and we can use square as if it were a basic operation. 
Let's take the idea of capturing common patterns and push on it. 
Here are three expressions from mathematics, adding up the 
integers, adding up the square of the integers (notice that we have 
used the concept of squaring here as a primitive) and adding up 
the recipricals of the odd squares. Note that the last expression is 
interesting, as it gives us a pretty good approximation to pi. 

Slide 6.2.6 
We can easily write procedures to compute these expressions. 
Each has the form we expect. For example, the first procedure has 
a nice recursive structure in which we add the value of the input 
parameter a to whatever we get by summing the rest of the 
integers from a+1 to b. The other procedures similarly use the 
idea of reducing a problem to a simpler version of the same 
problem, plus a simple operation. Notice how we have already 
incorporated the abstraction of square, burying the details of how 
it is computed behind the procedural abstraction we just built. 

Slide 6.2.7 
If we stop here, however, we haven't quite captured all of the 
common pattern here. In particular, each of these three 
mathematical expressions is a summation, that is, a pattern in 
which we add up a series of values, starting from some specified 
point, ending at some specified point, with some method of 
incrementing our place, and with some particular thing that we 
"sum" at each stage. In fact, the mathematicians have notation for 
this, the summation notation shown. 
Note that this is more than just a convenient notation. The idea of 
summation is a general pattern that we would like to capture, the 
same way the mathematicians have. 

Slide 6.2.8 
If we look at our procedures, we can see that there clearly is a 
common pattern to them. Here are highlights for the two things 
that are different in these procedures. There is the term that we 
add at each stage, shown in red, and there is the way in which we 
move to the next value in the sequence, shown in green. 
Now, how did we go from (* 2 2) or (* a a) to the idea of 
squaring? We gave a name to each part of the pattern that was 
going to have to change, and we capture the pattern in a 
procedure using that parameter. Let's do the same thing here. We 
will need a parameter for the term to be added in, a parameter for 
the next stage in the procedure, and of course the two existing 
parameters, a and b. Let's now capture the commonality of this 

computation in a procedure that uses these parameters. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.2.9 
So here is the procedure, with those four parameters. All I have 
done is substitute the formal parameter for the right spot in the 
pattern of the computation, which forms the body of this 
procedure. But this looks a little different from things we have 
seen before so let's look more carefully at this in the next slide. 

Slide 6.2.10 
Up to this point, every procedure we have written has expected a 
primitive object as a parameter, typically a number. This 
procedure is different, however. We can see from where the 
parameters term and next appear in the body of the procedure 
that this procedure expects these parameters to be themselves 
procedures! 
Does this really work? Well, what is the type of this procedure? 

Slide 6.2.11 
By using the same kind of reasoning we did earlier, we can see 
that this procedure requires four input parameters, and the output 
value must be a numbers, since both clauses of the if expression 
should return a number. 

Slide 6.2.12 
And what are the inputs? Well, the first parameter is used in a 
place that expects a procedure. That procedure has one input that 
we will shortly see is a number, and it must produce a number as 
output, as that value will be used by the addition operation. The 
second parameter we can see must be a number, since we are 
going to use the greater than operation on it. Thus, we see the 
formalism for the first two inputs to sum, a procedure mapping 
numbers to numbers, and a number. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.2.13 
The same reasoning helps us deduce the form for the third 
parameter (a procedure mapping numbers to numbers) for the 
fourth parameter (a number). 

Slide 6.2.14 
... and overall this procedure, sum, will return a number, since 
both clauses of the if expression that forms the body of the 
procedure must return a number. 
Thus we can characterize the type of this new procedure, sum. It 
just happens that some of the parameters for this procedure are 
themselves procedures! 

Slide 6.2.15 
So this is a new kind of beast, which we call a higher order 
procedure. It is a procedure that takes as inputs other procedures, 
and it may, as we will see, also return a procedure as its returned 
value. 
Note that those input procedures may be named procedures, like 
square, or they may be pure lambda expressions. In either 
case, we know that the value of the expression will be a procedure 
object that can then be substituted into the body of sum. 
And now we see that we have captured the common pattern of 
summation, and that our three earlier expressions are just special 
versions of this general computation. 
Does this really work? Well, just use the substitution model to 
check that procedures get substituted in the right places in the body of sum and that as a consequence the three 
expressions shown here will compute the appropriate series of terms. 

