Evaluation and universal machines

« What is the role of evaluation in defining a language?
* How can we use evaluation to design a language?

133

The Eval/Apply Cycle

« Eval and Apply execute a cycle that unwinds our
abstractions
« Reduces to simple applications of built in procedure to
primitive data structures
* Key:
« Evaluator determines meaning of programs (and hence
our language)
 Evaluator is just another program!!

Examining the role of Eval

« From perspective of a language designer
« From perspective of a theoretician

333

Eval from perspective of language designer

« Applicative order
« Dynamic vs. lexical scoping
« Lazy evaluation
« Full normal order
By specifying arguments
« Just for pairs
» Decoupling analysis from evaluation

static analysis: work done before execution

« straight interpreter .
9 P environment

:

expression —{ interpreter — value
« advanced interpreter environment
or compiler l
static .
expr —| : »| execution — value
analysis

5133

Reasons to do static analysis

 Improve execution performance
« avoid repeating work if expression contains loops
« simplify execution engine

» Catch common mistakes early
« garbled expression
< operand of incorrect type
« wrong number of operands to procedure

* Prove properties of program
« will be fast enough, won't run out of memory, etc.
« significant current research topic

Eval is expensive

(eval ' (define (factn)

(if (=n 1)1 (*n(fact (- n 1))))) GE)
==> undef
.. (eval ' (fact 4) GE) ...
... (eval ' (=n1l) El) ...

which executes the case statementin eval four times

... (eval ' (fact 3) E1) ...
.. (eval ' =n1l) E2) ...
which executes the case statement in eval four times

* The analyze evaluator avoids this cost

7133

Summary of part 1

« static analysis
« work done before execution
« performance
« catch mistakes
* prove program properties

« analyze evaluator
« static analysis: eliminate execution cost of eval

Strategy of the analyze evaluator
environment

l

expr —»| analyze [—» EP—{ execution |— value

it

Execution procedure
a scheme procedufe
Env - anytype

analyze : expression- (Env - anytype)

(define (a-eval exp env)
((analyze exp) env))

o33

Example of analyze: variable name lookup

evaluator
data struc

environment

scheme's

environmen pi 3.14
foo
_pr"—s| analyze execution |—» 3.14

p: env
b: (lookup name env)

1033

Implementing variable name lookup

(define (analyze exp)
(cond
((number? exp) (analyze-number exp))
((variable? exp) (analyze-variable exp))

)
(define (analyze-variable exp)
(lambda (env) (lookup-variable exp env))

(black: analysis phase) (blue: execution phase)

1133

Implementing number analysis

« Implementing analyze-number s also easy

(define (analyze-number exp)
(lambda (env) exp))

(black: analysis phase) (blue: execution phase)

12133

Summary of part 2

« output of analyze is an execution procedure
< given an environment
« produces value of expression

« within analyze

« execution phase code appears inside
(lambda (env) ...)

« all other code runs during analysis phase

Subexpressions (hardest concept today)

(analyze' (if(=n1)1(*n(..))))
« analysis phase:
(analyze' =nl)) => pproc
(analyze 1) => cproc
(analyze' *n(..))==> aproc

« execution phase
(pproc env) ==> #t or #f (depending on n)
if #t, (cproc env)
if #f, (aproc env)

1433

Implementation of analyze-if

(define (analyze-if exp)
(let ((pproc (analyze (if-predicate exp)))
(cproc (analyze (if-consequent exp)))
(aproc (analyze (if-alternative exp))))
(lambda (env)
(if (true? (pproc env))

(cproc env)
(aproc env)))

black: analysis phase blue: execution phase

Visualization of analyze-if

(f(=n1) pproc
1 cproc —
*n(..)) aproc
p: env
analyze b: exp
p: env

b: (if (true? (pproc env))
(cproc env)
(aproc env))

16133

Your turn

« Assume the following procedures for definitions like
(define x (+y 1))

(definition-variable exp) X

(definition-value exp) (+y1)

(define-variable! name value env) add binding
to env

« Implement analyze-definition
« The only execution-phase work is define-variable!
« The definition-value might be an arbitrary expression

17133

Implementation of analyze-definition

(define (analyze-definition exp)
(let ((var (definition-variable exp))

(vproc (analyze (definition-value exp))))
(lambda (env)

(define-variable! var (vproc env) env))

black: analysis phase blue: execution phase

1833

Summary of part 3
« Within analyze

« recursively call analyze on subexpressions

« create an execution procedure which stores the EPs for
subexpressions as local state

Implementing lambda

« Body stored in double bubble is an execution procedure

 old make-procedure
list<symbol>, expression, Env — Procedure

* new make-procedure
list<symbol>, (Env->anytype), Env - Procedure

(define (analyze-lambda exp)
(let ((vars (lambda-parameters exp))

(bproc (ada—body exp))))

(lambda (env)
(make-procedure vars bproc env))

20133

Implementing apply: execution phase

(define (execute-application proc args)
(cond
((primitive-procedure? proc)
)
((compound-procedure? proc)
((procedure-body proc)
(extend-environment (parameters proc)
args
(environment proc))))

(else ...)))

