
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 32.1 

Slide 32.1.1 
We have spent some time looking at computational objects that 
are built around the use of local state variables, and methods for 
changing those variables to reflect evolution in the state of the 
object. In particular, we saw an example of building a system 
around an object oriented paradigm, in which the central 
component of our system was a set of communicating objects, 
that took messages are arguments, and returned methods that 
could be applied to objects and other arguments to simulate 
interactions in complex systems. 
We saw a hint of the power of orienting system design around 
such principles, but we also saw that this power of using local 
state to model systems also extracts a price: the loss of 
referential transparency. 
So what does this mean? A language with referential transparency means that equal expressions can be substituted 
for one another without changing the value of the expression. 

Slide 32.1.2 
For example consider the code shown on the slide. Make-adder 
creates a procedure that adds a fixed number to its argument. We 
can use it to create two adders, as shown, called D1 and D2. 
The question in which we are interested is whether D1 and D2 are 
the same? We would argue that in one sense the answer is no, 
since they point to different procedural structures, but in another 
sense the answer is yes, since we can replace any expression 
involving D1 with an equivalent expression involving D2 and we 
will get exactly the same behavior. 

Slide 32.1.3 
But now consider the code shown on this slide. 
Here we have a simple message passing procedure for representing 
bank accounts. 
We can again ask whether peter and paul are the same. Here, 
we know intuitively that the answer is no. Even though the 
expression used to create each is the same, we know that the 
behavior of these objects is different, because of the local state. 
In this case, we do not have referential transparency, since the 
same expression does not give rise to things that can be substituted 
for one another. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 32.1.4 
The apparently simple introduction of local state and mutation into 
our language thus has some drastic consequences: it raises 
questions about sameness and change. 
The central issue lurking beneath the complexity of state, 
sameness, and change is that by introducing assignment we are 
forced to admit time into our computational models. Before we 
introduced assignment, all our programs were timeless, in the 
sense that any expression that has a value always has the same 
value. Thus, calling (d1 5) would always return the same value. 
In contrast, look at our modeling of deposits to a bank account, 
that returns the resulting balance. Here successive evaluations of 
the same expression yield different values. This behavior arises 

from the fact that the execution of assignment statements (in this case, assignments to the variable balance) 
delineates moments in time when values change. The result of evaluating an expression depends not only on the 
expression itself, but also on whether the evaluation occurs before or after these moments. Building models in terms 
of computational objects with local state forces us to confront time as an essential concept in programming. 
Slide 32.1.5 
We can go further in structuring computational models to match 
our perception of the physical world. Objects in the world do not 
change one at a time in sequence. Rather we perceive them as 
acting concurrently---all at once. So it is often natural to model 
systems as collections of computational processes that execute 
concurrently. Just as we can make our programs modular by 
organizing models in terms of objects with separate local state, it is 
often appropriate to divide computational models into parts that 
evolve separately and concurrently. Even if the programs are to be 
executed on a sequential computer, the practice of writing 
programs as if they were to be executed concurrently forces the 
programmer to avoid inessential timing constraints and thus makes 
programs more modular. 
In addition to making programs more modular, concurrent computation can provide a speed advantage over 
sequential computation. Sequential computers execute only one operation at a time, so the amount of time it takes to 
perform a task is proportional to the total number of operations performed. However, if it is possible to decompose a 
problem into pieces that are relatively independent and need to communicate only rarely, it may be possible to 
allocate pieces to separate computing processors, producing a speed advantage proportional to the number of 
processors available. 
Unfortunately, the complexities introduced by assignment become even more problematic in the presence of 
concurrency. The fact of concurrent execution, either because the world operates in parallel or because our 
computers do, entails additional complexity in our understanding of time. 
Today, we are going to look at those issues and ways to try to get around them. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 32.1.6 
Now why should time be an issue? For any two events, A and B, 
either A occurs before B, A and B are simultaneous, or A occurs 
after B. 
But let's look at that carefully. Suppose we create an account for 
Peter, that Paul shares. Now suppose that that Peter withdraws 10 
dollars and Paul withdraws 25 dollars from this joint account that 
initially contains 100 dollars, leaving 65 in the account. Depending 
on the order of the two withdrawals, the sequence of balances in 
the account is either 100, then 90 then 65, or 100, then 75, then 65. 
In a computer implementation of the banking system, this 
changing sequence of balances could be modeled by successive 
assignments to the variable balance. 