6.001 Notes: Section 6.3 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.3.1 
So we have now seen how procedures can be passed in as 
arguments to other procedures. But we can also have 
procedures return procedures as values. Where might that be 
useful? 
Well here is a simple mathematical example. What is a 
derivative? First, we know that given some function f, such as 
the two shown here, there are standard rules for finding the 
derivative of f, which we denote Df, as shown. 
We can easily write down a procedure to compute f, but what is 
D? In particular, can we write a single procedure for D that 
would take the derivative of any function? 

Slide 6.3.2 
So what do we know about this beast? Well, it needs to map a 
function to another function, or said slightly differently, it needs 
to take as input any procedure that represents a numerical 
function, and it needs to return a procedure with the property 
that applying that returned procedure to any value will give us a 
good approximation to the derivative of the original function at 
that value. 
Numerically, the equation shown will do a decent job for us. 

Slide 6.3.3 
So how do we then capture the idea of D? Well, here it is. 

Look carefully at the form. Deriv takes one argument, which we 

see must be a procedure of one numerical argument. Inside the 

body of the lambda associated with deriv is a second lambda. 

This is also a procedure of one numerical argument, that returns 

a numerical value. 

So the type of this procedure is as shown. 


Slide 6.3.4 
Now does this make sense? Sure. 

Suppose we define square as shown, and we take the derivative. 

Notice the nested parentheses: the first compound 

subexpression should return a procedure as a value, for this to 

make sense. And to see that it does, use the substitution model. 

We substitute the value of square everywhere in the body of 

deriv that we see the formal parameter f. The mess that we get 

does exactly that. 

Now, if we complete the process, we substitute 5 for x, which 

reduces to an expression similar to those we have seen before. 

So we see that this kind of higher order procedure also has a 




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

valuable role. 

6.001 Notes: Section 6.4 

Slide 6.4.1 
Now, let's see how we can use "higher order procedures" on 
data structures. Remember our lists from before. We saw that 
there were common patterns for using lists, especially creating 
new lists out of old ones. In particular, we had the idea of 
generating a list, consing it up as we move down another list. 
We can generalize that idea, so that instead of just making a 
copy of a list, I do something to each element of the list as I 
make the copy. 
For example, each of these procedures takes a list as input and 
generates a new list, transforming each element in a fixed way. 
The first example squares each element of the input list, the 
second one doubles each element of the list. 
Notice the form is very similar to our append example. We walk down the input list one element at a time, 
however here we actually apply some procedure to the element before adjoining it to the output. Note how the 
procedures use the selectors and constructors of the data abstraction to extract elements and create elements, and 
how the recursive structure of the procedure reflects the recursive structure of the data abstraction. 

Slide 6.4.2 
Clearly there is a pattern here: we take a list as input, walk 
down it an element at a time, do something to each element, 
and construct a new list of the results. Because there is a 
common pattern, we can capture it as a procedural abstraction. 
Map is that general pattern. It is a higher order procedure that 
takes as input both a list and a procedure, and simply applies 
the procedure to each element of the old list to create the 
corresponding element of the new list. As a consequence, we 
can easily capture the two examples as instances of map, and 
map forms a very common interface for manipulating lists. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.4.3 
Note that in all the previous examples, and indeed for any 
example using map, the length of the output list is the same as 
the length of the input list. For each element of the input list, I 
do some process and create a corresponding element of the 
output list. But what if I want a list as output that is different in 
length, in particular, a list that has corresponding elements for 
only some of the elements of the input list? 
For that, we have another conventional interface, called a filter. 
Much like a coffee filter, a filter will only let some elements of 
the input list through. As before, we recursively walk along the 
list. If the list is empty, we just return an empty list, to 
guarantee that the result is a list. Otherwise, we apply a 
predicate to the first element of the list. Note that pred must be a procedure that returns a boolean as output, and 
hence filter must be a higher order procedure. If the result of applying the predicate to the element is true, we 

adjoin a copy of the element onto the output list, otherwise we move on to the next element. 

Slide 6.4.4 
Finally, suppose we want to gather the elements of the list 
together into a new value, rather than creating a list as output. 
For example, we might want to add up all the elements of a list, 
or multiply them together. Here, we could just recursively walk 
down the list, adding the first element of the list to whatever we 
get by recursively doing the same thing to the rest of the list 
(there is that nice recursion property again!). Of course, we 
have to be careful about what we return when we reach the 
empty list. For addition, we add in a 0, for multiplication we 
return a 1. 
Here are two common patterns for converting lists to numbers, 

and as before we should be able to capture this common pattern. 

Slide 6.4.5 
... and here is the generalization, a third standard operation on 
lists called fold-right. 
Notice its form: it has three arguments, a procedure op, an 
initial value init and a list lst. It's structure is to return the initial 
value, if the list is empty, otherwise it returns the value of 
applying the operator procedure to the first element of the list, 
and whatever we get by reducing the remainder of the list. 
Notice the nice use of closure and the recursive structure of the 
lists and procedure to unwrap this procedure into a simpler 
version of the same problem. 
These common interfaces, by the way, are very powerful ways 
of dealing with sequences of data. They can be applied not only 
to sequences of numbers, but to sequences of other structures, and we will see that many operations of such 
structures reduce to combinations of map, filter and fold-right. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.4.6 
To see how we can use these ideas, let’s go back to the idea of 
summation, but now for sums of a particular form. Suppose we 
want to add up the values of a function at a regularly spaced set 
of intervals. The mathematical expression captures this idea, 
for n+1 regularly spaced samples, each delta apart, starting at 
some point a. 

Slide 6.4.7 
Well, we can easily capture this idea using our notions of 
operations over lists. To generate a list of integers, we can 
create a procedure, generate-interval, that cons’es up a list. 
Given the set of integers between 0 and n, which we can create 
using this procedure, we can “map” a procedure down that list, 
computing the function f applied to sample points: note how we 
multiply each term in the integer list by a constant (inc), then 
add an offset (start) to reflect the general formula. This creates 
a new list, of samples of f applied to a set of points. To add 
them up, we “fold” them together. 
So we see that we can combine our idea of higher order 
procedures on numbers with higher order procedures that 
operate over data structures. 

6.001 Notes: Section 6.5 

Slide 6.5.1 
Let's stop to stress an important point. Why are higher order 
procedures useful? It is not just to make writing easier. Instead, 
higher order procedures tremendously increase the expressive 
power in our language. They form building blocks that suppress 
unnecessary detail inside of units that we can treat as 
primitives, thus allowing us to build more complex structures 
out of units that themselves may be complex structures. 
To stress this idea, let's take the concept of sum which we just 
captured as a higher order procedure, and let's see what we can 
do if we treat sum as a primitive procedure, a primitive building 
block for other procedures. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.5.2 
Remember from calculus that integration is just the idea of 
summation. That is, to integrate a function f, we take the area of 
a set of rectangles that approximate the area under f, and this is 
just a sum of a set of values, all scaled by the width of the 
rectangles. 

Slide 6.5.3 
That is just shown here. 

Slide 6.5.4 
To capture the idea of integration, we just build on the idea of 
summation. In particular, we can reduce integration to a simpler 
problem, that of summation. Thus we simply sum f from a to b. 
Note the use of f as a parameter for the term to be added. We 
use the number of terms in the summation (or the number of 
sample points) to determine the increment delta to add at each 
stage 
Note that the inputs to sum are all of the expected type. And 
sum we know returns a number, so we can complete the 
process by multiplying this number by the number delta. 
Clearly as we increase n, the number of terms in the 

summation, we get a better approximation to the integral 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.5.5 
And once I have the idea of integration, I again can treat this as 
an abstraction. For example, I can use the fact that inverse 
trigonometric functions are described as integrals, and thus by 
building on the idea of integration, I can easily compute the 
inverse tangent function. 

Slide 6.5.6 
The point is that by capturing common patterns of computation, 
whose parameters may themselves be patterns of computation, 
we can quickly abstract out complex operations without getting 
lost in the details. 

Slide 6.5.7 
Notice how we have generalized things. We have moved 
functions that mapped numbers to numbers, to more general 
methods that work independent of the function. For example, 
integral is a procedure that takes any function as input, instead 
of just a number, and produces a number as output. 
Let's turn to other ways of capturing common patterns in higher 
order procedures. Let's go back to square root, but think about it 
a different way. One way to think about the process of square 
root is to note that the square root of x is defined as the value 
that is equal to x divided by the same value. 
If we think of the transformation that maps values of y into the 
ratio of x over y, then we can see that if we can somehow find a 
value for y that is the actual square root of x, then the value of f applied to that y will be equal to its input. Such a 
point is called a fixed point, a point at which the transformation f has the same input and output value. 
This suggests another way of finding square roots, namely to see if we can find a guess for the input to f that 
happens to be a fixed point of f, for this particular f, or in other words, see if we can find fixed points of a function. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.5.8 
Here is a good way to find fixed points. Given a guess, evaluate 
f of that guess, then f of the result, then f of that result, until we 
get a guess that is good enough. 

Slide 6.5.9 
That has a familiar ring to it, as it sounds somewhat like what 
we did in the earlier lecture when we talked about square roots. 
The procedure fixed-point has two parameters, a 

procedure f and a guess. In the body of fixed-point, 

we use the auxiliary procedure try. This procedure takes a 

guess as input, and checks to see if the value of the input 
procedure applied to that guess is close to guess, i.e. if it is a 
fixed point. If it is not, then we "try" again, using the value of 
f(guess) as our next guess. 
Notice the nice recursive structure to try, which is itself a 

higher order procedure, since it finds fixed points for any 
procedure that maps numbers to numbers. 

Slide 6.5.10 
Given that I have captured the idea of a fixed point in a 
procedure, I can now use it as an abstraction. For example, the 
golden ratio is defined as that value x that is equal to 1 + 1/x, 
and thus by using fixed-point with the appropriate input 
procedure, I can compute that value. The point is that by 
capturing the idea of a fixed point, I can abstract away the 
details of the computation and just use the concept itself as a 
black box abstraction. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.5.11 
But to get back to our square root idea, we can now easily 
compute square root, by using the concept of fixed points. In 
this case, we just find the fixed point of the procedure that maps 
values of y to x/y. Notice how fixed-point takes as input a 
procedure and a number, and returns a number as value, 
capturing that higher order computational pattern. 
Also notice how crisply we have captured the computation of 
square root. It is simply reduced to the concept of a fixed point 
of an appropriate function. 

Slide 6.5.12 
If we go ahead and use this procedure, we unfortunately 
discover that while the definition captures the concept of a 
square root, the actual computation doesn't quite do the right 
thing. Since we start the fixed point computation off with an 
initial value of 1, it's next guess will be 2, as you can see by 
looking back at the code for try. And thus it's next guess will 

be 1, and the process will simply oscillate between these two 
values. 

Slide 6.5.13 
So I have a problem, but it is not a coding problem, rather it is a 
conceptual problem. Since I have an undamped oscillation here, 
I need to damp it down, similar to what you've seen in physics 
courses. 
One nice way to damp down an oscillation is to take the 
function that is oscillating, and average it with its input. In other 
words, for any function f, we can get a new function that is the 
average of an input value x and f applied to that input value. 
Here is a procedure that captures this idea, but notice its form. It 
takes as input a procedure that maps numbers to numbers, much 
like what we have seen before. But it produces as output a 
procedure! Thus, average-damp produces a function 

that can be applied to any input value. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.5.14 
So here is the type of this procedure, demonstrating that it is a 
new kind of higher order procedure. 

Slide 6.5.15 
Does this really work? Well, let's just try it using our 
substitution model. I am going to evaluate an average damp of 
square on the value 5. Notice that the first subexpression of this 
expression is itself a compound expression, something we 
haven't seen before. By but our type discussion, this should be 
right, since we expect that value of the subexpression to be a 
procedure. Indeed, if I substitute the value of square (which we 
know is a procedure but for convenience we will just use the 
primitive name here) into the body of average-damp in place of 
the formal parameter x, we just get the second expression. 
Notice how this body is a lambda expression, but this is just 
what we need, as evaluating that lambda expression will give us a procedure. 
In fact, we know by the substitution model that this second expression reduces to the body of the lambda, with the 
value 5 substituted for the formal parameter, leading to the third expression, and that now is simply a procedure 
applied to two numbers (since we know that square maps numbers to numbers), giving us what we expect. 
Thus, by our substitution model, this works quite nicely, as average damp takes a procedure as input and produces 
an appropriate procedure as output. 

Slide 6.5.16 
And this just brings us back to square roots. We can fix our 
problem by finding the fixed point of the average damp of our 
original procedure. 
The key things to notice are how average-damp cleanly 
isolates the problem of damping from the problem of fixed 
points, and how average-damp nicely satisfies the type 
contract for fixed point, that is, it takes a procedure as input, 
and produces a procedure as output, exactly forming the type of 
input needed by fixed-point. 
Why is this useful? Well compare this code to the algorithm in 
the textbook (or the one we talked about earlier). This is exactly 
the same process, but now the ideas underlying the process 

have been cleanly separated into appropriate computational pieces, a fixed point process and a damping process. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.5.17 
... and why is this relevant? Well, suppose I also want to 
compute cube roots. Given the separation I have made, this is 
easy. I just compute a fixed point of an average damp of a 
different function. 
On the other hand, if I were to go back to Heron of Alexandria's 
algorithm for square roots, I would have to change a lot of 
different things in the code, and this leaves lots of opportunity 
for coding errors. 
Thus, these higher order procedures nicely capture patterns of 
computation, while suppressing unnecessary detail. This makes 
it easier for the programmer to focus on the problem of interest, 
without getting lost in the details of the code itself. 

6.001 Notes: Section 6.6 

Slide 6.6.1 
So we have introduced an interesting new concept in this 
lecture, the idea of a higher order procedure. Our goal was to 
show how we could capture common patterns in a procedure, 
where those patterns might be over numbers, or over procedures 
or processes themselves. By doing this, we isolate the 
computational pattern or process from the details of the process 
itself, thus making it easier to create new computational 
processes. 
Let's revisit this idea of higher order procedures again, to 
reinforce the main elements. Remember that a higher order 
procedure is a procedure that either takes procedures as input, 
or produces a procedure as output. 
Here is a simple example. Note that by the rules of evaluation, we know that f must be a procedure that maps 
numbers to numbers, given how it is used in the body of the lambda. And we also know that we can apply hop1 to 
names for procedures or to pure lambda expressions that return procedures as values. Our substitution model 
demonstrates that this defines a correct process. 

Slide 6.6.2 
And what is the type of hop1? By looking at where x is used in 
the body, we know it must be a number, since addition is applied 
to it. We also know that f must be a procedure since it is used as 
the first subexpression of a combination. Moreover, it must be a 
procedure of one argument, a number, since addition produces a 
number, and it must return a number, since its value will be used 
by addition again. And finally, the whole procedure we know will 
produce a number as output, since the result of the outermost 
addition operation is the value of the body. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.6.3 
So here is the encapsulation of that analysis. 

Slide 6.6.4 
And this nicely demonstrates several key points. First, we see 
how reasoning about types of objects allows us to deduce the 
values of expressions, and thus how we can use that analysis to 
help us design procedures to capture particular patterns. 
Second, we see how capture common patterns, now across 
procedures rather than just numbers, allows us to treat complex 
things as primitives, suppressing detail and focusing on the 
computation itself. 

Slide 6.6.5 
Here is a more interesting higher order procedure. It takes as input 
two procedures, and applies the first procedure to the result of 
applying the second procedure to some argument. Notice how the 
trace of the substitution model nicely demonstrates the evolution 
of the process captured by compose. 

Slide 6.6.6 
So what is the type of compose? By our example, it would seem 
that it should be of the form shown here. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.6.7 
But wait! Is there anything that says compose requires a number? 
In fact, if we look at the body of compose we see that nowhere is 
there a procedure application that shows that x must be a number, 
and thus, nothing says that f or g have to be procedures on 
numbers either! Thus, compose is much more general. 

Slide 6.6.8 
In fact, compose works perfectly well on other kinds of 
procedures as shown here. 

Slide 6.6.9 
I can use types to help me reason through why this works. I am 
going to apply the second procedure to the third argument as the 
innermost expression in the body of compose. Since the third 
argument is a number, I need the second argument to be a 
procedure that applies to numbers, as this one does. Now, this 
particular procedure produces a boolean as output, so I need the 
first argument to be a procedure that takes booleans as input. This 
one does, and returns a string as output, thus I can see that the 
output of the whole expression will be a string as well. 

Slide 6.6.10 
Now, while compose is more general than just procedures on 
numbers, it doesn't work on everything. Here are two examples 
that fail. In the first case, the parameter f will be applied to the 
wrong number of arguments, and in the second case, we try to 
apply the parameter g to the wrong kind of argument. 
So how do we use types to figure out the right way to use 
compose? 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 6.6.11 
Well, let's go back to our earlier analysis, but be a bit more 
general. We know that the parameter x can be of any type, so 
rather than declaring a specific type, we'll just use a variable to 
represent that type, call it C. 
Then we can see that the parameter g must be a procedure of one 
argument, whose type must match that of its input, hence must be 
of type C again. This procedure can return any type as its output, 
so let's call that type A, thus the second parameter of compose 
must be a mapping of type C to type A. 
By the same reasoning, we get the type of the first parameter of 
compose. And since the result of compose is the result of that 
parameter, the output type of compose must match the output 
type of f. 

Slide 6.6.12 
To summarize, we have looked at the idea of capturing common 
patterns, where those patterns may over operations on numbers, 
or more generally over operations on operations themselves. This 
led to the idea of higher order procedures as a powerful tool for 
capturing complex processes and treating them as primitive 
building blocks. 
We also saw that by using types to reason about objects and about 
procedures applied to objects, we can analyze the evolution of a 
process, deciding what kinds of inputs are required for each stage 
of the computation. 


	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved


