6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

6.001 Notes: Section 4.1

Slide 4.1.1

In this lecture, we are going to take a careful look at the kinds
of procedures we can build. We will first go back to look very
carefully at the substitution model, to see how the rules for
evaluation help us determine the evolution of a process
controlled by a procedure. We will then see how different kinds
of process evolution can occur, with different demands in terms
of computational resources. And we will see how to
characterize those differences formally in terms of orders of
growth of a process. Finally, we will explore examples of
procedures from different classes of growth, helping you to
begin to relate how choices in procedure design may affect
performance of the actual use of the procedure.

Slide 4.1.2

Rules for evaluation

!

Today’s topics

* Rules for evaluation
+ Orders of growth of processes
* Relating types of procedures to different orders of growth

2003 6001 SICP
1"z

q 8472003

6001 SICP

13

Slide 4.1.3

So elementary expressions in this viewpoint are just "left
alone", that is, numbers, names of built-in procedures, and
lambda expressions are left as is.

Now that we have seen two different implementations of the
same idea, with different behaviors, we need a way of more
formally characterizing why that difference occurs. To do that,
we are going to go back to our substitution model.

Now we are going to think of our model as a set of rewrite
rules, that is, as a set of rules that formally specify, given an
expression of a particular form, rewrite it in the following form.

Rules for evaluation

+ “Elementary expressions" are left alone: Elementary expressions are
+ Numerals
« initial names of primitive procedures
+ lambda expressions, naming procedures

(FMIQUUS 6001 SICP
an3

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 4.1.4

Rules for evaluation

+ Elementary expressions" are left alone: Elementary expressions are
+ Numerals
« initial names of primitive procedures
+ lambda expressions, naming procedures
« A name bound by DEFINE: Rewrite the name as the value it is
associated with by the definition

EINEUE 6001 SICP

Slide 4.1.5 _
For the special form | f we use the rule we just saw. We

evaluate the predicate clause, and based on its value, we either
rewrite the i T expression by its consequent or its alternative.

If our expression is a name that we created ourselves, we will
rewrite in place of it the value that was associated with that
name during the definition.

Rules for evaluation

+ "Elementary expressions" are left alone: Elementary expressions are
+ Numerals
- initial names of primitive procedures
+ lambda expressions, naming procedures
« A name bound by DEFINE: Rewrite the name as the value it is
associated with by the definition
- IF: If the evaluation of the predicate expression terminates in non-false
value
+ then rewrite the IF expression as the value of the consequent,
+ otherwise, rewrite the IF expression as the value of the alternative.

RiN200% 4 A001 SICP
sz

Rules for evaluation

+ “Elementary expressions” are left alone: Elementary expressions are
+ Mumerals
« initial names of primitive procedures
+ lambda expressions, naming procedures
+ Aname bound by DEFINE. Rewrite the name as the value it is
associated with by the definition
« |F: If the evaluation of the predicate expression terminates in non-false value
+ thenrewrite the |F expression as the value of the consequent,
« otherwise, rewrite the IF expression as the walue of the alternative
+ Combination:
+ Ewvaluate the operator expression to getthe procedure, and
evaluate the operand expressions to get the arguments,
« If the operator names a primitive procedure, do whatewer magic

Slide 4.1.6

And finally: combinations. We use the rule that we first
evaluate the operator expression to get the procedure, and we
evaluate the operands to get the set of arguments. If we have a
primitive procedure, we are just going to “do the right thing”.
Otherwise we are going to replace this entire expression with
the body of the compound expression, with the arguments
substituted for their associated parameters.

the primitive procedurs does.

+ If the operator names a compound procedure, evaluate the body of
the compound procedure with the arguments substituted for the formal
parameters in the body

81412003 4 6001 SICP
813

Slide 4.1.7

Given that model, we can more formally capture the evolution
of a process. We can talk about the order of growth of a process
as these rewrite rules evolve. This measures how much of a
particular resource a process is going to take as these rules
evolve, where typically we measure either space or time as the
resource.

More formally, let n be a parameter that measures the size of
the problem of interest. In the case of factorial, this would be
the size of the input argument. We let R(n) denote the amount
of resources we will need to solve a problem of this size, where
as noted, the resources are usually space and time. We are
interested in characterizing R(n) for large values of N, that is, in

Orders of growth of processes

+ Suppose n is a parameter that measures the size ofa
prablem

* Let R(n) bethe amount of resources needed to compute
a procedure of size n.

* We say R(n) has order of growth @(f ()) if there are
constants k, and k, such that k,f(n)<=R(n)<=k,f(n)
for large n

* Two commaon resources are space, measured by the
number of deferred operations, and time, measured by the
number of primitive steps.

20402003 A001 SICP
Nz

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

the asymptotic limit. We say that R(n) has order of growth, Theta of f of n if we can find a function f(n) that is
roughly of the same order as the needed resource, where the more formal definition is shown in the

Partial trace for (fact 4)
{define fact (lambda (n)

(if (=n 1) 1
(* n (fact (- n 1))))))

4 B142003 6001 SICP

83

Slide 4.1.9

So let's use our rewrite rule idea, together with this notion of
measuring the amount of resource we need as an order of Lkt I N —
growth in the size of the problem. Here is our recursive factorial

procedure ...

Slide 4.1.8

In more common terms, this says that when measuring the
amount of space we need, we want to find a function that
measures the number of deferred operations, as a function of the
size of the problem, up to a constant factor. For measuring the
amount of time, we want to find a function that measures the
number of basic or primitive steps that the rewrite rules go
through, again as a function of the size of the problem.

Partial trace for {fact 4)

(define fact (lambda (n)

{fact 4)

(if (=4 1) 1 (* 4 (fact (- 4 1))))

(* 4 (fact 3))

(* 4 (if (=3 1) 1 (* 3 (fact (- 3 1}))))

(* 4 (* 3 (fact 2)))

(* 4 (* 3 (if (=2 1) 1 (* 2 (fact (- 2 1)))))}
(* 4 (* 3 (* 2 (fact 1)))}

(*4 (*3 (*2 (if (=1 1) 1 (*1 (fact (-1 1}))))))
el S et e R o)

(T o R B]

(* 4 6)

4}4’2003 6001 SICP
a3

Partial trace for (ifact 4)

(define ifact-helper (lambda (product count n})
(if (> count n) product
{ifact-helper (* product count)
(+ count 1) n}))))

(define ifact (lambda (n) (ifact-helper 1 1 n}))

(ifact 4)

(ifact-helper 1 1 4)

(if (> 1 4) 1 (ifact-helper (* 1 1) {(+ 1 1) 4))
(ifact-helper 1 2 4)

(if (> 2 4) 1 (ifact-helper (* 1 2} ({(+ 2 1) 4))
(ifact-helper 2 3 4)

(if (> 3 4) 2 (ifact-helper (* 2 3) (+ 3 1) 4))
(ifact-helper 6 4 4)

(if (> 4 4) & (ifact-helper (* 6 4) (+ 4 1) 4))
(ifact-helper 24 5 4)

(if (> 5 4) 24 (ifact-helper (* 24 5) (+ 5 1) 4))
24

4 27412003 6001 SICP

10413

Slide 4.1.10
..and here is a partial trace of f aCt using those rewrite rules.

We start with (fact 4). That reduces to evaluating an if
expression. Since the predicate is not true, this reduces to
evaluating the alternative statement, which is a combination of
a multiplication and another evaluation of fact.

Notice how the colored lines capture the evolution of the
rewrite rules. Note how (fact 4) reduces to a deferred operation
and an evaluation of (fact 3) and this further reduces to another
deferred operation and a subsequent call to fact. Notice the
shape of this process: it grows out with a set of deferred

operations until it reaches a base case, and then it contracts back

in, completing each deferred operation. Using this, we can see that the amount of space grows linearly with the
size of the argument. That is, with each increase in the argument size, | add a constant amount of space
requirement. In terms of the number of operations, we can see that we basically need twice as many steps as the
size of the problem, one to expand out, and one to reduce back down. This is also a linear growth, since the
constant 2 does not change with problem size.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 4.1.11
And let's compare that our iterative factorial. Here is our code Examples of orders of growth
again, and here is a partial trace of the rewrite evolution of that « FACT
prOCGSS. + Space @ (n) —linear
Here we see the different shape of the process, and our order of * TieRlnl =lhes
growth analysis captures that difference. In particular, there are
no deferred operations, and you can see that the maximum
amount of space | need at any stage, that is, the maximum
amount of space used by any rewrite, is independent of the size
of the problem. We say that it is constant, as it does not grow
with n. In terms of time, there is basically one operation for
each increment in the argument, so this is again a linear order Caes
of growth.
Examples of orders of growth S“de 4112 . A
© EAE So we can formally capture this, as shown. Fact has linear
- Space ® (n) —linsar growth in space, written as shown, because the maximum
" IRERle ~le amount of space needed by any rewrite stage is a linear multiple
of the size of the argument. It also has linear growth in time,
- —— because as we saw it takes a number of basic steps that is also a
“Time ® (n) — linear linear multiple of the size of the argument.
il
Slide 4.1.13

On the other hand, i t er at i ve-f act has no deferred

operations, and is constant in space, written as shown, while as
we argued, the time order of growth is linear. Notice that the
fact that the recursive version took 2n steps and the iterative
version took n steps doesn't matter in terms of order of growth.

Both are said to be linear.

Thus we see that we can formally characterize the difference
between these two processes, which have different shapes of

evolution.

Examples of orders of growth

+ FACT
+ Space ®(n) —linear
* Time ®(n) —linear
*IFACT
*Space @ (1) — constant
*Time @ (n) — linear

814IZUU‘S<E 6001 SICP
13113

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 4.1.14

So why have we done this? The primary goal is to allow you to
start to recognize different kinds of behaviors, and the
associated procedure forms that give rise to those behaviors.
This will start to allow you to work backwards, in designing a
procedure, by enabling you to visualize the consequences of
performing a computation in different ways.

6.001 Notes: Section 4.2

Slide 4.2.1

Having seen two different kinds of processes, one linear, and
one constant, we want to fill out our repertoire of processes, by
looking at other kinds of processes. The next one is an example
of an exponential process, and deals with a classic function
called Fibonacci. Its definition is that if its argument is 0, its
value is 0, if its argument is 1, its value is 1, and for all other
positive integer arguments, its value is the sum of its values for

the two preceding arguments.

We would like to write a procedure to compute Fibonacci, and
in particular see how it gives rise to a different kind of

behavior.
Fibonacci
(define fib
(lambda {n)
{cond ({(=mn 0) 0)
((=mn 1) 1)
(else (+ (fib (- n 1))
(fib (- n 2)))))
New expression:

{cond (<predicatel> <consequent> <consequent>-)
{<predicate?> <consequent>- <consequent> .)
f{else <consequent> <consequent>))

Q 87412003 6001 SICP 214

Computing Fibonacci

* Consider the following function
*Fin)=0ifn=0
*Fm=1ifn=1

+ F(n) = F(n-1} + F{n-2) otherwise

4 2003 6001 SICP 144

Slide 4.2.2

To solve this problem, let's use our tool of wishful thinking.
Here, that wishful thinking says, let's assume that given an
argument n, we know how to solve Fibonacci for any smaller
sized argument. Using that idea, we can then work out a
solution to the problem. With this in hand, it is clear that the
solution to the general problem is just to solve two smaller
sized problems, then just add the results together. Note that in
this case we are using wishful thinking twice, not once, as in
our previous examples.

Here is a procedure that captures this idea.

First, we introduce a new expression, called acond

expression. Cond uses the following rules of evaluation. The CONd consists of a set of clauses, each of which
has within it, a predicate clause, and one or more subsequent expressions. Cond proceeds by first evaluating the
predicate of the first clause, in thiscase (= N Q) . If it is true, then we evaluate in turn each of the other
expressions in this clause, returning the value of the last one as the value of the whole cONd. In the case of the
first clause of this CONd that is the expression O. If the predicate of the first clause is false, we move to the next

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

clause of the cond and repeat the process. This continues for however many clauses are contained in the cond
until either a true predicate is reached, or we reach a clause with the special keyword €| Se. In this latter case,

that predicate is treated as true, and the subsequent expressions are evaluated.
Given that form for cOnd, we can see how our f i bOnacci procedure captures the idea we expressed. We

keep recursively solving smaller sized problems until we get to a base case. Notice that here we have two base
cases, not one.

Also notice that while this is a recursive procedure, it is different from our earlier ones. Here, there are two
recursive calls to the procedure in the body, rather than just one. Our question is whether this leads to a different
kind of behavior, or a different order of growth.

5"fje 4.2.3 . i . . i . A tree recursion
This does give rise to a different kind of behavior, which we
can easily see with the illustrated diagram. To solve a problem Fib 4
of size 4, notice that we have to solve two problems, one of size T
3 and one of size 2, and each of these requires solving two }3\ ‘/F"’ 2\
smaller problems, and so on. _ _ _
This gives rise to a kind of tree of things we have to do, and Fib 2 Fib1 Fib 1 Fib 0
each recursive call gives rise to two subproblems of smaller
size. This leads to a different order of growth. Bl FhR
4 20402003 6001 SICP 34
Orders of growth for Fibonacci Slide 4.2.4 .
To measure the order of growth, let's let t of n denote the
e Lett, be the number of steps that we need to take to solve the case . R
forsizen. Then number of time steps we need to solve a problem of size n.
t Tty T2 SHh, =B, =2 From our tree, we see that to do this, we need to solve a
* Soin time we have @(2") -- exponential - -
: ;. Pl e ‘ problem of size n-1, and a problem of size n-2. We could
* In space, we have one deferred operation for each increment of the i i 3 A R
stack of disks -- @(n) — linear actually work out a detailed analysis of this relationship, but for

our purposes, we can approximate this as roughly the same as
solving two problems of size n-2. Expanding a step further, this
is roughly the same as solving 4 problems of size n-4 and
roughly the same as solving 8 problems of size n-6. A little
e math shows that in general this reduces to 2 to the power of n/2
steps.

This is an example of an exponential order of growth, and this

is very different from what we saw earlier. To convince yourself of this, assume that each step takes one second,
and see how much time it would take for an exponential process as compared to a linear one, as n gets large.

In terms of space, our tree shows us that we have basically one deferred operation for step, or in other words, the
maximum depth of that tree is linear in the size of the problem, and the maximum depth exactly captures the
maximum number of deferred operations.

