Beating the Averages
Paul Graham

(This article is based on a talk given at the Franz Devel oper
Synposi um in Canbridge, MA, on March 25, 2001.)

In the sumer of 1995, ny friend Robert Mrris and | started a
startup called Viaweb. OQur plan was to wite software that woul d

| et end users build online stores. \What was novel about this
software, at the time, was that it ran on our server, using ordinary
Web pages as the interface.

A | ot of people could have been having this idea at the sane tine,
of course, but as far as | know, Viaweb was the first Wb-based
application program It seened such a novel idea to us that we
nanmed the conpany after it: Viaweb, because our software worked
via the Web, instead of running on your desktop conputer

Anot her unusual thing about this software was that it was witten
primarily in a programm ng | anguage called Lisp.[1] It was one of
the first big end-user applications to be witten in Lisp, which
up till then had been used nostly in universities and research

| abs. Lisp gave us a great advantage over conpetitors using |ess
power ful | anguages.

The Secret Weapon

Eric Raynond has witten an essay called "How to Becone a Hacker,"
and in it, among other things, he tells woul d-be hackers what

| anguages they should learn. He suggests starting with Python and
Java, because they are easy to learn. The serious hacker will also
want to learn C, in order to hack Unix, and Perl for system

admi nistration and cgi scripts. Finally, the truly serious hacker
shoul d consi der | earning Lisp:

Lisp is worth learning for the profound enlightennment experience
you will have when you finally get it; that experience will make
you a better programer for the rest of your days, even if you
never actually use Lisp itself a lot.

This is the sane argunment you tend to hear for learning Latin. It
won't get you a job, except perhaps as a classics professor, but

it will inprove your mind, and meke you a better witer in |anguages
you do want to use, like English.

But wait a mnute. This netaphor doesn't stretch that far. The
reason Latin won't get you a job is that no one speaks it. |If you
write in Latin, no one can understand you. But Lisp is a conputer

| anguage, and conputers speak whatever |anguage you, the progranmer,
tell themto.

So if Lisp nakes you a better programmer, |ike he says, why woul dn't
you want to use it? If a painter were offered a brush that would
make hima better painter, it seems to ne that he would want to

use it in all his paintings, wouldn't he? I'"mnot trying to nake
fun of Eric Raynmond here. On the whole, his advice is good. What
he says about Lisp is pretty much the conventional wi sdom But
there is a contradiction in the conventional w sdom Lisp wll
make you a better programrer, and yet you won't use it.

Why not? Programm ng | anguages are just tools, after all. [If Lisp
really does yield better programs, you should use it. And if it
doesn't, then who needs it?

This is not just a theoretical question. Software is a very
conpetitive business, prone to natural nonopolies. A conpany that
gets software witten faster and better will, all other things
bei ng equal, put its conpetitors out of business. And when you're
starting a startup, you feel this very keenly. Startups tend to
be an all or nothing proposition. You either get rich, or you get

nothing. 1In a startup, if you bet on the wong technol ogy, your
conpetitors will crush you.

Robert and | both knew Lisp well, and we couldn't see any reason
not to trust our instincts and go with Lisp. W knew that everyone
el se was witing their software in C++ or Perl. But we also knew
that that didn't nean anything. |[If you chose technol ogy that way,

you'd be running Wndows. Wen you choose technol ogy, you have
i gnore what ot her people are doing, and consider only what wll
wor k the best.

This is especially true in a startup. 1n a big conpany, you can
do what all the other big conpanies are doing. But a startup can't
do what all the other startups do. | don't think a |ot of people

realize this, even in startups.

The average bi g conpany grows at about ten percent a year. So if
you're running a big conpany and you do everything the way the
average big conpany does it, you can expect to do as well as the
average big conpany-- that is, to grow about ten percent a year

The sanme thing will happen if you're running a startup, of course.
If you do everything the way the average startup does it, you should
expect average performance. The problem here is, average performance

means that you'll go out of business. The survival rate for startups
is way less than fifty percent. So if you're running a startup
you had better be doing sonething odd. |[|f not, you're in trouble.

Back in 1995, we knew sonething that | don't think our conpetitors
under st ood, and few understand even now. when you're witing

software that only has to run our your own servers, you can use

any | anguage you want. \When you're witing desktop software,

there's a strong bias toward witing applications in the sane

| anguage as the operating system Ten years ago, witing applications
meant witing applications in C. But with Wb-based software,

especi ally when you have the source code of both the | anguage and

the operating system you can use whatever |anguage you want.

This new freedomis a doubl e-edged sword, however. Now that you
can use any | anguage, you have to think about which one to use.
Conpanies that try to pretend nothing has changed risk finding that

their conpetitors do not.

If you can use any | anguage, which do you use? W chose Lisp.

For one thing, it was obvious that rapid devel opment woul d be
important in this market. We were all starting fromscratch, so

a conpany that could get new features done before its conpetitors
woul d have a big advantage. W knew Lisp was a really good | anguage
for witing software quickly, and server-based applications magnify
the effect of rapid devel opnent, because you can rel ease software
the minute it's done.

If other conpanies didn't want to use Lisp, so nuch the better

It might give us a technol ogical edge, and we needed all the help
we could get. \When we started Viaweb, we had no experience in
busi ness. W didn't know anythi ng about marketing, or hiring
peopl e, or raising noney, or getting custoners. Neither of us had
ever even had what you would call a real job. The only thing we
were good at was witing software. W hoped that would save us.
Any advantage we could get in the software departnment, we would

t ake.

So you could say that using Lisp was an experinent. Qur hypothesis
was that if we wote our software in Lisp, we'd be able to get
features done faster than our conpetitors, and also to do things

in our software that they couldn't do. And because Lisp was so

hi gh-1evel, we wouldn't need a big devel opnent team so our costs
woul d be lower. |If this were so, we could offer a better product
for I ess noney, and still nmake a profit. W would end up getting
all the users, and our conpetitors would get none, and eventually
go out of business. That was what we hoped woul d happen, anyway.

What were the results of this experinent? Sonewhat surprisingly,
it worked. W eventually had many conpetitors, on the order of
twenty to thirty of them but none of their software could conpete
with ours. We had a wysiwyg online store builder that ran on the
server and yet felt |ike a desktop application. Qur conpetitors
had cgi scripts. And we were always far ahead of themin features.
Sometimes, in desperation, conpetitors would try to introduce
features that we didn't have. But with Lisp our devel opnent cycle
was so fast that we could sonetinmes duplicate a new feature within
a day or two of a conpetitor announcing it in a press release. By
the tine journalists covering the press release got round to calling
us, we would have the new feature too.

It nmust have seenmed to our conpetitors that we had sone kind of
secret weapon-- that we were decoding their Enigma traffic or

sonmething. In fact we did have a secret weapon, but it was sinpler
than they realized. No one was |eaking news of their features to
us. W were just able to develop software faster than anyone

t hought possi bl e.

When | was about nine | happened to get hold of a copy of The Day

of the Jackal, by Frederick Forsyth. The main character is an
assassin who is hired to kill the president of France. The assassin
has to get past the police to get up to an apartnent that overl ooks
the president's route. He walks right by them dressed up as an

old man on crutches, and they never suspect him

Qur secret weapon was simlar. W wote our software in a weird

Al | anguage, with a bizarre syntax full of parentheses. For years

it had annoyed nme to hear Lisp described that way. But now it

wor ked to our advantage. |In business, there is nothing nore val uabl e
than a technical advantage your conpetitors don't understand. In
busi ness, as in war, surprise is worth as nuch as force.

And so, I'ma little enbarrassed to say, | never said anything
publicly about Lisp while we were working on Viaweb. W never
mentioned it to the press, and if you searched for Lisp on our Wb
site, all you'd find were the titles of two books in ny bio. This
was no accident. A startup should give its conpetitors as little

informati on as possible. [If they didn't know what | anguage our
software was witten in, or didn't care, | wanted to keep it that
way. [2]

The peopl e who understood our technol ogy best were the custoners.
They didn't care what |anguage Viaweb was witten in either, but

they noticed that it worked really well. It let thembuild great
| ooking online stores literally in mnutes. And so, by word of

nouth nostly, we got nore and nore users. By the end of 1996 we
had about 70 stores online. At the end of 1997 we had 500. Six
nont hs | ater, when Yahoo bought us, we had 1070 users. Today, as

Yahoo Store, this software continues to dominate its market. It's
one of the nore profitable pieces of Yahoo, and the stores built
with it are the foundation of Yahoo Shopping. | left Yahoo in

1999, so | don't know exactly how many users they have now, but
the last | heard there were about 14, 000.

Peopl e sonetines ask me if Yahoo Store still uses Lisp. Yes, al
the Lisp code is still there. Yahoo has server-side software
written in all five of the | anguages Eric Raynond reconmends to
hackers.

The Bl ub Par adox

VWhat's so great about Lisp? And if Lisp is so great, why doesn't
everyone use it? These sound like rhetorical questions, but actually
they have straightforward answers. Lisp is so great not because

of sonme magic quality visible only to devotees, but because it is
sinmply the nost powerful |anguage available. And the reason everyone
doesn't use it is that programmi ng | anguages are not nerely
technol ogi es, but habits of mnd as well, and nothing changes

slower. O course, both these answers need expl ai ni ng.

"1l begin with a shockingly controversial statement: progranm ng
| anguages vary in power.

Few woul d di spute, at |least, that high |level |anguages are nore
power ful than machi ne | anguage. Most progranmers today woul d agree
that you do not, ordinarily, want to programin machi ne | anguage.

I nstead, you should programin a high-1level |anguage, and have a
conpiler translate it into machi ne | anguage for you. This ideais
even built into the hardware now since the 1980s, instruction sets
have been designed for conpilers rather than human programrers.

Everyone knows it's a mstake to wite your whol e program by hand
in machi ne | anguage. What's | ess often understood is that there
is a nore general principle here: that if you have a choice of
several |anguages, it is, all other things being equal, a m stake
to programin anything but the nost powerful one.[3]

There are many exceptions to this rule. If you're witing a program
that has to work very closely with a programwitten in a certain
| anguage, it might be a good idea to wite the new programin the
sanme | anguage. |If you're witing a programthat only has to do
sonmet hing very sinple, like number crunching or bit manipul ation,
you may as well use a |ess abstract | anguage, especially since it
may be slightly faster. And if you're witing a short, throwaway
program you nmay be better off just using whatever |anguage has
the best library functions for the task. But in general, for
application software, you want to be using the nost powerfu
(reasonably efficient) |Ianguage you can get, and using anything
else is a nmistake, of exactly the same kind, though possibly in a
| esser degree, as programr ng in machi ne | anguage.

You can see that machine | anguage is very low |level. But, at |east
as a kind of social convention, high-level |anguages are often al
treated as equivalent. They're not. Technically the term "high-Ieve
| anguage" doesn't nean anything very definite. There's no dividing
line with machi ne | anguages on one side and all the high-Ileve

| anguages on the other. Languages fall along a continuunf4] of
abstractness, fromthe nost powerful all the way down to nmachi ne

| anguages, which thenselves vary in power.

Consi der Cobol. Cobol is a high-level |anguage, in the sense that
it gets conpiled into machi ne | anguage. Wul d anyone seriously
argue that Cobol is equivalent in power to, say, Python? |It's
probably cl oser to nachi ne | anguage t han Pyt hon.

O how about Perl 4? Between Perl 4 and Perl 5, |exical closures
got added to the | anguage. Most Perl hackers woul d agree that Perl
5 is nore powerful than Perl 4. But once you' ve admtted that,
you've adnmitted that one high |evel |anguage can be nore powerfu
than another. And it follows inexorably that, except in specia
cases, you ought to use the nost powerful you can get.

This idea is rarely followed to its conclusion, though. After a
certain age, programmers rarely switch | anguages voluntarily.

What ever | anguage peopl e happen to be used to, they tend to consider
just good enough.

Programmers get very attached to their favorite | anguages, and
don't want to hurt anyone's feelings, so to explain this point I'm
going to use a hypothetical |anguage called Blub. Blub falls right
in the mddle of the abtractness continuum It is not the nost
power ful | anguage, but it is nmore powerful than Cobol or nachine

| anguage.

And in fact, our hypothetical Blub programer wouldn't use either
of them O course he wouldn't programin machine | anguage. That's
what conpilers are for. And as for Cobol, he doesn't know how

anyone can get anything done with it. It doesn't even have x (Bl ub
feature of your choice).

As | ong as our hypothetical Blub progranmer is |ooking down the
power continuum he knows he's | ooki ng down. Languages |ess powerfu
than Blub are obviously | ess powerful, because they're m ssing sone
feature he's used to. But when our hypothetical Blub progranmrer

| ooks in the other direction, up the power continuum he doesn't
realize he's |ooking up. What he sees are nerely weird | anguages.
He probably considers them about equivalent in power to Bl ub, but
with all this other hairy stuff thrown in as well. Blub is good
enough for him because he thinks in Blub

When we switch to the point of view of a programmer using any of

t he | anguages hi gher up the power continuum however, we find that
he in turn | ooks down upon Blub. How can you get anything done in
Bl ub? It doesn't even have vy.

By induction, the only programmers in a position to see all the

di fferences in power between the various | anguages are those who
understand the nost powerful one. (This is probably what Eric
Raynmond nmeant about Lisp nmaking you a better programmer.) You can't
trust the opinions of the others, because of the Bl ub paradox:
they're satisfied with whatever |anguage they happen to use, because
it dictates the way they think about prograns.

I know this frommy own experience, as a high school kid witing
programs in Basic. That |anguage didn't even support recursion
It's hard to imagine witing prograns w thout using recursion, but
| didn't miss it at the tinme. | thought in Basic. And | was a
whiz at it. Mster of all | surveyed.

The five | anguages that Eric Raynond reconmends to hackers fall at
vari ous points on the power continuum \here they fall relative

to one another is a sensitive topic. What | will say is that |
think Lisp is at the top. And to support this claiml'll tell you
about one of the things | find mssing when | | ook at the other

four | anguages. How can you get anything done in them || think
wi thout z? And one of the biggest zs, for me, is macros.|[5]

Many | anguages have sonmething called a nacro. But Lisp nmacros are
uni que. And believe it or not, what they do is related to the
parent heses. The designers of Lisp didn't put all those parentheses
in the | anguage just to be different. To the Blub progranmer, Lisp
code | ooks weird. But those parentheses are there for a reason

They are the outward evidence of a fundanental difference between
Li sp and ot her | anguages.

Li sp code is made out of Lisp data objects. And not in the trivia
sense that the source files contain characters, and strings are
one of the data types supported by the | anguage. Lisp code, after
it's read by the parser, is made of data structures that you can
traverse.

I f you understand how conpilers work, what's really going on is
not so nmuch that Lisp has a strange syntax as that Lisp has no
syntax. You wite prograns in the parse trees that get generated

within the conpiler when other |anguages are parsed. But these
parse trees are fully accessible to your prograns. You can wite
programs that mani pulate them In Lisp, these progranms are called
macros. They are prograns that wite prograns.

Programs that wite prograns? Wen would you ever want to do that?
Not very often, if you think in Cobol. Al the tinme, if you think
in Lisp. It would be convenient here if | could give an exanple

of a powerful macro, and say there! how about that? But if | did,
it would just look |ike gibberish to someone who didn't know Lisp;
there isn't roomhere to explain everything you' d need to know to
understand what it meant. In Ansi Common Lisp | tried to nove
things along as fast as | could, and even so | didn't get to macros
until page 160.

But | think |I can give a kind of argunent that m ght be convincing.
The source code of the Viaweb editor was probably about 20-25%
macros. Macros are harder to wite than ordinary Lisp functions,
and it's considered to be bad style to use them when they're not
necessary. So every macro in that code is there because it has to
be. What that neans is that at |east 20-25% of the code in this
programis doing things that you can't easily do in any other

| anguage. However skeptical the Blub progranmer m ght be about ny
clains for the mysterious powers of Lisp, this ought to nmake him
curious. W weren't witing this code for our own anmusenent. We
were a tiny startup, progranm ng as hard as we could in order to
put technical barriers between us and our conpetitors.

A suspi cious person might begin to wonder if there was sone
correlation here. A big chunk of our code was doing things that
are very hard to do in other |anguages. The resulting software
did things our conpetitors' software couldn't do. Maybe there was
some kind of connection. | encourage you to follow that thread.
There may be nore to that old man hobbling along on his crutches
than nmeets the eye.

Ai ki do for Startups

But | don't expect to convince anyone (over 25) to go out and |learn
Lisp. The purpose of this article is not to change anyone's nind
but to reassure people already interested in using Lisp-- people
who know that Lisp is a powerful |anguage, but worry because it
isn't widely used. |In a conpetitive situation, that's an advantage.
Lisp's power is nmultiplied by the fact that your conpetitors don't
get it.

If you think of using Lisp in a startup, you shouldn't worry that

it isn'"t widely understood. You should hope that it stays that

way. And it's likely to. [It's the nature of programmi ng | anguages

to make nobst people satisfied with whatever they currently use.
Conmput er hardware changes so nuch faster than personal habits that
programm ng practice is usually ten to twenty years behind the
processor. At places like MT they were witing prograns in

hi gh-1 evel |anguages in the early 1960s, but many conpani es conti nued
to wite code in machine | anguage well into the 1980s. | bet a

| ot of people continued to wite machine | anguage until the processor

i ke a bartender eager to close up and go hone, finally kicked them
out by switching to a risc instruction set.

Ordinarily technol ogy changes fast. But progranm ng | anguages are
di fferent: programm ng | anguages are not just technol ogy, but what
programmers think in. They're half technology and half religion.[6]
And so the nedi an | anguage, neani ng whatever | anguage the nmedi an
programmer uses, noves as slow as an iceberg. Garbage collection

i ntroduced by Lisp in about 1960, is now wi dely considered to be

a good thing. Runtine typing, ditto, is growing in popularity.

Lexi cal closures, introduced by Lisp in the early 1970s, are now,
just barely, on the radar screen. Macros, introduced by Lisp the

md 1960s, are still terra incognita.

Qbvi ously, the nmedi an | anguage has enornous nonentum |'m not
proposi ng that you can fight this powerful force. What |'m proposing
is exactly the opposite: that, like a practitioner of Aikido, you

can use it against your opponents.

If you work for a big conmpany, this may not be easy. You wll have
a hard tinme convincing the pointy-haired boss to let you build
things in Lisp, when he has just read in the paper that some ot her

| anguage is poised, |like Ada was twenty years ago, to take over

the world. But if you work for a startup that doesn't have

poi nty-haired bosses yet, you can, like we did, turn the Bl ub
paradox to your advantage: you can use technol ogy that your
conpetitors, glued i movably to the nmedi an | anguage, will never be
able to match.

If you ever do find yourself working for a startup, here's a handy
tip for evaluating conpetitors. Read their job listings. Everything
el se on their site may be stock photos or the prose equivalent,

but the job listings have to be specific about what they want, or
they'll get the wrong candi dates.

During the years we worked on Viaweb | read a | ot of job descriptions.
A new conpetitor seemed to enmerge out of the woodwork every nonth
or so. The first thing | would do, after checking to see if they
had a live online deno, was | ook at their job listings. After a
couple years of this | could tell which conmpanies to worry about
and which not to. The nore of an IT flavor the job descriptions
had, the | ess dangerous the conpany was. The safest kind were the
ones that wanted Oracl e experience. You never had to worry about
those. You were also safe if they said they wanted C++ or Java
devel opers. |If they wanted Perl or Python progranmers, that would
be a bit frightening-- that's starting to sound |ike a conpany
where the technical side, at least, is run by real hackers. If |
had ever seen a job posting |ooking for Lisp hackers, | would have
been really worried.

Back when | was witing books about Lisp, | used to wi sh everyone

understood it. But when we started Viaweb | found that changed:
I wanted everyone to understand Lisp except our conpetitors.

Foot not es:

[1] Viaweb at first had two parts: the editor, witten in Lisp,
whi ch people used to build their sites, and the ordering system
written in C, which handled orders. The first version was nostly
Li sp, because the ordering systemwas snmall. Later we added two
nore nodul es, an inmage generator witten in C, and a back-office
manager witten nostly in Perl.

[2] Robert Morris says that | didn't need to be secretive, because
even if our conpetitors had known we were using Lisp, they wouldn't
have understood why: "If they were that smart they' d al ready be
progranmm ng in Lisp."

[3] Al languages are equally powerful in the sense of being Turing
equi val ent, but that's not the sense of the word progranmers care
about. (No one wants to program a Turing machine.) The kind of
power programers care about may not be formally definable, but
one way to explain it would be to say that it refers to features
you could only get in the |ess powerful |anguage by witing an
interpreter for the nore powerful language in it. If |anguage A
has an operator for renoving spaces fromstrings and | anguage B
doesn't, that probably doesn't make A nore powerful, because you
can probably wite a subroutine to do it in B. But if A supports,
say, recursion, and B doesn't, that's not likely to be sonething
you can fix by witing |ibrary functions.

[4] Note to nerds: or possibly a lattice, narrowing toward the top
it's not the shape that matters here but the idea that there is at
| east a partial order.

[B] It is a bit msleading to treat nmacros as a separate feature.
In practice their usefulness is greatly enhanced by other Lisp
features like | exical closures and rest paraneters.

[6] As a result, conparisons of progranm ng | anguages either take

the formof religious wars or undergraduate textbooks so detern nedly
neutral that they're really works of anthropol ogy. People who

val ue their peace, or want tenure, avoid the topic. But the question
is only half a religious one; there is sonething there worth

studyi ng, especially if you want to desi gn new | anguages.