Slide 32.1.7 
In complex situations, however, such a view can be problematic. 
Suppose that Peter and Paul, and many other people besides, are 
accessing the same bank account through a network of banking 
machines distributed all over the world. The actual sequence of 
balances in the account will depend critically on the detailed 
timing of the accesses and the details of the communication among 
the machines. The size of the event matters in determining whether 
the outcome occurs correctly. 
This indeterminacy in the order of events can pose serious 
problems in the design of concurrent systems. For instance, 
suppose that the withdrawals made by Peter and Paul are 
implemented as two separate processes sharing a common variable 
balance, each process specified by the withdraw procedure: 
Consider the expression (set! balance (- balance amount)) executed as part of each withdrawal 
process. This consists of three steps: (1) accessing the value of the balance variable; (2) computing the new 
balance; (3) setting balance to this new value. If Peter and Paul's withdrawals execute this statement 
concurrently, then the two withdrawals might interleave the order in which they access balance and set it to the 
new value. 
The timing diagram depicts an order of events where balance starts at 100, Peter withdraws 10, Paul withdraws 
25, and yet the final value of balance is 75. As shown in the diagram, the reason for this anomaly is that Paul's 
assignment of 75 to balance is made under the assumption that the value of balance to be decremented is 100. 
That assumption, however, became invalid when Peter changed balance to 90. This is a catastrophic failure for 
the banking system, because the total amount of money in the system is not conserved. Before the transactions, the 
total amount of money was 100. Afterwards, Peter has 10, Paul has 25, and the bank has 75. 
The general phenomenon illustrated here is that several processes may share a common state variable. What 
makes this complicated is that more than one process may be trying to manipulate the shared state at the same time. 
For the bank account example, during each transaction, each customer should be able to act as if the other customers 
did not exist. When a customer changes the balance in a way that depends on the balance, he must be able to assume 
that, just before the moment of change, the balance is still what he thought it was. 

6.001 Notes: Section 32.2 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 32.2.1 
The above example typifies the subtle bugs that can creep into 
concurrent programs. The root of this complexity lies in the 
assignments to variables that are shared among the different 
processes. We already know that we must be careful in writing 
programs that use set!, because the results of a computation 
depend on the order in which the assignments occur. 
With concurrent processes we must be especially careful about 
assignments, because we may not be able to control the order of 
the assignments made by the different processes. If several such 
changes might be made concurrently (as with two depositors 
accessing a joint account) we need some way to ensure that our 
system behaves correctly. For example, in the case of 
withdrawals from a joint bank account, we must ensure that money is conserved. To make concurrent programs 
behave correctly, we may have to place some restrictions on concurrent execution. 
One possible restriction on concurrency would stipulate that no two operations that change any shared state 
variables can occur at the same time. This is an extremely stringent requirement. For distributed banking, it would 
require the system designer to ensure that only one transaction could proceed at a time. This would be both 
inefficient and overly conservative. 
A less stringent restriction on concurrency would ensure that a concurrent system produces the same result as if 
the processes had run sequentially in some order. 

Slide 32.2.2 
There are two important aspects to this requirement. First, it does 
not require the processes to actually run sequentially, but only to 
produce results that are the same as if they had run sequentially. 
For our previous example, the designer of the bank account system 
can safely allow Paul's deposit and Peter's withdrawal to happen 
concurrently, because the net result will be the same as if the two 
operations had happened sequentially. Second, there may be more 
than one possible correct result produced by a concurrent program, 
because we require only that the result be the same as for some 
sequential order. 

Slide 32.2.3 
Let's look at this a bit more carefully. 
To make the above mechanism more concrete, suppose that we 
have extended Scheme to include a procedure called parallel-
execute: this procedure takes a set of procedures of no 
arguments as input. It then creates a separate process for each such 
procedure (think of this as a separate evaluator, with its own 
environment) and applies such procedure within that process. All 
these processes (or evaluators) then run concurrently. 
As an example of how this is used, consider the example shown 
here. 
This creates two concurrent processes: P1, which sets x to x times 
x, and P2, which increments x. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 32.2.4 
To understand what would be legitimate results under concurrent 

operation of P1 and P2, let's break down the stages a bit more 

finely. 

P1 executes three different stages, as shown. 

And P2 executes two different stages, as shown. 


Slide 32.2.5 
For these processes to operate correctly, P1 simply needs to ensure 
that the ordering a, b, c takes places, and P2 simply needs to 
ensure that the ordering d, e occurs. 
Here are the different ways in which we can preserve these 
orderings, while allowing for intertwining of stages between the 
two processes. 
In other words, each of these orderings is a legitimate sequence, 
since the result would reflect a correct sequence of operations from 
each process. All that differs is how the sequences intertwine. 

Slide 32.2.6 
After execution is complete, x will be left with one of five possible 
values, depending on the interleaving of the events of P1 and P2. 
We can see this by marking the value of x at each stage as shown. 
The blue values come from P1, the red from P2. If we allow any 
intertwining of the stages of each process, we see that there are 
five different possible final values for x: 11, 100, 101, 110, and 
121. 