2133

Implementing apply: analysis phase

(define (analyze-application exp)
(let ((fproc (analyze (operator exp)))
(aprocs (map analyze (operands exp))))
(lambda (env)
(execute-application
(fproc env)
(map (lambda (aproc) (aproc env))
aprocs)))))

22133

Summary of part 4

« In the analyze evaluator,
« double bubble stores execution procedure, not
expression

What is Eval really?

* Suppose you were a circuit designer
« Given a circuit diagram, you could transform it into an electric
signal encoding the layout of the diagram
« Now suppose you wanted to build a circuit that could take
any such signal as input (any other circuit) and could then
reconfigure itself to simulate that input circuit

» What would this general circuit look like???
» Suppose instead you describe a circuit as a program

« Can you build a program that takes any program as input
and reconfigures itself to simulate that input program?

* Sure — that’s just EVAL!! — it's a UNIVERSAL MACHINE

24133

It wasn't always this obvious

« “If it should turn out that the basic logics of a machine
designed for the numerical solution of differential equations
coincide with the logics of a machine intended to make bills
for a department store, | would regard this as the most
amazing coincidence that | have ever encountered”

Howard Aiken, writing in 1956 (designer of the Mark |
“Electronic Brain”, developed jointly by IBM and Harvard
starting in 1939)

Why a Universal Machine?

« If EVAL can simulate any machine, and if EVAL is itself a
description of a machine, then EVAL can simulate itself
 This was our example of meval
« In fact, EVAL can simulate an evaluator for any other
language
« Just need to specify syntax, rules of evaluation
« An evaluator for any language can simulate any other
language
« Hence there is a general notion of computability — idea
that a process can be computed independent of what
language we are using, and that anything computable in
one language is computable in any other language

26133

Turing’s insight

| Atan Turing - Netscaps ¢

« Alan Mathison Turing
* 1912-1954

27133

Turing’s insight

« Was fascinated by Godel's incompleteness results in decidability (1933)

« In any axiomatic mathematical system there are propositions that
cannot be proved or disproved within the axioms of the system

« In particular the consistency of the axioms cannot be proved.
< Led Turing to investigate Hilbert's Entscheidungsproblem
< Given a mathematical proposition could one find an algorithm which
would decide if the proposition was true of false?
For many propositions it was easy to find such an algorithm.
The real difficulty arose in proving that for certain propositions no such
algorithm existed.
In general — Is there some fixed definite process which, in principle,
can answer any mathematical question?
E.g., Suppose want to prove some theorem in geometry
— Consider all proofs from axioms in 1 step
— ...in2steps

2833

Turing’s insight

« Turing proposed a theoretical model of a simple kind of
machine (now called a Turing machine) and argued that
any “effective process” can be carried out by such a
machine

« Each machine can be characterized by its program

« Programs can be coded and used as input to a machine
« Showed how to code a universal machine

» Wrote the first EVAL!

The halting problem

« If there is a problem that the universal machine can’t solve,
then no machine can solve, and hence no effective process

« Make list of all possible programs (all machines with 1 input)
« Encode all their possible inputs as integers

« List their outputs for all possible inputs (as integer, error or
loops forever)

« Define f(n) = output of machine n on input n, plus 1 if output is
a number

« Define f(n) = 0 if machine n on input n is error or loops
« But f can’'t be computed by any program in the list!!
* Yet we just described process for computing f??

* Bug is that can't tell if a machine will always halt and produce
an answer

3033

The Halting theorem

« Halting problem: Take as inputs the description of a
machine M and a number n, and determine whether or not
M will halt and produce an answer when given n as an
input

« Halting theorem (Turing): There is no way to write a
program (for any computer, in any language) that solves
the halting problem.

3u33

Turing’s history

« Published this work as a student
» Got exactly two requests for reprints
* One from Alonzo Church (professor of logic at
Princeton)
—Had his own formalism for notion of an effective
procedure, called the lambda calculus
« Completed Ph.D. with Church, proving Church-Turing
Thesis:
« Any procedure that could reasonably be considered to
be an effective procedure can be carried out by a
universal machine (and therefore by any universal
machine)

32133

Turing’s history

Worked as code breaker during WWII

Designed and built the Bombe, machine for breaking messages from
German Airforce

Spent considerable time determining counter measures for providing
alternative sources of information so Germans wouldn’t know Enigma
broken

Designed general-purpose digital computer based on this work
Turing test: argued that intelligence can be described by an effective
procedure — foundation for Al

World class marathoner — fifth in Olympic qualifying (2:46:03 — 10 minutes off

Olympic pace)

Working on computational biology — how nature “computes” biological forms.

His death

Key person in Ultra project, breaking German’s Enigma coding machine

Designed statistical methods for breaking messages from German Navy