6.001 Notes: Section 4.3

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 4.3.1
Let's take another quick look at how we can create procedures Using different processes for the same goal
with different orders of growth to compute the same function. + We want to compute a*h, just using multiplication and

As a specific example, suppose we want to compute
exponentials, such as & raised to the b power, but to do so only

using the simpler operations of multiplication and addition.
How might we use the tools we have been developing to

accomplish this?

Using different processes for the same goal

* \We want to compute a*b, just using multiplication and
addition

* Remember our stages:
* Wishful thinking
* Decomposition
* Smallest sized subproblem

q BJ412003 6001 SICP 218

Slide 4.3.3

Wishful thinking is our tool for using induction. It says, let's
assume that some procedure My - €XP1L exists, so that we can » Assume that the procedure my-expt exists, but only

use it, but that it only solves smaller versions of the same

problem.

Using different processes for the same goal

= Wishful thinking
* Assume that the procedure my-expt exists, but only
solves smaller versions of the same problem

* Decompose problem into solving smaller version and using
result
*a*b = a*a*.*a = a*a®(b-1)

Q 27412003 6001 SICP 4HB

addition

4 iN2003 6001 SICP M8

Slide 4.3.2

So, recall the stages we used to solve problems like this: we
will use some wishful thinking to assume that solutions to
simpler versions of the problem exist; we will then decompose
the problem into a simpler version of the same problem, plus
some other simple operations, and we will use this to construct
a solution to the more general problem; and finally, we will
determine the smallest sized subproblem into which we want to
do decomposition. Let's look at using these tools on the
problem of exponentiation.

Using different processes for the same goal

+ Wishful thinking

solves smaller versions of the same problem

242003 6001 SICP e

¢

Slide 4.3.4

Given that assumption, we can then turn to the tricky part,
which is determining how to decompose the problem into a
simpler version of the same problem.

Here is one method: Notice that @ to the power b

mathematically is just b products of @. But this we can also
group as a times D- 1 products of @, and that latter we

recognize as a smaller version of the same exponentiation
problem. Thus, we can reduce & to the bth power as @ times a

to the D- 1st power. Thus we can reduce the problem to a
simpler version of the same problem, together with some simple

operations, in this case, an additional multiplication.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

SI_Ide 4'3'5_ . Using different processes for the same goal
Given that idea, here is the start of our procedure for ITy - . SfSR Ry
eXxpt . Notice how it recursively uses My - €Xpt to solve * Assume that the procedure my-expt: exists, but only
o solves smaller versions of the same problem
the SprrOblem, then mUltlplleS the result by ato get the full » Decompose problem into solving smaller version and using
; result
SO|UtI0n ca*b = a*a*.*a = a*a”(b-1)
(define my-expt
{lambda (a b)
{(* a (my-expt a (- b 1}})))
4 2042003 6001 SICP 518
Using different processes for the same goal Slide 4.3.6
_ _ Of course, as stated, that procedure will fail, as it will recurse
* ldentify smallest size subproblem
I indefinitely. To stop unwinding into simpler versions of the

same problem, we need to find a smallest size subproblem.
Here, that is easy. Anything to the Oth power is just 1!

4
E[4/2003 6,001 SICP B8
Slide 4.3.7 . Using different processes for the same goal
And thus we can add our base case to our procedure, creating _ _
. . . + Identify smallest size subproblem
the same kind of procedure we saw earlier for f act ori al . + o

Note how the base case will stop unwinding the computation
into simpler cases.

{(define my-expt
{lambda (a b)
(if (= b 0)
1

(* a (my-expt a (- b 1)})))})

lﬁ Ri200% A001 SICP e

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 4.3.8
Using different processes for the same goal You could run the substitution model on this procedure to both
+ Orders of growth verify that it works, and to determine its growth pattern.
s T Howevgr, the form is very familiar, ant_j we can thus ded_uce by
; TGS ~ifiear comparison to f act or i al that this procedure has linear
growth in both space and time. The time is easy to see: there is
one additional step for each increment in the size of the
argument. And for space, we see that there is one deferred
operation for each recursive call of the procedure, so we will
stack up a linear number of such deferred operations until we
€0 get dowp to the base case, at yvh_ich_point we can st_art
completing the deferred multiplications and gathering up the
answer.
Slide 4.3.9 Using different processes for the same goal
As we saw earlier, we expect there are other ways of creating ,
. . + Are there other ways to decompose this problem?
procedures to solve the same problem. With factorial, we used . Use the idea of state variables, and table evolution

the idea of a table of state variables, with update rules for
changing the values of those variables. We should be able to do
the same thing here.

q iN2003 6001 SICP ans

Slide 4.3.10

Iterative algorithm to compute a*b as a table i
So recall the idea of our table. We set up one column for each

" n s table: o _ piece of information that we will need to complete a step in the
* One column for each piece of information used N A
+ One row for each step computation, and we use one row for each such step. The idea
here is pretty straightforward. We know that @ to the Dth
product counter A
1 E , = power is just b successive multiplications by a. So we can just
a = a

do the multiplication, keep track of the product accumulated so
far, and how many multiplications we have left. Thus after one
step, we will have a product of @ and D- 1 things left to do.

4 BJ412003 6001 SICP 1018

Slide 4.3.11

After the next step, we will multiply our current product by a
and keep track of that new result, plus the fact that we have one

less thing to do.

* In this table:

i(i BJ412003

Iterative algorithm to compute a*b as a table

* One column for each piece of information used
* One row for each step

product
1
a
a2
a3

counter
b
b-1
b-2
b-3

6001 SICP

1218

Slide 4.3.13

... we reach a point where we have no further multiplies to do.

* In this table:

Iterative algorithm to compute a*b as a table

* One column for each piece of information used
* One row for each step

product
1

Card)
@)

a4

counter
b

=
&>

b4

a
a
=

a

o gs20m

6001 SICP

1418

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Iterative algorithm to compute a*b as a table

+ In this table:
+ One column for each piece of information used
+ One row for each step

product counter a
1 b a
a b-1 a
a2 b-2 a

4 iN2003 6001 SICP 11418

Slide 4.3.12
And this process we can continue until ...

Iterative algorithm to compute a*b as a table

+ In this table:
* One column for each piece of information used
+ One row for each step

product counter a
1 b a

a b-1 a
at2 b-2 a
a3 b-3 a
a4 b-4 a

q 242003 6001 SICP 1318

Slide 4.3.14

Now, what are the stages of this computation? To get the next
value for the product, we take the current value of the product
and the value of a, multiply together, and keep. That updates
one of the state variables. To get the next value of counter, we
simply subtract 1, since we have done one more of the
multiplications. That updates the other state variable.

Slide 4.3.15

We know that when the counter gets down to zero, there are no
more multiplications to do, so we are done. And when we get
there, the answer is in the product column.

Slide 4.3.16

Iterative algorithm to compute a*b as a table

* In this table:
* One column for each piece of information used
* One row for each step

first row e -
handles a0 product counter a
cleanly \'- 1 b a
! b -
) 3D
@D b4 a

+ The last row is the one where counter = 0

+ The answer is in the product column of the last row

E(E BJ412003 6001 SICP 1818

Slide 4.3.17
So now we can capture this in a procedure. As with
fact ori al , we are going to use a helper procedure. And

as in that case, we can see that this procedure checks for a base
case, and if there, just returns the value of pr 0d. Otherwise, it

reduces the computation to a simpler version of the same
computation, with a new value for pr 0d and a new value for

count , both obtained by using the update rules we just saw.

Slide 4.3.18

Iterative algorithm to compute a*b
» Orders of growth

» Space ® (1) — constant
* Time ®(n) —linear

27412003 6001 SICP 1818

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

§ g0

Iterative algorithm to compute a*b as a table

+ In this table:
+ One column for each piece of information used
+ One row for each step

product counter a
1 b a
3] <A
= & «

+ The last row is the one where counter =0

+ The answer is in the product column of the last row

6001 SICP 15018

And finally, we see that the starting point is just that anything to
the zeroth power is 1.

{define exp-i (lambda (a k)

Iterative algorithm to compute a*b

(exp-i-help 1 b a)))

{define exp-i-help

¢

{lambda (prod count a)
{if (= count 0)
prod

{exp-i-help (* pred a) (- count 1) a))))

242003 6001 SICP 17he

And what is the order of growth here? In time, this is still
linear, as there is one subcomputation to perform for each
increment in the size of D. In space, however, we again see that

there are no deferred operations here, so this is constant.
Thus, justas with f act or i al , we see that we can create

different procedures to compute exponentiation, with different
classes of behaviors.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

6.001 Notes: Section 4.4

Slide 4.4.1

So now we have seen three very different kinds of procedures:
ones that give rise to constant behavior, ones that give rise to
linear growth, and ones that give rise to exponential growth.
Let's finish up by looking at a fourth kind of procedure, with yet
a different kind of behavior and thus a different cost in terms of

time and space requirements.

Another Kind of process

» Let's compute a® just using multiplication and addition

Another Kind of process

Q 242003 6001 SICP 18

Slide 4.4.2
Here the problem is that we want to compute exponentials, that
is & to the power of b, where b is an integer, but where our

basic primitive operations are just multiplication, addition, and

simple tests.

(E'J‘QDDB 6001 SICP 28

Slide 4.4.3

As with previous algorithms, the key is to find a way to reduce
this problem to a combination of simpler problems, either
simpler versions of the same problem or more basic operations.
For this problem, here is the trick | can play. If b is an even

integer, then | can recognize that raising @ to the power of b is
the same as first square @, then raising that result to the power
of b/ 2. Notice what I have done. Squaring & is just a single
multiplication, and reducing b by 2 is a simple operation. But

by doing this, I have reduce the size of the problem by a half. |
have only b/ 2 things left to consider. Of course, notice that |

Another Kkind of process

» Let's compute a® just using multiplication and addition

* Ifbis even, then a? = (a?)v2)

8!41200(§ 6001 SICP 36

am relying on D as an even integer here, since in that case B/ 2 is also an integer, and | can use the same

machinery to solve this smaller problem.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 4.4.4
But what if D is odd? In that case, the same trick won't work: as

I would reduce the exponentiation to a problem | don't know
how to solve. So instead | can use a different variant on wishful
thinking, similar to our factorial case. Here, | can reduce the
problem to multiplying @ by the result of raising a to the

power b- 1, that is to a simpler, or smaller, version of the same
problem.

Another Kkind of process
« Let's compute aP just using multiplication and addition

« Ifbis even, then a”= (a2)(v2

* If b is odd, then ab = g* alt-1)

2412003 4 6001 SICP 48

Slide 4.4.5
Notice the effect of doing this. If b is odd, then in one step |

reduce the problem to the case where b is even, which means in

the next step, | reduce the problem size by half. Thus, no matter
what value D has, after at most two steps, the problem size is

halved, and after at most another two steps, it is halved again,
and so on.

Another kind of process
+ Let's compute a” just using multiplication and addition

* Ifbis even, then a? = (@22
« If b is odd, then ab = a* alb-

* Note that here, we reduce the problem in half in
one step

Ri200% 4 A001 SICP B2

Another Kind of process
» Let's compute a® just using multiplication and addition

+ Ifb is even, then a"= (a?)iv2
* If b is odd, then a® = a* al>-"

= Note that here, we reduce the problem in half in
one step

{define fast-exp-1
{(lambda {(a b)
{cond ({(= b 1) a)
((even? b) (fast-exp-1 (* a a) (/ b 2)))
{else (* a (fFast-exp-1 a (- b 1)})))))

81412003 4 6001 SICP 618

Slide 4.4.6

With those ideas, we can build the procedure shown. The cases
clearly reflect the reasoning | just used, using one recursive
application of the procedure for even cases, and a different one
for odd cases. Of course, there is a base case to terminate the
reduction of the problem to simpler versions.

The form of this procedure is a bit different. In one case, it
looks like an iterative call (with just a change in the parameters
of the procedure), in the other; it looks like a recursive call
(with a deferred operation and a reduction in parameters). Thus
I expect that there will be some deferred operations in the
application of this procedure, but perhaps not as many as in

previous examples.
But what happens in terms of time? Since | am reducing the problem in half, | would hope that this leads to better
performance than just reducing the problem by 1.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 4.4.7

So let's measure the order of growth of this procedure. Here, n Orders of growth

measures the size of the problem, which means the size of the [even, then 1 step reduces 1o n/2 sized problem
argument D. We know that if the argument is even, in one step : fffhf; ddzi Ep j t depbk‘ﬂfn

the problem size is reduced by 2. If the argument is odd, in one « We are done \shen the problem size is jisrl,which implies order of
step it is reduced by 1, making it even so that in a second step, gzt demeh Blagi: = ogeimnt

+ Space is similarly ®(log n) -- logarithmic

it is reduced by 2. Thus in at most 2 steps, the problem size is
cut in half. After another 2 steps, it is cut in half again, and thus
after 2k steps, the problem is reduced by a factor of 27k, or cut
in half k times.

How do we find the number of times we need to do this? We
are done when the problem size is just 1, and that happens when | <
k = log n. So this procedure has a different behavior, it is
logarithmic. This is in fact a very efficient procedure, and to convince yourself of this, try the same trick of seeing
how long it would take to solve a problem of different sizes, using one step per second, comparing it to a linear and
an exponential process.

The same kind of reasoning will show you that the space requirements also grow logarithmically with the size of
the problem.

iN2003 6001 SICP T8

Lessons learned Slide 4.4.8 _ -

 Bohstibion modg To summarize, we have now seen how our substitution model

. Orders of growth helps to explain the evolution of a process that occurs when a

* Dilierait desiinahiigerlaas lodifsrenckndsio procedure is applied. Using this model, we have seen that very

processes

different kinds of behavior can occur, even for procedures
computing the same abstract function, and we saw how to
characterize those differences in terms of orders of growth in
space and time. Already, you can see that there are different
classes of algorithms: constant, linear, exponential, and
logarithmic. Part of your task is to learn how to recognize the
kinds of procedures that are associated with these different
behaviors, and to learn how to use that knowledge in designing

'(E 8472003 6001 SICF 88

efficient procedures for particular problems.

6.001 Notes: Section 4.5

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 4.5.1

Let's take one more look at this idea of creating procedures to
solve a problem, that have different behaviors in terms of how
their underlying process evolves. For a different example, let’s
look at a mathematical problem known as Pascal’s triangle.
The elements of Pascal’s triangle are shown here. The first row
has just a single element, the second row has two elements, the
third row has three elements, and so on. Clearly there is a

Another example of different processes

+ Suppose we want to compute the elements of Pascal's
triangle

1331
1 46 4 1

structure to these elements, which we need to understand.

(E

Pascal’s triangle

* \We need some notation
 Let's order the rows, starting with n=0 for the first row
* The nth row then has n+1 elements

* Let's use P(j,n) to denote the jth element of the nth row.

* We want to find ways to compute P(j,n) for any n, and
any j, suchthat 0 <= j<=n

BJ412003 6001 SICP 214

Slide

Traditionally, Pascal’s triangle is constructed by noting that the
first and last element of each row (except the first) isa 1, and
by noting that to get any other element in a row, we add the
corresponding element of the previous row and its predecessor
together. If you use this rule of thumb you can verify that this
works by generating the first few rows of the triangle. So we
have an informal specification of how to generate the triangle.

4.5.3

¢

Pascal’s triangle the traditional way

» Here is a procedure that just captures that idea:

(define pascal
{lambda {(j n)

{cond ((= 3 0) 1)
((=3 n) 1)
(else (+ (pascal (- j 1) (- n 1)
(pascal j (- n 1)))))))

27412003 6001 SICP 414

1510 10 51
1615201561

iN2003 6001 SICP 1ma

¢

Slide 4.5.2

So, let’s structure this problem a bit. Let’s order the rows, and
enumerate them, labeling the first row n=0, the second row n=1,
and so on (we will see that this choice of labeling leads to a
cleaner description of the problem). Using this labeling, we
also see that the n’th row has n+1 elements in it. Let’s use the
notation P(j,n) to denote the j’th element of the n’th row. Our
goal is to determine how to compute all elements of each row.

Pascal’s triangle the traditional way

+ Traditionally, one thinks of Pascal's triangle being formed
by the following informal method:
+ The first element of a row is 1
* The last element of a row is 1

* To get the second element of a row, add the first and
second element of the previous row

* To get the k'th element of a row, and the (k-1)'st and
kK'th element of the previous row

6001 SICP e

4 242003

Slide 4.5.4

So we can proceed in a straightforward manner by capturing
that idea in a procedure. Note the form: we have two base
cases, one for when we are generating the first element of a
row, and one for the last element of the row.

Otherwise, we simply rely on smaller versions of the same
computation to do the job: we compute the same element of the
previous row, and its predecessor, and then add them together.
You can verify that this is correct by trying some examples,
though clearly the

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 4.5.5

Pascal’s triangle the traditional way

« What kind of process does this generate?
* Looks a lot like Fibonacci
+ There are two recursive calls to the procedure in the
general case
+ In fact, this has a time complexity that is exponential
and a space complexity that is linear

21412003 6001 SICP &4

¢

Slide 4.5.6

So what kind of process does this procedure engender? Well, it
looks a lot like our computation of Fibonacci, and that is a pretty
good clue. Just like Fibonacci, there are two recursive calls to

Solving the same problem a different way

+ Can we do better?
« Yes, but we need to do some thinking.

+ Pascal's triangle actually captures the idea of how many
different ways there are of choosing objects from a set,
where the order of choice doesn’t matter.

« P(0, n) is the number of ways of choosing collections of
no objects, which is trivially 1.

* P(n, n) is the number of ways of choosing collections of
n objects, which is obviously 1, since there is only one
set of n things.

+ P(j, n) is the number of ways of picking sets of j objects
from a set of n objects.

q B142003 6001 SICP 814

Slide 4.5.7

To do better, we have to go back to the original problem. A
little information from combinatorics tells us that in actuality,
Pascal’s triangle is capturing the number of different ways of
choosing a set of j objects from a set of n objects (this isn’t
obvious, by the way, so just accept this as a fact). Thus, the
first element of a row is the number of ways of picking no
objects, which is by definition 1. The last element of a row is
the number of ways of picking a set of n objects from a set of n
objects. Since the order in which we pick the objects doesn’t
matter, there is only one size n subset of a set of size n, hence
this element is 1.

The general case is the number of different subsets of size j that
can be created out of a set of size n.

smaller versions of the same process at each stage. In fact, a
similar analysis will show that this is process that is exponential
in time, and linear in space. We have already suggested that
exponential algorithms are costly. In the case of Fibonacci, we

didn’t look for any other way of structuring the problem, but let’s
try to do better for Pascal.

¢

Solving the same problem a different way

+ So what is the number of ways of picking sets of | objects
from a set of n objects?
+ Pick the first one — there are n possible choices
+ Then pick the second one — there are (n-1) choices left.
+ Keep going until you have picked j objects
!
nn-1..(n—j+)= L
(n=j!
+ But the order in which we pick the objects doesn’t
matter, and there are j! different orders, so we have

n _np-D.m-j+D)
(n— JjG=-1D...1

6001 SICP e

242003

Solving the same problem a different way

* So here is an easy way to implement this idea:
(define pascal
{lambda {(j n)
(/ {(fact n)

{(* (fact (- n 3)) (fact 3})))})

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 4.5.8

So what is that number?

Well, we can pick the first element by selecting any of the n
elements of the set.

The second element has n-1 possibilities, and so on, until we
have picked out j objects. That product we can represent as a
fraction of two factorial products, as you can see.

Now, we are not quite done, because we said the order in which
we pick the objects doesn’t matter. Using the method we just
described, we could pick the same set of j objects in j! different
orderings, so to get the number of distinct subsets of size j, we

(E 2412003 6001 SICP a4

Slide 4.5.9

Now this leads to a straightforward way to compute Pascal. We
can just rely on the factorial code that we created earlier. Here
we use factorial three times, once for the numerator, and twice
in the denominator. Notice how our procedural abstraction
nicely isolates the details of fact from its use in this case, and
the code here cleanly expresses the idea of computing Pascal
based on factorial.

factor this out, as shown.

Solving the same problem a different way

* So here is an easy way to implement this idea:
{define pascal
{lambda (j n)
(/ (fact n)
(* (fact (- n 3j)) (fact j))}))
+ What is complexity of this approach?
+ Three different evaluations of fact
+ Eachis linearintime andin space

Solving the same problem a different way

* \What about computing with a different version of fact?
(define pascal
{lambda {(j n)
(/ {(ifact n)

{(* (ifact (- n j)) (ifact j)))))

* So combination takes 3n steps, which is also linear in
time; and has at most n deferred operations, which is
also linear in space

4 iN2003 6001 SICP ELES

Slide 4.5.10

So do we do any better with this version of Pascal?

Sure! We know that this version of fact is linear. Our Pascal
implementation uses fact three different evaluations of fact, but
this is still linear in time, and a similar analysis lets us conclude
that this is linear in space as well. While it might take three
times as long to run than just running fact, what we are
concerned with is the general order of growth; or how these
processes’ computational needs change with changing problem
size, and both are linear in that change.

=(§ 81412003 6001 SICP 10614

Slide 4.5.11

Well, earlier we saw that there were different ways of
computing factorial. Suppose we use the iterative version,
instead of the recursive one?

¢

Solving the same problem a different way

+ What about computing with a different version of fact?
(define pascal
{lambda (j n)
(/ (ifact n)
(* (ifact (- n 3j))
+ What is complexity of this approach?
+ Three different evaluations of fact

{ifact j)))))

* Each is linear in time and constant in space

+ So combination takes 3n steps, which is also linear in
time; and has no deferred operations, which is also
constant in space

242003 6001 SICP 1114

Solving the same problem the direct way

* Now, why not just do the computation directly?

(define pascal
(lambda (j n)
(/ (help n 1 (+ n (- j) 1})
thelp 3 1 1))))
(define help
{lambda (k prod end)

(if {= k end)
{* k prod)
thelp (- k 1) (* prod k) end))))
4 21412003 6001 SICP 12118
Slide 4.5.13

Finally, if the use of an iterative factorial procedure gives us
better performance, why not just do this computation directly as
well? By that, we mean just compute the two products: one for
the numerator and one for the denominator, and save those
extra multiplications that we are doing in the extra call to
factorial. After all, we are just computing a product of terms

that we know we are simply going to factor out.

So why do these orders of growth matter?

» Main concemn is general order of growth
* Exponential is very expensive as the problem size
grows.
* Some clever thinking can sometimes convert an
inefficient approach into a more efficient one.
* In practice, actual performance may improve by
considering different variations, even though the overall
order of growth stays the same.

6001 SICP 14414

E(E 81412003

Slide 4.5.15

And that leads to our concluding point. First, we stress that the
same problem may have many different solutions, and that
these solutions may have very different computational
behaviors. Some problems are inherently exponential in

nature. Others may have straightforward solutions that have
exponential behavior, but often some additional thought can
lead to more efficient solutions. Part of our goal is to get you to
recognize different classes of behavior, and to learn how to use
the properties of standard algorithms to help you design

efficient solutions to new problems.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 4.5.12

The same effect takes place. Now we have a version of Pascal
that is linear in time and constant in space, relying on the fact
that factorial under this version is also linear in time and
constant in space.

Solving the same problem the direct way

+ So what is complexity here?

* Help is an iterative procedure, and has constant space
and linear time

* This version of Pascal only uses two versions of help
(as opposed the previous version that used three
versions of ifact).

+ In practice, this means this version uses fewer
multiplies that the previous one, but it is still linear in
time, and hence has the same order of growth.

A001 SICP 1314

4 Ri200%

Slide 4.5.14

We can do the same analysis for this version. Our help
procedure is clearly constant in space, and linear in time. Our
version of Pascal uses it twice, so while it does take less actual
time than the previous version, it still has the same general
behavior: linear in time and constant in space. Thus, in
practical terms, this may be the best version, but theoretically it
has the same class of behavior as our previous version.

	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