Slide 32.2.7 
On the other hand, if we insist that only sequential orderings of the 
two processes occur, i.e., no intertwining of intermediate stages, 
then there are only two possible outcomes. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 32.2.8 
So we see that if we are to allow for concurrent processes to take 
place, we need some way of specifying units of computation that 
need to take place as a whole, before any other computation can 
start. 
Serialization implements the following idea: Processes will 
execute concurrently, but there will be certain collections of 
procedures that cannot be executed concurrently. More precisely, 
serialization creates distinguished sets of procedures such that only 
one execution of a procedure in each serialized set is permitted to 
happen at a time. If some procedure in the set is being executed, 
then a process that attempts to execute any procedure in the set 
will be forced to wait until the first execution has finished. 

We can use serialization to control access to shared variables. For example, if we want to update a shared 
variable based on the previous value of that variable, we put the access to the previous value of the variable and the 
assignment of the new value to the variable in the same procedure. We then ensure that no other procedure that 
assigns to the variable can run concurrently with this procedure by serializing all of these procedures with the same 
serializer. This guarantees that the value of the variable cannot be changed between an access and the corresponding 
assignment. 
Slide 32.2.9 
We can constrain the concurrency by using serialized procedures. 
These are created by serializers, which are constructed by make­
serializer, whose implementation we will get to shortly. A 
serializer takes a procedure as argument and returns a serialized 
procedure that behaves like the original procedure. All calls to a 
given serializer return serialized procedures in the same set. This 
means that a procedure may not begin execution if another 
procedure from the same set has not yet completed execution. 

Slide 32.2.10 
Thus, in contrast to the example in a previous slide, executing the 
code shown here can produce only two possible values for x, 101 
or 121. The other possibilities are eliminated, because the 
execution of P1 and P2 cannot be interleaved. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 32.2.11 
So if we go back to our bank account example, here is an easy way 
to use this idea to fix the problem. Here we serialize both the 
deposits and withdrawals. 
With this implementation, two processes cannot be withdrawing 
from or depositing into a single account concurrently. This 
eliminates the source of the error illustrated in our earlier bank 
account example, where Peter changes the account balance 
between the times when Paul accesses the balance to compute the 
new value and when Paul actually performs the assignment. On the 
other hand, each account has its own serializer, so that deposits 
and withdrawals for different accounts can proceed concurrently. 

6.001 Notes: Section 32.3 

Slide 32.3.1 
Serializers provide a powerful abstraction that helps isolate the 
complexities of concurrent programs so that they can be dealt 
with carefully and (hopefully) correctly. However, while using 
serializers is relatively straightforward when there is only a 
single shared resource (such as a single bank account), 
concurrent programming can be treacherously difficult when 
there are multiple shared resources. 
To see some of the difficulties that can arise, suppose we wish to 
swap the balances in two bank accounts. We access each account 
to find the balance, compute the difference between the 
balances, withdraw this difference from one account, and deposit 
it in the other account. We could implement this with the code 
shown on the slide. 

Slide 32.3.2 
This procedure works well when only a single process is trying to 
do the exchange. Suppose, however, that Peter and Paul both have 
access to accounts a1, a2, and a3, and that Peter exchanges a1 and 
a2 while Paul concurrently exchanges a1 and a3. 
Even with account deposits and withdrawals serialized for 
individual accounts (as in the make-account procedure shown 
above), exchange can still produce incorrect results. For 
example, Peter might compute the difference in the balances for a1 
and a2, but then Paul might change the balance in a1 before Peter 
is able to complete the exchange. 
In more specific detail, the stages of the computation of the two 
exchanges are shown. We know by serialization that steps 2 and 5 

must each complete in entirety before the other can begin. However, it is still possible for the sequence of steps 
shown on the right to take place, resulting in an incorrect behavior (the total amount of money is preserved but we 
intended to simply swap amounts between the accounts, meaning there should be 100, 200 and 300 dollars in the 
accounts). 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 32.3.3 
For correct behavior, we must arrange for the exchange 
procedure to lock out any other concurrent accesses to the 
accounts during the entire time of the exchange. 
One way we can accomplish this is by using both accounts' 
serializers to serialize the entire exchange procedure. To do this, 
we will arrange for access to an account's serializer. Note that we 
are deliberately breaking the modularity of the bank-account 
object by exposing the serializer. This version of make-
account is identical to the original version, except that a 
serializer is provided to protect the balance variable, and the 
serializer is exported via message passing. 

Slide 32.3.4 
We can use this to do serialized deposits and withdrawals. 
However, unlike our earlier serialized account, it is now the 
responsibility of each user of bank-account objects to explicitly 
manage the serialization. For example, we might create a deposit 
procedure that gets access to the balance through the serializer, 
thus ensuring that it only gains access if no one else is using it. 
Exporting the serializer in this way gives us enough flexibility to 
implement a serialized exchange program. We simply serialize the 
original exchange procedure with the serializers for both 
accounts, as shown. 

Slide 32.3.5 
Even with the serialization technique discussed above, account 
exchanging still has a problem. Imagine that Peter attempts to 
exchange a1 with a2 while Paul concurrently attempts to exchange 
a2 with a1. Suppose that Peter's process reaches the point where it 
has entered a serialized procedure protecting a1 and, just after that, 
Paul's process enters a serialized procedure protecting a2. Now 
Peter cannot proceed (to enter a serialized procedure protecting a2) 
until Paul exits the serialized procedure protecting a2. Similarly, 
Paul cannot proceed until Peter exits the serialized procedure 
protecting a1. Each process is stalled forever, waiting for the other. 
This situation is called a deadlock. Deadlock is always a danger in 
systems that provide concurrent access to multiple shared 
resources. 
One way to avoid the deadlock in this situation is to give each account a unique identification number and rewrite 
exchange so that a process will always attempt to enter a procedure protecting the lowest-numbered account first. 
Although this method works well for the exchange problem, there are other situations that require more 
sophisticated deadlock-avoidance techniques, or where deadlock cannot be avoided at all. 

6.001 Notes: Section 32.4 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 32.4.1 
Finally, how do we actually implement serializers? The most 
common method is to implement serializers in terms of a more 
primitive synchronization mechanism called a mutex. A mutex 
is an object that supports two operations: the mutex can be 
acquired, and the mutex can be released. Once a mutex has been 
acquired, no other acquire operations on that mutex may proceed 
until the mutex is released. 

Slide 32.4.2 
In our implementation, each serializer has an associated mutex. 
Given a procedure p, the serializer returns a procedure that 
acquires the mutex, runs p, and then releases the mutex. This 
ensures that only one of the procedures produced by the serializer 
can be running at once, which is precisely the serialization 
property that we need to guarantee. 

Slide 32.4.3 
The mutex is a mutable object (here we'll use a one-element list, 
which we'll refer to as a cell) that can hold the value true or false. 
When the value is false, the mutex is available to be acquired. 
When the value is true, the mutex is unavailable, and any process 
that attempts to acquire the mutex must wait. 
Our mutex constructor make-mutex begins by initializing the 
cell contents to false. To acquire the mutex, we test the cell. If the 
mutex is available, we set the cell contents to true and proceed. 
Otherwise, we wait in a loop, attempting to acquire over and over 
again, until we find that the mutex is available. To release the 
mutex, we set the cell contents to false. 

Slide 32.4.4 
Test-and-set! tests the cell and returns the result of the test. 
In addition, if the test was false, test-and-set! sets the cell 
contents to true before returning false. We can express this 
behavior with the procedure shown. 
However, this implementation of test-and-set! does not 
suffice as it stands. There is a crucial subtlety here, which is the 
essential place where concurrency control enters the system: The 
test-and-set! operation must be performed atomically. That 
is, we must guarantee that, once a process has tested the cell and 
found it to be false, the cell contents will actually be set to true 
before any other process can test the cell. If we do not make this 
guarantee, then the mutex can fail. 

The actual implementation of test-and-set! depends on the details of how our system runs concurrent 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

processes. For example, we might be executing concurrent processes on a sequential processor using a time-slicing 
mechanism that cycles through the processes, permitting each process to run for a short time before interrupting it 
and moving on to the next process. In that case, test-and-set! can work by disabling time slicing during the 
testing and setting. 
Alternatively, multiprocessing computers provide instructions that support atomic operations directly in hardware. 
Slide 32.4.5 
We've seen how programming concurrent systems requires 
controlling the ordering of events when different processes access 
shared state, and we've seen how to achieve this control through 
judicious use of serializers. But the problems of concurrency lie 
deeper than this, because, from a fundamental point of view, it's 
not always clear what is meant by ``shared state.'' 
Mechanisms such as test-and-set! require processes to 
examine a global shared flag at arbitrary times. This is problematic 
and inefficient to implement in modern high-speed processors, 
where due to optimization techniques such as pipelining and 
cached memory, the contents of memory may not be in a 
consistent state at every instant. In contemporary multiprocessing 
systems, therefore, the serializer paradigm is being supplanted by new approaches to concurrency control. 
The basic phenomenon here is that synchronizing different processes, establishing shared state, or imposing an 
order on events requires communicating among the processes. In essence, any notion of time in concurrency control 
must be intimately tied to communication. 


	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved


