
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 4.1 

Slide 4.1.1 
In this lecture, we are going to take a careful look at the kinds 
of procedures we can build. We will first go back to look very 
carefully at the substitution model, to see how the rules for 
evaluation help us determine the evolution of a process 
controlled by a procedure. We will then see how different kinds 
of process evolution can occur, with different demands in terms 
of computational resources. And we will see how to 
characterize those differences formally in terms of orders of 
growth of a process. Finally, we will explore examples of 
procedures from different classes of growth, helping you to 
begin to relate how choices in procedure design may affect 
performance of the actual use of the procedure. 

Slide 4.1.2 
Now that we have seen two different implementations of the 
same idea, with different behaviors, we need a way of more 
formally characterizing why that difference occurs. To do that, 
we are going to go back to our substitution model. 
Now we are going to think of our model as a set of rewrite 
rules, that is, as a set of rules that formally specify, given an 
expression of a particular form, rewrite it in the following form. 

Slide 4.1.3 
So elementary expressions in this viewpoint are just "left 
alone", that is, numbers, names of built-in procedures, and 
lambda expressions are left as is. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.4 
If our expression is a name that we created ourselves, we will 
rewrite in place of it the value that was associated with that 
name during the definition. 

Slide 4.1.5 
For the special form if we use the rule we just saw. We 

evaluate the predicate clause, and based on its value, we either 
rewrite the if expression by its consequent or its alternative. 

Slide 4.1.6 
And finally: combinations. We use the rule that we first 
evaluate the operator expression to get the procedure, and we 
evaluate the operands to get the set of arguments. If we have a 
primitive procedure, we are just going to “do the right thing”. 
Otherwise we are going to replace this entire expression with 
the body of the compound expression, with the arguments 
substituted for their associated parameters. 

Slide 4.1.7 
Given that model, we can more formally capture the evolution 
of a process. We can talk about the order of growth of a process 
as these rewrite rules evolve. This measures how much of a 
particular resource a process is going to take as these rules 
evolve, where typically we measure either space or time as the 
resource. 
More formally, let n be a parameter that measures the size of 
the problem of interest. In the case of factorial, this would be 
the size of the input argument. We let R(n) denote the amount 
of resources we will need to solve a problem of this size, where 
as noted, the resources are usually space and time. We are 
interested in characterizing R(n) for large values of N, that is, in 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

the asymptotic limit. We say that R(n) has order of growth, Theta of f of n if we can find a function f(n) that is 
roughly of the same order as the needed resource, where the more formal definition is shown in the 

Slide 4.1.8 
In more common terms, this says that when measuring the 
amount of space we need, we want to find a function that 
measures the number of deferred operations, as a function of the 
size of the problem, up to a constant factor. For measuring the 
amount of time, we want to find a function that measures the 
number of basic or primitive steps that the rewrite rules go 
through, again as a function of the size of the problem. 

Slide 4.1.9 
So let's use our rewrite rule idea, together with this notion of 
measuring the amount of resource we need as an order of 
growth in the size of the problem. Here is our recursive factorial 
procedure ... 

Slide 4.1.10 
..and here is a partial trace of fact using those rewrite rules. 

We start with (fact 4). That reduces to evaluating an if 
expression. Since the predicate is not true, this reduces to 
evaluating the alternative statement, which is a combination of 
a multiplication and another evaluation of fact. 
Notice how the orange colored lines capture the evolution of the 
rewrite rules. Note how (fact 4) reduces to a deferred operation 
and an evaluation of (fact 3) and this further reduces to another 
deferred operation and a subsequent call to fact. Notice the 
shape of this process: it grows out with a set of deferred 
operations until it reaches a base case, and then it contracts back 

in, completing each deferred operation. Using this, we can see that the amount of space grows linearly with the 
size of the argument. That is, with each increase in the argument size, I add a constant amount of space 
requirement. In terms of the number of operations, we can see that we basically need twice as many steps as the 
size of the problem, one to expand out, and one to reduce back down. This is also a linear growth, since the 
constant 2 does not change with problem size. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.11 
And let's compare that our iterative factorial. Here is our code 
again, and here is a partial trace of the rewrite evolution of that 
process. 
Here we see the different shape of the process, and our order of 
growth analysis captures that difference. In particular, there are 
no deferred operations, and you can see that the maximum 
amount of space I need at any stage, that is, the maximum 
amount of space used by any rewrite, is independent of the size 
of the problem. We say that it is constant, as it does not grow 
with n. In terms of time, there is basically one operation for 
each increment in the argument, so this is again a linear order 
of growth. 

Slide 4.1.12 
So we can formally capture this, as shown. Fact has linear 

growth in space, written as shown, because the maximum 
amount of space needed by any rewrite stage is a linear multiple 
of the size of the argument. It also has linear growth in time, 
because as we saw it takes a number of basic steps that is also a 
linear multiple of the size of the argument. 

Slide 4.1.13 
On the other hand, iterative-fact has no deferred 

operations, and is constant in space, written as shown, while as 
we argued, the time order of growth is linear. Notice that the 
fact that the recursive version took 2n steps and the iterative 
version took n steps doesn't matter in terms of order of growth. 
Both are said to be linear. 
Thus we see that we can formally characterize the difference 
between these two processes, which have different shapes of 
evolution. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.1.14 
So why have we done this? The primary goal is to allow you to 
start to recognize different kinds of behaviors, and the 
associated procedure forms that give rise to those behaviors. 
This will start to allow you to work backwards, in designing a 
procedure, by enabling you to visualize the consequences of 
performing a computation in different ways. 

6.001 Notes: Section 4.2 

Slide 4.2.1 
Having seen two different kinds of processes, one linear, and 
one constant, we want to fill out our repertoire of processes, by 
looking at other kinds of processes. The next one is an example 
of an exponential process, and deals with a classic function 
called Fibonacci. Its definition is that if its argument is 0, its 
value is 0, if its argument is 1, its value is 1, and for all other 
positive integer arguments, its value is the sum of its values for 
the two preceding arguments. 
We would like to write a procedure to compute Fibonacci, and 
in particular see how it gives rise to a different kind of 
behavior. 

Slide 4.2.2 
To solve this problem, let's use our tool of wishful thinking. 
Here, that wishful thinking says, let's assume that given an 
argument n, we know how to solve Fibonacci for any smaller 
sized argument. Using that idea, we can then work out a 
solution to the problem. With this in hand, it is clear that the 
solution to the general problem is just to solve two smaller 
sized problems, then just add the results together. Note that in 
this case we are using wishful thinking twice, not once, as in 
our previous examples. 
Here is a procedure that captures this idea. 
First, we introduce a new expression, called a cond 

expression. Cond uses the following rules of evaluation. The cond consists of a set of clauses, each of which 

has within it, a predicate clause, and one or more subsequent expressions. Cond proceeds by first evaluating the 

predicate of the first clause, in this case (= n 0). If it is true, then we evaluate in turn each of the other 

expressions in this clause, returning the value of the last one as the value of the whole cond. In the case of the 

first clause of this cond that is the expression 0. If the predicate of the first clause is false, we move to the next 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

clause of the cond and repeat the process. This continues for however many clauses are contained in the cond 
until either a true predicate is reached, or we reach a clause with the special keyword else. In this latter case, 

that predicate is treated as true, and the subsequent expressions are evaluated. 
Given that form for cond, we can see how our fibonacci procedure captures the idea we expressed. We 

keep recursively solving smaller sized problems until we get to a base case. Notice that here we have two base 
cases, not one. 
Also notice that while this is a recursive procedure, it is different from our earlier ones. Here, there are two 
recursive calls to the procedure in the body, rather than just one. Our question is whether this leads to a different 
kind of behavior, or a different order of growth. 

Slide 4.2.3 
This does give rise to a different kind of behavior, which we 
can easily see with the illustrated diagram. To solve a problem 
of size 4, notice that we have to solve two problems, one of size 
3 and one of size 2, and each of these requires solving two 
smaller problems, and so on. 
This gives rise to a kind of tree of things we have to do, and 
each recursive call gives rise to two subproblems of smaller 
size. This leads to a different order of growth. 

Slide 4.2.4 
To measure the order of growth, let's let t of n denote the 
number of time steps we need to solve a problem of size n. 
From our tree, we see that to do this, we need to solve a 
problem of size n-1, and a problem of size n-2. We could 
actually work out a detailed analysis of this relationship, but for 
our purposes, we can approximate this as roughly the same as 
solving two problems of size n-2. Expanding a step further, this 
is roughly the same as solving 4 problems of size n-4 and 
roughly the same as solving 8 problems of size n-6. A little 
math shows that in general this reduces to 2 to the power of n/2 
steps. 

This is an example of an exponential order of growth, and this 
is very different from what we saw earlier. To convince yourself of this, assume that each step takes one second, 
and see how much time it would take for an exponential process as compared to a linear one, as n gets large. 
In terms of space, our tree shows us that we have basically one deferred operation for step, or in other words, the 
maximum depth of that tree is linear in the size of the problem, and the maximum depth exactly captures the 
maximum number of deferred operations. 

6.001 Notes: Section 4.3




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.1 
Let's take another quick look at how we can create procedures 
with different orders of growth to compute the same function. 
As a specific example, suppose we want to compute 
exponentials, such as a raised to the b power, but to do so only 

using the simpler operations of multiplication and addition. 
How might we use the tools we have been developing to 
accomplish this? 

Slide 4.3.2 
So, recall the stages we used to solve problems like this: we 
will use some wishful thinking to assume that solutions to 
simpler versions of the problem exist; we will then decompose 
the problem into a simpler version of the same problem, plus 
some other simple operations, and we will use this to construct 
a solution to the more general problem; and finally, we will 
determine the smallest sized subproblem into which we want to 
do decomposition. Let's look at using these tools on the 
problem of exponentiation. 

Slide 4.3.3 
Wishful thinking is our tool for using induction. It says, let's 
assume that some procedure my-expt exists, so that we can 

use it, but that it only solves smaller versions of the same 
problem. 

Slide 4.3.4 
Given that assumption, we can then turn to the tricky part, 

which is determining how to decompose the problem into a 

simpler version of the same problem. 

Here is one method: Notice that a to the power b

mathematically is just b products of a. But this we can also 


group as a times b-1 products of a, and that latter we 


recognize as a smaller version of the same exponentiation 

problem. Thus, we can reduce a to the bth power as a times a 
to the b-1st power. Thus we can reduce the problem to a 

simpler version of the same problem, together with some simple 
operations, in this case, an additional multiplication. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.5 
Given that idea, here is the start of our procedure for my­
expt. Notice how it recursively uses my-expt to solve 

the subproblem, then multiplies the result by a to get the full 

solution. 

Slide 4.3.6 
Of course, as stated, that procedure will fail, as it will recurse 
indefinitely. To stop unwinding into simpler versions of the 
same problem, we need to find a smallest size subproblem. 
Here, that is easy. Anything to the 0th power is just 1! 

Slide 4.3.7 
And thus we can add our base case to our procedure, creating 
the same kind of procedure we saw earlier for factorial. 

Note how the base case will stop unwinding the computation 
into simpler cases. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.8 
You could run the substitution model on this procedure to both 
verify that it works, and to determine its growth pattern. 
However, the form is very familiar, and we can thus deduce by 
comparison to factorial that this procedure has linear 

growth in both space and time. The time is easy to see: there is 
one additional step for each increment in the size of the 
argument. And for space, we see that there is one deferred 
operation for each recursive call of the procedure, so we will 
stack up a linear number of such deferred operations until we 
get down to the base case, at which point we can start 
completing the deferred multiplications and gathering up the 
answer. 

Slide 4.3.9 
As we saw earlier, we expect there are other ways of creating 
procedures to solve the same problem. With factorial, we used 
the idea of a table of state variables, with update rules for 
changing the values of those variables. We should be able to do 
the same thing here. 

Slide 4.3.10 
So recall the idea of our table. We set up one column for each 
piece of information that we will need to complete a step in the 
computation, and we use one row for each such step. The idea 
here is pretty straightforward. We know that a to the bth 

power is just b successive multiplications by a. So we can just 

do the multiplication, keep track of the product accumulated so 
far, and how many multiplications we have left. Thus after one 
step, we will have a product of a and b-1 things left to do. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.11 
After the next step, we will multiply our current product by a 
and keep track of that new result, plus the fact that we have one 
less thing to do. 

Slide 4.3.12 
And this process we can continue until ... 

Slide 4.3.13 
... we reach a point where we have no further multiplies to do. 

Slide 4.3.14 
Now, what are the stages of this computation? To get the next 
value for the product, we take the current value of the product 
and the value of a, multiply together, and keep. That updates 
one of the state variables. To get the next value of counter, we 
simply subtract 1, since we have done one more of the 
multiplications. That updates the other state variable. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.3.15 
We know that when the counter gets down to zero, there are no 
more multiplications to do, so we are done. And when we get 
there, the answer is in the product column. 

Slide 4.3.16 
And finally, we see that the starting point is just that anything to 
the zeroth power is 1. 

Slide 4.3.17 
So now we can capture this in a procedure. As with 
factorial, we are going to use a helper procedure. And 

as in that case, we can see that this procedure checks for a base 
case, and if there, just returns the value of prod. Otherwise, it 

reduces the computation to a simpler version of the same 
computation, with a new value for prod and a new value for 

count, both obtained by using the update rules we just saw. 

Slide 4.3.18 
And what is the order of growth here? In time, this is still 
linear, as there is one subcomputation to perform for each 
increment in the size of b. In space, however, we again see that 

there are no deferred operations here, so this is constant. 
Thus, just as with factorial, we see that we can create 

different procedures to compute exponentiation, with different 
classes of behaviors. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 4.4 

Slide 4.4.1 
So now we have seen three very different kinds of procedures: 
ones that give rise to constant behavior, ones that give rise to 
linear growth, and ones that give rise to exponential growth. 
Let's finish up by looking at a fourth kind of procedure, with yet 
a different kind of behavior and thus a different cost in terms of 
time and space requirements. 

Slide 4.4.2 
Here the problem is that we want to compute exponentials, that 
is a to the power of b, where b is an integer, but where our 

basic primitive operations are just multiplication, addition, and 
simple tests. 

Slide 4.4.3 
As with previous algorithms, the key is to find a way to reduce 
this problem to a combination of simpler problems, either 
simpler versions of the same problem or more basic operations. 
For this problem, here is the trick I can play. If b is an even 

integer, then I can recognize that raising a to the power of b is 

the same as first square a, then raising that result to the power 

of b/2. Notice what I have done. Squaring a is just a single 

multiplication, and reducing b by 2 is a simple operation. But 

by doing this, I have reduce the size of the problem by a half. I 
have only b/2 things left to consider. Of course, notice that I 

am relying on b as an even integer here, since in that case b/2 is also an integer, and I can use the same 

machinery to solve this smaller problem. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.4.4 
But what if b is odd? In that case, the same trick won't work; as 

I would reduce the exponentiation to a problem I don't know 
how to solve. So instead I can use a different variant on wishful 
thinking, similar to our factorial case. Here, I can reduce the 
problem to multiplying a by the result of raising a to the 

power b-1, that is to a simpler, or smaller, version of the same 

problem. 

Slide 4.4.5 
Notice the effect of doing this. If b is odd, then in one step I 

reduce the problem to the case where b is even, which means in 

the next step, I reduce the problem size by half. Thus, no matter 
what value b has, after at most two steps, the problem size is 

halved, and after at most another two steps, it is halved again, 
and so on. 

Slide 4.4.6 
With those ideas, we can build the procedure shown. The cases 
clearly reflect the reasoning I just used, using one recursive 
application of the procedure for even cases, and a different one 
for odd cases. Of course, there is a base case to terminate the 
reduction of the problem to simpler versions. 
The form of this procedure is a bit different. In one case, it 
looks like an iterative call (with just a change in the parameters 
of the procedure), in the other; it looks like a recursive call 
(with a deferred operation and a reduction in parameters). Thus 
I expect that there will be some deferred operations in the 
application of this procedure, but perhaps not as many as in 

previous examples. 
But what happens in terms of time? Since I am reducing the problem in half, I would hope that this leads to better 
performance than just reducing the problem by 1. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.4.7 
So let's measure the order of growth of this procedure. Here, n 
measures the size of the problem, which means the size of the 
argument b. We know that if the argument is even, in one step 

the problem size is reduced by 2. If the argument is odd, in one 
step it is reduced by 1, making it even so that in a second step, 
it is reduced by 2. Thus in at most 2 steps, the problem size is 
cut in half. After another 2 steps, it is cut in half again, and thus 
after 2k steps, the problem is reduced by a factor of 2^k, or cut 
in half k times. 
How do we find the number of times we need to do this? We 
are done when the problem size is just 1, and that happens when 
k = log n. So this procedure has a different behavior, it is 
logarithmic. This is in fact a very efficient procedure, and to convince yourself of this, try the same trick of seeing 
how long it would take to solve a problem of different sizes, using one step per second, comparing it to a linear and 
an exponential process. 
The same kind of reasoning will show you that the space requirements also grow logarithmically with the size of 
the problem. 

Slide 4.4.8 
To summarize, we have now seen how our substitution model 
helps to explain the evolution of a process that occurs when a 
procedure is applied. Using this model, we have seen that very 
different kinds of behavior can occur, even for procedures 
computing the same abstract function, and we saw how to 
characterize those differences in terms of orders of growth in 
space and time. Already, you can see that there are different 
classes of algorithms: constant, linear, exponential, and 
logarithmic. Part of your task is to learn how to recognize the 
kinds of procedures that are associated with these different 
behaviors, and to learn how to use that knowledge in designing 

efficient procedures for particular problems. 

6.001 Notes: Section 4.5 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.5.1 
Let's take one more look at this idea of creating procedures to 
solve a problem, that have different behaviors in terms of how 
their underlying process evolves. For a different example, let’s 
look at a mathematical problem known as Pascal’s triangle. 
The elements of Pascal’s triangle are shown here. The first row 
has just a single element, the second row has two elements, the 
third row has three elements, and so on. Clearly there is a 
structure to these elements, which we need to understand. 

Slide 4.5.2 
So, let’s structure this problem a bit. Let’s order the rows, and 
enumerate them, labeling the first row n=0, the second row n=1, 
and so on (we will see that this choice of labeling leads to a 
cleaner description of the problem). Using this labeling, we 
also see that the n’th row has n+1 elements in it. Let’s use the 
notation P(j,n) to denote the j’th element of the n’th row. Our 
goal is to determine how to compute all elements of each row. 

Slide 4.5.3 
Traditionally, Pascal’s triangle is constructed by noting that the 
first and last element of each row (except the first) is a 1, and 
by noting that to get any other element in a row, we add the 
corresponding element of the previous row and its predecessor 
together. If you use this rule of thumb you can verify that this 
works by generating the first few rows of the triangle. So we 
have an informal specification of how to generate the triangle. 

Slide 4.5.4 
So we can proceed in a straightforward manner by capturing 
that idea in a procedure. Note the form: we have two base 
cases, one for when we are generating the first element of a 
row, and one for the last element of the row. 
Otherwise, we simply rely on smaller versions of the same 
computation to do the job: we compute the same element of the 
previous row, and its predecessor, and then add them together. 
You can verify that this is correct by trying some examples, 
though clearly the 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.5.5 

Slide 4.5.6 
So what kind of process does this procedure engender? Well, it 
looks a lot like our computation of Fibonacci, and that is a pretty 
good clue. Just like Fibonacci, there are two recursive calls to 
smaller versions of the same process at each stage. In fact, a 
similar analysis will show that this is process that is exponential 
in time, and linear in space. We have already suggested that 
exponential algorithms are costly. In the case of Fibonacci, we 
didn’t look for any other way of structuring the problem, but let’s 
try to do better for Pascal. 

Slide 4.5.7 
To do better, we have to go back to the original problem. A 
little information from combinatorics tells us that in actuality, 
Pascal’s triangle is capturing the number of different ways of 
choosing a set of j objects from a set of n objects (this isn’t 
obvious, by the way, so just accept this as a fact). Thus, the 
first element of a row is the number of ways of picking no 
objects, which is by definition 1. The last element of a row is 
the number of ways of picking a set of n objects from a set of n 
objects. Since the order in which we pick the objects doesn’t 
matter, there is only one size n subset of a set of size n, hence 
this element is 1. 
The general case is the number of different subsets of size j that 
can be created out of a set of size n. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.5.8 
So what is that number? 
Well, we can pick the first element by selecting any of the n 
elements of the set. 
The second element has n-1 possibilities, and so on, until we 
have picked out j objects. That product we can represent as a 
fraction of two factorial products, as you can see. 
Now, we are not quite done, because we said the order in which 
we pick the objects doesn’t matter. Using the method we just 
described, we could pick the same set of j objects in j! different 
orderings, so to get the number of distinct subsets of size j, we 
factor this out, as shown. 

Slide 4.5.9 
Now this leads to a straightforward way to compute Pascal. We 
can just rely on the factorial code that we created earlier. Here 
we use factorial three times, once for the numerator, and twice 
in the denominator. Notice how our procedural abstraction 
nicely isolates the details of fact from its use in this case, and 
the code here cleanly expresses the idea of computing Pascal 
based on factorial. 

Slide 4.5.10 
So do we do any better with this version of Pascal? 
Sure! We know that this version of fact is linear. Our Pascal 
implementation uses fact three different evaluations of fact, but 
this is still linear in time, and a similar analysis lets us conclude 
that this is linear in space as well. While it might take three 
times as long to run than just running fact, what we are 
concerned with is the general order of growth; or how these 
processes’ computational needs change with changing problem 
size, and both are linear in that change. 

Slide 4.5.11 
Well, earlier we saw that there were different ways of 
computing factorial. Suppose we use the iterative version, 
instead of the recursive one? 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 4.5.12 
The same effect takes place. Now we have a version of Pascal 
that is linear in time and constant in space, relying on the fact 
that factorial under this version is also linear in time and 
constant in space. 

Slide 4.5.13 
Finally, if the use of an iterative factorial procedure gives us 
better performance, why not just do this computation directly as 
well? By that, we mean just compute the two products: one for 
the numerator and one for the denominator, and save those 
extra multiplications that we are doing in the extra call to 
factorial. After all, we are just computing a product of terms 
that we know we are simply going to factor out. 

Slide 4.5.14 
We can do the same analysis for this version. Our help 
procedure is clearly constant in space, and linear in time. Our 
version of Pascal uses it twice, so while it does take less actual 
time than the previous version, it still has the same general 
behavior: linear in time and constant in space. Thus, in 
practical terms, this may be the best version, but theoretically it 
has the same class of behavior as our previous version. 

Slide 4.5.15
 And that leads to our concluding point. First, we stress that the 
same problem may have many different solutions, and that 
these solutions may have very different computational 
behaviors. Some problems are inherently exponential in 
nature. Others may have straightforward solutions that have 
exponential behavior, but often some additional thought can 
lead to more efficient solutions. Part of our goal is to get you to 
recognize different classes of behavior, and to learn how to use 
the properties of standard algorithms to help you design 
efficient solutions to new problems. 


	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved


